封面
市場調查報告書
商品編碼
1558353

到 2030 年風力發電機葉輪市場預測:按材料、長度、應用和地區進行的全球分析

Wind Turbine Rotor Blade Market Forecasts to 2030 - Global Analysis By Material, Length, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據Stratistics MRC預測,2024年全球風力發電機葉輪市場規模將達到129億美元,預計到2030年將達到456億美元,預測期內複合年成長率為23.4%。

風力發電機葉輪是風力發電機的關鍵部件,旨在捕獲風的動能並將其轉化為機械能。這些葉片通常由玻璃纖維或碳纖維複合材料等輕質耐用材料製成,其形狀符合動態,可最佳化效率和性能。每個葉片都連接到轉子輪轂上,當風力旋轉時,驅動發電機發電。葉片設計對於最大化能量捕獲和最小化阻力至關重要,其具有扭曲和錐度等特徵,以確保平穩的氣流和有效的發電。

根據印度新和可再生能源部統計,截至2021年,該國風電裝置容量位居全球第四,總設備容量為40.08GW。

對客製化和靈活的風力發電機解決方案的需求不斷成長

對客製化和靈活的風力發電機解決方案不斷成長的需求正在推動風力發電機葉輪的發展顯著向前發展。隨著風力發電成為永續發電日益重要的元素,需要可根據特定風力條件和運作要求進行客製化的葉輪。客製化葉片可以透過針對不同風速和湍流調整形狀、長度和材料成分來最佳化能量捕獲。這種靈活性不僅提高了效率,還透過減少機械應力來延長渦輪機的使用壽命。

監理和合規限制

法規和合規性限制可能對風力發電機葉輪的開發和部署產生重大影響。這些限制通常源自於監管機構為確保風力發電系統的可靠性和永續性而施加的嚴格的安全、環境和性能標準。例如,遵守國際電工委員會 (IEC) 等國際標準需要進行廣泛的測試和認證,這既耗時又昂貴。此外,環境法規要求葉片材料和製造流程盡量減少對生態的影響,這可能導致生產延誤和生產成本增加。

基礎建設發展

材料科學和製造程序的創新處於這一發展的最前沿。先進碳纖維和樹脂等增強複合材料使葉片更輕、更耐用,使其能夠承受更惡劣的環境條件,同時從風中捕獲更多能量。此外,改進的製造基礎設施,包括更大、更精確的製造設備,使得能夠生產具有最佳化動態的更長葉片。此類基礎設施還支援生產過程中更好的品管和效率。

考慮環境和美觀

從環境和美學角度來看,風力發電機葉輪面臨重大挑戰。在環境方面,葉片的製造和處置可能會帶來問題,因為它們依賴難以回收並造成廢棄物的複合材料。它們的巨大尺寸和行駛時發出的噪音會影響當地的野生動物和生態系統,特別是可能接觸刀片的鳥類和蝙蝠族群。風力發電機高聳的存在和旋轉的葉片可能會破壞自然景觀和遠景。這導致了優先考慮景觀價值的當地社區和相關人員的抵制。

COVID-19 的影響:

COVID-19 大流行導致全球供應鏈中斷和製造延誤,風力發電機葉輪產業產生了重大影響。停工和限制擾亂了重要零件和原料的生產,導致短缺和成本增加。勞動力限制和健康問題減緩了製造過程和維護活動。疫情對經濟的影響也導致投資減少以及風發電工程推遲或取消,從而影響了葉輪的需求。這些挑戰不僅推遲了新風電場的部署,還影響了正在進行的計劃,導致效率低下和營運成本增加。

碳複合材料領域預計將在預測期內成為最大的領域

由於先進材料提高了性能和耐用性,碳複合材料產業在預測期內的需求將被預期最大。碳複合材料以其優異的強度重量比而聞名,擴大用於葉輪,以提高效率和壽命。與傳統玻璃纖維相比,這些材料可顯著減輕重量,並允許更長、更符合動態的葉片設計。這提高了能量捕獲和渦輪機的整體性能。此外,碳複合材料具有出色的抗疲勞性和耐環境劣化,從而降低維護成本並延長使用壽命。

預計海上風力發電機產業在預測期內將經歷最高的複合年成長率

預計海上風力發電機產業在預測期內的複合年成長率最高。葉片設計和材料的進步旨在最佳化從更穩定、更強的離岸風中捕獲能量。創新技術包括使用更輕、更耐用的複合材料,能夠抗腐蝕並減少維護需求。更長、動態更複雜的葉片已經被開發出來,即使在低風速下也能捕捉到更多的風力發電。它還採用增強型設計,整合了先進的感測器和控制系統,可即時調整葉片角度,最大限度地提高效率並最大限度地減少磨損。

