封面
市場調查報告書
商品編碼
1587692

到 2030 年 P2G(電轉氣)市場預測:按技術、應用、最終用戶和地區進行的全球分析

Power-to-Gas Market Forecasts to 2030 - Global Analysis By Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據Stratistics MRC預測,2024年全球P2G(電轉氣)市場規模將達到397.5億美元,預計2030年將達到900.5億美元,預測期內複合年成長率為14.6%。

P2G(電轉氣)是一項創新技術,可將剩餘電能(主要來自風能和太陽能等再生能源來源)轉化為氫氣和甲烷等氣體燃料。該過程透過儲存多餘的電力以供以後使用來解決可再生能源發電的間歇性問題。 PtG 使用電力電解水,將其分解為氫氣和氧氣。氫氣可以儲存或與二氧化碳(從大氣或工業來源中回收)一起進一步加工,以在稱為甲烷化的過程中產生合成甲烷。這種合成氣可以注入現有的天然氣管網,用於燃料電池,或用於空間加熱。

根據國際能源總署 (IEA) 的數據,電解堆佔資本投資的 50-60%。其餘 40-50% 是工廠、電力電子和氣體調節零件。

人們對氣候變遷的認知不斷增強

人們對氣候變遷的認知不斷提高,極大地推動了 P2G(電轉氣)技術的發展,該技術將剩餘的可再生能源轉化為氫氣和合成天然氣。隨著各國努力減少溫室氣體排放,P2G 提供了一個可行的解決方案來利用風能和太陽能的剩餘電力。該過程不僅解決了可再生能源的間歇性問題,而且還描述了一種有效儲存和運輸能源的方法。此外,透過生產氫氣,P2G 可以實現傳統上依賴石化燃料的各個領域的脫碳,例如運輸和工業流程。

整合挑戰

電轉氣(P2G)技術將剩餘的可再生能源轉化為氫氣和合成天然氣,但面臨阻礙其廣泛採用的重大整合挑戰。關鍵問題之一是氫氣生產不穩定,因為風能和太陽能等可再生能源是間歇性的。現有的能源基礎設施,包括管道和倉儲設施,通常沒有針對氫氣運輸和儲存進行最佳化,並且需要昂貴的升級。由於缺乏支持 P2G 系統的法律規範或市場結構,相關人員無法確定投資收益,從而使整合更加複雜。

氫經濟國家發展

氫經濟正在極大地推動 P2G(電轉氣)技術。 P2G是一種透過電解將剩餘電力(通常由風能和太陽能等再生能源來源產生)轉化為氫氣的技術。這個過程實現了可再生能源的儲存和運輸,並有效解決了與可再生能源發電相關的間歇性問題。透過生產氫氣,P2G 可以促進可再生能源併入能源網,並為交通、暖氣和工業流程等各種應用提供清潔的替代燃料。此外,氫氣可以轉化回電力或用於燃料電池,從而提高能源效率並減少溫室氣體排放。

P2G技術初期投資

電轉氣(P2G)技術將多餘的可再生能源轉化為氫氣或甲烷,並將其儲存起來以供以後使用,但由於初始投資成本高昂,該技術面臨重大障礙。 P2G 系統所需的基礎設施(例如電解槽、倉儲設施以及與現有天然氣網路的整合)需要大量資本支出。這種財務障礙讓投資者和公用事業公司望而卻步,尤其是在廉價能源解決方案普遍存在的市場上。 P2G計劃的投資回收期較長,因此其吸引力不如傳統能源投資。 P2G 具有增強能源安全和支持脫碳努力的潛力,但前期成本存在經濟不確定性,並且需要政府獎勵和政策支持來促進發展。

COVID-19 的影響

COVID-19 大流行對電力轉天然氣 (PtG) 產業產生了重大影響,凸顯了能源格局中的脆弱性和機會。最初,關門和工業活動減少導致能源需求下降,擾亂了依賴穩定電力供應的鉑金天然氣計劃的營運穩定性。供應鏈中斷也影響了電解槽和其他對氫氣生產至關重要的技術關鍵部件的供應。然而,這場危機也加速了人們對永續能源解決方案的興趣,因為政府和工業界都在尋求增強對未來破壞的抵禦能力。

在預測期內,電解部門預計將成為最大的部門

預計電解業務在預測期內將佔據最大佔有率。電解利用電力將水分子分解成氫氣和氧氣,產生氫氣。這在整合風能和太陽能等可再生能源時尤其有利。 P2G透過將多餘的電力轉化為氫氣,平衡供需,確保能源系統更加穩定。產生的氫氣可以直接用作燃料,注入天然氣網路,或透過進一步的化學過程轉化為合成甲烷。這不僅有利於能源儲存,還有助於天然氣供應和運輸部門的脫碳,促進更永續和有彈性的能源未來。