佔比最大的地區:

隨著該地區各國努力擴大可再生能源產能,對更有效率、更大風力發電機的需求不斷增加,預計歐洲地區在預測期內將保持良好的成長。這一趨勢刺激了葉輪技術的創新,製造商專注於設計、材料和動態增強,以捕捉更多風力發電並提高性能。先進技術包括使用更輕、更強的複合材料、最佳化的葉片幾何形狀以及用於即時性能監控的整合感測器。這些改進不僅提高了風力發電機的效率和壽命,還有助於降低全部區域的風力發電成本。

複合年成長率最高的地區:

預計歐洲地區在預測期內將佔據市場的最大佔有率。政府法規正在推動葉片設計和製造的創新和效率,迫使全部區域的公司採用尖端技術和材料,以提高耐用性和空氣動力效率。例如,歐盟對減少碳排放的關注刺激了研發投資,從而開發出更長、更輕的葉片,以捕獲更多風力發電並降低成本。

免費客製化服務:

訂閱此報告的客戶可以存取以下免費自訂選項之一:

  • 公司簡介
    • 其他市場參與者的綜合分析(最多 3 家公司)
    • 主要企業SWOT分析(最多3家企業)
  • 區域分割
    • 根據客戶興趣對主要國家的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭標基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 研究資訊來源
    • 主要研究資訊來源
    • 二次研究資訊來源
    • 先決條件

第3章市場趨勢分析

  • 促進因素
  • 抑制因素
  • 機會
  • 威脅
  • 應用分析
  • 新興市場
  • COVID-19 的影響

第4章波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第5章全球風力發電機葉輪市場:依材料分類

  • 碳複合材料
  • 玻璃纖維
  • 其他材料

第6章全球風力發電機葉輪市場:依長度

  • 45米以下
  • 45-60米
  • 60公尺以上

第7章全球風力發電機葉輪市場:依應用分類

  • 離岸風力發電機
  • 陸域風力發電機

第8章全球風力發電機葉輪市場:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東/非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲

第9章 主要進展

  • 合約、夥伴關係、合作和合資企業
  • 收購和合併
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第 10 章 公司概況

  • Acciona SA
  • Enercon GmbH
  • GE Renewable Energy
  • Hitachi Power Solutions
  • Nordex Group
  • Siemens AG
  • Sinoma Wind Power Blade Co. Ltd
  • Suzlon Energy
  • TPI Composites Inc
  • Vestas Wind Systems A/S
Product Code: SMRC27227

According to Stratistics MRC, the Global Wind Turbine Rotor Blade Market is accounted for $12.9 billion in 2024 and is expected to reach $45.6 billion by 2030 growing at a CAGR of 23.4% during the forecast period. A wind turbine rotor blade is a crucial component of a wind turbine, designed to capture the kinetic energy of the wind and convert it into mechanical energy. Typically constructed from lightweight, durable materials such as fiberglass or carbon fiber composites, these blades are aerodynamically shaped to optimize efficiency and performance. Each blade is attached to the rotor hub, which, when turned by the wind, drives the generator to produce electricity. The design of the blade is essential for maximizing energy capture and minimizing resistance, with features like twist and tapering to ensure smooth airflow and effective power generation.

According to India's Ministry of New and Renewable Energy, as of 2021 the country had the fourth-highest installed wind energy capacity in the world, with a total installed capacity of 40.08 GW.

Market Dynamics:

Driver:

Growing demand for customized and flexible wind turbine solutions

The growing demand for customized and flexible wind turbine solutions is substantially advancing the development of wind turbine rotor blades. As wind energy becomes an increasingly critical component of sustainable power generation, there is a push for rotor blades that can be tailored to specific wind conditions and operational requirements. Customized blades can optimize energy capture by adjusting their shape, length, and material composition to suit varying wind speeds and turbulence. This flexibility not only improves efficiency but also extends the operational lifespan of the turbines by reducing mechanical stress.

Restraint:

Regulatory and compliance constraints

Regulatory and compliance constraints can significantly impact the development and deployment of wind turbine rotor blades. These constraints often arise from stringent safety, environmental, and performance standards imposed by regulatory bodies to ensure the reliability and sustainability of wind energy systems. For instance, compliance with international standards such as those from the International Electrotechnical Commission (IEC) requires extensive testing and certification, which can be time-consuming and costly. Environmental regulations also mandate that blade materials and manufacturing processes minimize ecological impact, leading to potential delays and increased production costs.

Opportunity:

Infrastructure development

Innovations in materials science and manufacturing processes are at the forefront of this evolution. Enhanced composite materials, such as advanced carbon fibers and resins, are making blades lighter and more durable, allowing them to capture more energy from the wind while withstanding harsher environmental conditions. Additionally, improvements in manufacturing infrastructure, including larger and more precise production facilities, enable the creation of longer blades with optimized aerodynamics. This infrastructure also supports better quality control and efficiency in the production process.

Threat:

Environmental and aesthetic concerns

Wind turbine rotor blades face significant challenges from both environmental and aesthetic concerns. Environmentally, the production and disposal of these blades can pose issues due to their reliance on composite materials, which are difficult to recycle and can contribute to waste. Their large size and the noise they generate during operation can impact local wildlife and ecosystems, particularly bird and bat populations, which may collide with the blades. Aesthetically, the visual impact of wind turbines can be contentious, as their towering presence and rotating blades can disrupt natural landscapes and views. This has led to resistance from communities and stakeholders who prioritize scenic values.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the wind turbine rotor blade industry through disruptions in global supply chains and manufacturing delays. Lockdowns and restrictions hindered the production of essential components and raw materials, leading to shortages and increased costs. Workforce limitations and health concerns slowed down manufacturing processes and maintenance activities. The pandemic's economic fallout also resulted in reduced investment and postponed or canceled wind energy projects, affecting demand for rotor blades. These challenges not only delayed the deployment of new wind farms but also impacted ongoing projects, leading to inefficiencies and increased operational costs.

The Carbon Composite segment is expected to be the largest during the forecast period

Carbon Composite segment is expected to be the largest during the forecast period by enhancing performance and durability through advanced materials. Carbon composites, known for their exceptional strength-to-weight ratio, are increasingly being used in rotor blades to improve their efficiency and longevity. These materials provide significant weight reduction compared to traditional fiberglass, allowing for longer and more aerodynamic blade designs. This, in turn, enhances energy capture and overall turbine performance. Additionally, carbon composites offer superior resistance to fatigue and environmental degradation, which translates to reduced maintenance costs and extended operational life.

The Offshore Wind Turbines segment is expected to have the highest CAGR during the forecast period

Offshore Wind Turbines segment is expected to have the highest CAGR during the forecast period. Advances in blade design and materials are aimed at optimizing energy capture from the more consistent and stronger offshore winds. Innovations include the use of lighter, more durable composite materials that resist corrosion and reduce maintenance needs. Longer and more aerodynamically refined blades are being developed to capture more wind energy, even at lower wind speeds. Enhanced design also involves integrating advanced sensors and control systems to adjust blade angles in real-time, maximizing efficiency and minimizing wear.

Region with largest share:

As countries in the region commit to expanding their renewable energy capacities, the demand for more efficient and larger wind turbines grows, Europe region is poised to hold lucrative growth over the projection period. This drive is prompting innovations in rotor blade technology, with manufacturers focusing on enhancing their design, materials and aerodynamics to capture more wind energy and improve performance across the region. Advances include the use of lighter and stronger composite materials, optimized blade shapes, and integrated sensors for real-time performance monitoring. These improvements not only boost the efficiency and lifespan of wind turbines but also contribute to reducing the overall cost of wind energy throughout the region.

Region with highest CAGR:

Europe region is projected to hold the largest share of the market over the extrapolated time frame. Government regulations drive innovation and efficiency in blade design and manufacturing, compelling companies to adopt cutting-edge technologies and materials that enhance durability and aerodynamic efficiency across the region. For instance, the European Union's focus on reducing carbon emissions has spurred investments in research and development, leading to the creation of longer and lighter blades that capture more wind energy and reduce costs.

Key players in the market

Some of the key players in Wind Turbine Rotor Blade market include Acciona S.A, Enercon GmbH, GE Renewable Energy, Hitachi Power Solutions, Nordex Group, Siemens AG, Sinoma Wind Power Blade Co. Ltd, Suzlon Energy, TPI Composites Inc and Vestas Wind Systems A/S.

Key Developments:

In May 2024, Siemens Energy AG announced its plan to sell turbine unit of Indian subsidiary Siemens Gamesa Renewable Energy. The company plans to focus on European and U.S. market despite challenges. However, in India the company remains obligated to provide services.

In March 2023, EnBW secured loan of nearly USD 650 million from the European Investment Bank for its wind farm in North Sea. With this project, the company has plans to provide green electricity to 1.1 million household.