鋼鐵業預計在預測期內複合年成長率最高

鋼鐵業預計將在預測期內快速成長,因為它是減少碳排放和提高能源效率的永續解決方案。鉑族碳氫化合物發電透過電解將剩餘的可再生能源發電(通常是風能或太陽能)轉化為氫氣。這種氫氣可用於鋼鐵生產,以取代依賴焦炭的傳統碳集中方法。透過採用 PtG,鋼鐵製造商可以顯著減少碳排放,因為氫成為石化燃料的更清潔替代品。此外,PtG 的靈活性使其能夠儲存剩餘的可再生能源並解決能源供應的間歇性問題。隨著全球對綠色鋼鐵的需求增加,鉑族金屬的整合不僅滿足環境法規和企業永續性目標,也使鋼鐵公司能夠在快速發展的市場中保持競爭力。

比最大的地區

預計北美地區將在整個預測期內保持最大的市場佔有率。與碳市場的整合將透過提供金融機制來支援綠氫技術的開發和部署,從而顯著加強北美的電力轉天然氣(P2G)產業。透過將這些系統與碳市場連結起來,開發商可以將減少溫室氣體排放的碳權額收益,從而創造引人注目的經濟獎勵。這種整合將加速可再生能源計劃和基礎設施的投資,降低成本並提高氫氣生產的可擴展性。

複合年成長率最高的地區

歐洲在預測期內的複合年成長率最高。透過建立明確的框架和獎勵,該法規將鼓勵對鉑族技術的投資,將剩餘的再生能源轉化為氫氣和合成天然氣。這個過程不僅有助於能源儲存和電網平衡,而且還促進包括運輸和供暖在內的各個部門的脫碳。 《綠色交易》和《Fit for 55》等歐洲政策旨在減少溫室氣體排放並促進氫氣作為主要能源載體。

免費客製化服務

訂閱此報告的客戶可以存取以下免費自訂選項之一:

  • 公司簡介
    • 其他市場參與企業的綜合分析(最多 3 家公司)
    • 主要企業SWOT分析(最多3家企業)
  • 區域分割
    • 根據客戶興趣對主要國家的市場估計/預測/複合年成長率(註:基於可行性檢查)
  • 競爭標基準化分析
    • 按產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 研究資訊來源
    • 主要研究資訊來源
    • 二次研究資訊來源
    • 先決條件

第3章市場趨勢分析

  • 介紹
  • 促進因素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19 的影響

第4章波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第5章全球 P2G(電轉氣)市場:依技術分類

  • 介紹
  • 電解的
  • 甲烷化

第6章全球 P2G(電轉氣)市場:依應用分類

  • 介紹
  • 住宅
  • 商業的
  • 工業的

第7章全球P2G(電轉氣)市場:依最終用戶分類

  • 介紹
  • 運輸
  • 化學產品製造
  • 鋼鐵工業
  • 其他

第8章全球 P2G(電轉氣)市場:按地區

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東/非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東/非洲

第9章 主要進展

  • 合約、夥伴關係、合作和合資企業
  • 收購和合併
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第 10 章 公司概況

  • Avacon AG
  • Cummins Inc
  • Fortescue Metals Group
  • FuelCell Energy Inc
  • Hitachi Zosen Inova AG
  • MAN Energy Solutions
  • Siemens Energy AG
  • Sunfire GmbH
  • Thyssenkrupp AG
Product Code: SMRC27679

According to Stratistics MRC, the Global Power-to-Gas Market is accounted for $39.75 billion in 2024 and is expected to reach $90.05 billion by 2030 growing at a CAGR of 14.6% during the forecast period. Power-to-Gas (PtG) is an innovative technology that converts surplus electrical energy, primarily from renewable sources like wind and solar, into gaseous fuels, typically hydrogen or methane. This process addresses the intermittency of renewable energy generation by storing excess power for later use. In PtG, electricity is used to electrolyze water, splitting it into hydrogen and oxygen. The hydrogen can be stored or further processed with carbon dioxide (captured from the atmosphere or industrial sources) to produce synthetic methane through a process called methanation. This synthetic gas can be injected into existing natural gas grids, utilized in fuel cells, or used for heating.

According to the International Energy Agency, electrolyze stacks represent between 50 and 60 percent of the capital investment. The remaining 40 to 50 percent of the investment is made up of components for the plant, power electronics, and gas conditioning.