In December 2022, Covestro and Zhuzhou Times New Material Technology, a polyurethane (PU) wind turbine manufacturer, announced the launch of the one-thousandth PU wind turbine blade, achieving commercialization goals initially developed under a memorandum of cooperation signed by both companies approximately one year prior.

In November 2022, Stora Enso and Voodin Blade Technology GmbH entered into a collaboration to develop wood-based blades for sustainable wind turbines. Under the terms of the agreement, the companies have committed to devising environmentally friendly alternatives for wind turbine blades and establishing a competitive and dependable supply chain.

Materials Covered:

  • Carbon Composite
  • Glass Fiber
  • Other Materials

Lengths Covered:

  • Below 45 meters
  • 45-60 meters
  • Above 60 meters

Applications Covered:

  • Offshore Wind Turbines
  • Onshore Wind Turbines

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Wind Turbine Rotor Blade Market, By Material

  • 5.1 Introduction
  • 5.2 Carbon Composite
  • 5.3 Glass Fiber
  • 5.4 Other Materials

6 Global Wind Turbine Rotor Blade Market, By Length

  • 6.1 Introduction
  • 6.2 Below 45 meters
  • 6.3 45-60 meters
  • 6.4 Above 60 meters

7 Global Wind Turbine Rotor Blade Market, By Application

  • 7.1 Introduction
  • 7.2 Offshore Wind Turbines
  • 7.3 Onshore Wind Turbines

8 Global Wind Turbine Rotor Blade Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Acciona S.A
  • 10.2 Enercon GmbH
  • 10.3 GE Renewable Energy
  • 10.4 Hitachi Power Solutions
  • 10.5 Nordex Group
  • 10.6 Siemens AG
  • 10.7 Sinoma Wind Power Blade Co. Ltd
  • 10.8 Suzlon Energy
  • 10.9 TPI Composites Inc
  • 10.10 Vestas Wind Systems A/S