Market Dynamics:

Driver:

Increasing awareness of climate change

The increasing awareness of climate change is significantly boosting the Power-to-Gas (P2G) technology, which converts excess renewable energy into hydrogen or synthetic natural gas. As nations strive to reduce greenhouse gas emissions, P2G offers a viable solution to harness surplus electricity generated from wind and solar power. This process not only addresses the intermittency of renewable energy but also provides a means to store and transport energy efficiently. Furthermore, by producing hydrogen, P2G enables the decarbonization of various sectors, including transportation and industrial processes, which are traditionally reliant on fossil fuels.

Restraint:

Integration challenges

Power-to-Gas (P2G) technology, which converts surplus renewable energy into hydrogen or synthetic natural gas, faces significant integration challenges that hinder its widespread adoption. One primary issue is the intermittent nature of renewable energy sources like wind and solar, which can lead to inconsistent hydrogen production. Existing energy infrastructure, including pipelines and storage facilities, is often not optimized for hydrogen transport and storage, requiring costly upgrades. The lack of regulatory frameworks and market structures that support P2G systems further complicates integration, as stakeholders may be unsure about investment returns.

Opportunity:

Hydrogen economy development

The hydrogen economy is significantly advancing the Power-to-Gas (P2G) technology, which converts excess electricity-often generated from renewable sources like wind and solar-into hydrogen through electrolysis. This process allows for the storage and transportation of renewable energy, effectively addressing the intermittency issues associated with renewable power generation. By producing hydrogen, P2G can facilitate the integration of renewables into the energy grid, providing a clean fuel alternative for various applications, including transportation, heating, and industrial processes. Moreover, hydrogen can be converted back into electricity or utilized in fuel cells, enhancing energy efficiency and reducing greenhouse gas emissions.

Threat:

Initial investment for P2G technology

Power-to-Gas (P2G) technology, which converts excess renewable energy into hydrogen or methane for storage and later use, faces significant hurdles due to high initial investment costs. The infrastructure required for P2G systems-such as electrolysis units, gas storage facilities, and integration with existing gas networks-demands substantial capital outlay. This financial barrier discourages investors and utilities, particularly in a market where cheaper energy solutions are prevalent. The long payback periods associated with P2G projects make them less attractive compared to traditional energy investments. While P2G has the potential to enhance energy security and support decarbonization efforts, its adoption is stymied by the economic uncertainties surrounding initial costs and the need for government incentives or policy support to foster development.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the Power-to-Gas (PtG) sector, highlighting both vulnerabilities and opportunities within the energy landscape. Initially, lockdowns and reduced industrial activity led to a decline in energy demand, disrupting the operational stability of PtG projects that rely on consistent electricity supply. Supply chain interruptions affected the availability of critical components for electrolyzers and other technologies essential for hydrogen production. However, the crisis also accelerated interest in sustainable energy solutions, as governments and industries sought to bolster resilience against future disruptions.

The Electrolysis segment is expected to be the largest during the forecast period

Electrolysis segment is expected to dominate the largest share over the estimated period. During electrolysis, electricity is used to split water molecules into hydrogen and oxygen, generating hydrogen that can be stored or utilized as an energy carrier. This is particularly beneficial in integrating renewable energy sources like wind and solar, which often produce more energy than the grid can handle. By converting excess electricity into hydrogen, P2G helps balance supply and demand, ensuring a more stable energy system. The hydrogen produced can be used directly as a fuel, injected into natural gas networks, or converted into synthetic methane through further chemical processes. This not only facilitates energy storage but also contributes to decarbonizing the gas supply and transportation sectors, thus promoting a more sustainable and resilient energy future.

The Steel Industry segment is expected to have the highest CAGR during the forecast period

Steel Industry segment is estimated to grow at a rapid pace during the forecast period as a sustainable solution to reduce carbon emissions and enhance energy efficiency. PtG involves converting surplus renewable energy, often generated from wind or solar sources, into hydrogen through electrolysis. This hydrogen can then be used in steel production, replacing traditional carbon-intensive methods that rely on coke. By integrating PtG, steelmakers can significantly lower their carbon footprint, as hydrogen serves as a cleaner alternative to fossil fuels. Additionally, the flexibility of PtG allows for the storage of excess renewable energy, addressing intermittency issues in energy supply. As global demand for green steel rises, the integration of PtG not only aligns with environmental regulations and corporate sustainability goals but also positions steel companies to remain competitive in a rapidly evolving market.

Region with largest share:

North America region is poised to hold the largest share of the market throughout the extrapolated period. Integration with carbon markets is substantially enhancing the Power-to-Gas (P2G) sector in North America by providing a financial mechanism to support the development and deployment of green hydrogen technologies. By linking these systems to carbon markets, developers can monetize carbon credits for the greenhouse gas emissions they mitigate, creating a compelling economic incentive. This integration encourages investment in renewable energy projects and infrastructure, driving down costs and increasing the scalability of hydrogen production.

Region with highest CAGR:

Europe region is estimated to witness the highest CAGR during the projected time frame. By establishing clear frameworks and incentives, regulations promote investment in PtG technologies, which convert excess renewable electricity into hydrogen or synthetic natural gas. This process not only aids in energy storage and balancing the grid but also facilitates the decarbonization of various sectors, including transportation and heating. European policies, such as the Green Deal and Fit for 55, aim to reduce greenhouse gas emissions and promote hydrogen as a key energy carrier.

Key players in the market

Some of the key players in Power-to-Gas market include Avacon AG, Cummins Inc, Fortescue Metals Group, FuelCell Energy Inc, Hitachi Zosen Inova AG, MAN Energy Solutions, Siemens Energy AG, Sunfire GmbH and Thyssenkrupp AG.

Key Developments:

In November 2023, Nature Energy and Andel inaugurated a new power-to-gas facility in Denmark, following a partnership established in autumn 2022. The two companies have invested in a biological Power-to-X plant located in Glansager on Als, which is now ready for production. Once fully operational, the plant will produce hydrogen that will enhance Nature Energy's green gas output by 12,000 m3 per day.

In June 2022, the U.S. Department of Energy invested US$ 504.4 million in finance Advanced Clean Energy Storage, a clean energy and clean hydrogen storage facility that can provide long-term energy storage.

In February 2022, Mitsubishi Power and HydrogenPro have a purchase agreement in place for a substantial electrolyzer system. Through electrolysis, the HydrogenPro electrolyzer system will create green hydrogen and oxygen using wind and solar energy.

Technologies Covered:

  • Electrolysis
  • Methanation

Applications Covered:

  • Residential
  • Commercial
  • Industrial

End Users Covered:

  • Transportation
  • Chemical Production
  • Steel Industry
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Power-to-Gas Market, By Technology

  • 5.1 Introduction
  • 5.2 Electrolysis
  • 5.3 Methanation

6 Global Power-to-Gas Market, By Application

  • 6.1 Introduction
  • 6.2 Residential
  • 6.3 Commercial
  • 6.4 Industrial

7 Global Power-to-Gas Market, By End User

  • 7.1 Introduction
  • 7.2 Transportation
  • 7.3 Chemical Production
  • 7.4 Steel Industry
  • 7.5 Other End Users

8 Global Power-to-Gas Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Avacon AG
  • 10.2 Cummins Inc
  • 10.3 Fortescue Metals Group
  • 10.4 FuelCell Energy Inc
  • 10.5 Hitachi Zosen Inova AG
  • 10.6 MAN Energy Solutions
  • 10.7 Siemens Energy AG
  • 10.8 Sunfire GmbH
  • 10.9 Thyssenkrupp AG

List of Tables

  • Table 1 Global Power-to-Gas Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 3 Global Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 4 Global Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 5 Global Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 6 Global Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 7 Global Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 8 Global Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 9 Global Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 10 Global Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 11 Global Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 12 Global Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 13 Global Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 14 North America Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 15 North America Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 16 North America Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 17 North America Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 18 North America Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 19 North America Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 20 North America Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 21 North America Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 22 North America Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 23 North America Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 24 North America Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 25 North America Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 26 North America Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 27 Europe Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 28 Europe Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 29 Europe Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 30 Europe Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 31 Europe Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 32 Europe Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 33 Europe Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 34 Europe Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 35 Europe Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 36 Europe Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 37 Europe Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 38 Europe Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 39 Europe Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 40 Asia Pacific Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 41 Asia Pacific Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 42 Asia Pacific Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 43 Asia Pacific Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 44 Asia Pacific Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 45 Asia Pacific Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 46 Asia Pacific Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 47 Asia Pacific Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 48 Asia Pacific Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 49 Asia Pacific Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 50 Asia Pacific Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 51 Asia Pacific Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 52 Asia Pacific Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 53 South America Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 54 South America Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 55 South America Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 56 South America Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 57 South America Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 58 South America Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 59 South America Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 60 South America Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 61 South America Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 62 South America Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 63 South America Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 64 South America Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 65 South America Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 66 Middle East & Africa Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 67 Middle East & Africa Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 68 Middle East & Africa Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 69 Middle East & Africa Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 70 Middle East & Africa Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 71 Middle East & Africa Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 72 Middle East & Africa Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 73 Middle East & Africa Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 74 Middle East & Africa Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 75 Middle East & Africa Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 76 Middle East & Africa Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 77 Middle East & Africa Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 78 Middle East & Africa Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)