List of Tables

  • Table 1 Global Wind Turbine Rotor Blade Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Wind Turbine Rotor Blade Market Outlook, By Material (2022-2030) ($MN)
  • Table 3 Global Wind Turbine Rotor Blade Market Outlook, By Carbon Composite (2022-2030) ($MN)
  • Table 4 Global Wind Turbine Rotor Blade Market Outlook, By Glass Fiber (2022-2030) ($MN)
  • Table 5 Global Wind Turbine Rotor Blade Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 6 Global Wind Turbine Rotor Blade Market Outlook, By Length (2022-2030) ($MN)
  • Table 7 Global Wind Turbine Rotor Blade Market Outlook, By Below 45 meters (2022-2030) ($MN)
  • Table 8 Global Wind Turbine Rotor Blade Market Outlook, By 45-60 meters (2022-2030) ($MN)
  • Table 9 Global Wind Turbine Rotor Blade Market Outlook, By Above 60 meters (2022-2030) ($MN)
  • Table 10 Global Wind Turbine Rotor Blade Market Outlook, By Application (2022-2030) ($MN)
  • Table 11 Global Wind Turbine Rotor Blade Market Outlook, By Offshore Wind Turbines (2022-2030) ($MN)
  • Table 12 Global Wind Turbine Rotor Blade Market Outlook, By Onshore Wind Turbines (2022-2030) ($MN)
  • Table 13 North America Wind Turbine Rotor Blade Market Outlook, By Country (2022-2030) ($MN)
  • Table 14 North America Wind Turbine Rotor Blade Market Outlook, By Material (2022-2030) ($MN)
  • Table 15 North America Wind Turbine Rotor Blade Market Outlook, By Carbon Composite (2022-2030) ($MN)
  • Table 16 North America Wind Turbine Rotor Blade Market Outlook, By Glass Fiber (2022-2030) ($MN)
  • Table 17 North America Wind Turbine Rotor Blade Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 18 North America Wind Turbine Rotor Blade Market Outlook, By Length (2022-2030) ($MN)
  • Table 19 North America Wind Turbine Rotor Blade Market Outlook, By Below 45 meters (2022-2030) ($MN)
  • Table 20 North America Wind Turbine Rotor Blade Market Outlook, By 45-60 meters (2022-2030) ($MN)
  • Table 21 North America Wind Turbine Rotor Blade Market Outlook, By Above 60 meters (2022-2030) ($MN)
  • Table 22 North America Wind Turbine Rotor Blade Market Outlook, By Application (2022-2030) ($MN)
  • Table 23 North America Wind Turbine Rotor Blade Market Outlook, By Offshore Wind Turbines (2022-2030) ($MN)
  • Table 24 North America Wind Turbine Rotor Blade Market Outlook, By Onshore Wind Turbines (2022-2030) ($MN)
  • Table 25 Europe Wind Turbine Rotor Blade Market Outlook, By Country (2022-2030) ($MN)
  • Table 26 Europe Wind Turbine Rotor Blade Market Outlook, By Material (2022-2030) ($MN)
  • Table 27 Europe Wind Turbine Rotor Blade Market Outlook, By Carbon Composite (2022-2030) ($MN)
  • Table 28 Europe Wind Turbine Rotor Blade Market Outlook, By Glass Fiber (2022-2030) ($MN)
  • Table 29 Europe Wind Turbine Rotor Blade Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 30 Europe Wind Turbine Rotor Blade Market Outlook, By Length (2022-2030) ($MN)
  • Table 31 Europe Wind Turbine Rotor Blade Market Outlook, By Below 45 meters (2022-2030) ($MN)
  • Table 32 Europe Wind Turbine Rotor Blade Market Outlook, By 45-60 meters (2022-2030) ($MN)
  • Table 33 Europe Wind Turbine Rotor Blade Market Outlook, By Above 60 meters (2022-2030) ($MN)
  • Table 34 Europe Wind Turbine Rotor Blade Market Outlook, By Application (2022-2030) ($MN)
  • Table 35 Europe Wind Turbine Rotor Blade Market Outlook, By Offshore Wind Turbines (2022-2030) ($MN)
  • Table 36 Europe Wind Turbine Rotor Blade Market Outlook, By Onshore Wind Turbines (2022-2030) ($MN)
  • Table 37 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Country (2022-2030) ($MN)
  • Table 38 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Material (2022-2030) ($MN)
  • Table 39 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Carbon Composite (2022-2030) ($MN)
  • Table 40 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Glass Fiber (2022-2030) ($MN)
  • Table 41 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 42 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Length (2022-2030) ($MN)
  • Table 43 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Below 45 meters (2022-2030) ($MN)
  • Table 44 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By 45-60 meters (2022-2030) ($MN)
  • Table 45 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Above 60 meters (2022-2030) ($MN)
  • Table 46 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Application (2022-2030) ($MN)
  • Table 47 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Offshore Wind Turbines (2022-2030) ($MN)
  • Table 48 Asia Pacific Wind Turbine Rotor Blade Market Outlook, By Onshore Wind Turbines (2022-2030) ($MN)
  • Table 49 South America Wind Turbine Rotor Blade Market Outlook, By Country (2022-2030) ($MN)
  • Table 50 South America Wind Turbine Rotor Blade Market Outlook, By Material (2022-2030) ($MN)
  • Table 51 South America Wind Turbine Rotor Blade Market Outlook, By Carbon Composite (2022-2030) ($MN)
  • Table 52 South America Wind Turbine Rotor Blade Market Outlook, By Glass Fiber (2022-2030) ($MN)
  • Table 53 South America Wind Turbine Rotor Blade Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 54 South America Wind Turbine Rotor Blade Market Outlook, By Length (2022-2030) ($MN)
  • Table 55 South America Wind Turbine Rotor Blade Market Outlook, By Below 45 meters (2022-2030) ($MN)
  • Table 56 South America Wind Turbine Rotor Blade Market Outlook, By 45-60 meters (2022-2030) ($MN)
  • Table 57 South America Wind Turbine Rotor Blade Market Outlook, By Above 60 meters (2022-2030) ($MN)
  • Table 58 South America Wind Turbine Rotor Blade Market Outlook, By Application (2022-2030) ($MN)
  • Table 59 South America Wind Turbine Rotor Blade Market Outlook, By Offshore Wind Turbines (2022-2030) ($MN)
  • Table 60 South America Wind Turbine Rotor Blade Market Outlook, By Onshore Wind Turbines (2022-2030) ($MN)
  • Table 61 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Country (2022-2030) ($MN)
  • Table 62 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Material (2022-2030) ($MN)
  • Table 63 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Carbon Composite (2022-2030) ($MN)
  • Table 64 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Glass Fiber (2022-2030) ($MN)
  • Table 65 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 66 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Length (2022-2030) ($MN)
  • Table 67 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Below 45 meters (2022-2030) ($MN)
  • Table 68 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By 45-60 meters (2022-2030) ($MN)
  • Table 69 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Above 60 meters (2022-2030) ($MN)
  • Table 70 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Application (2022-2030) ($MN)
  • Table 71 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Offshore Wind Turbines (2022-2030) ($MN)
  • Table 72 Middle East & Africa Wind Turbine Rotor Blade Market Outlook, By Onshore Wind Turbines (2022-2030) ($MN)