封面
市場調查報告書
商品編碼
1636672

2030 年空間組學市場預測:按解決方案類型、樣本類型、工作流程、技術、應用、最終用戶和地區進行的全球分析

Spatial OMICS Market Forecasts to 2030 - Global Analysis By Solution Type (Instruments, Consumables and Software), Sample Type, Workflow, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球空間 OMICS 市場規模在 2024 年估計為 4.162 億美元,預計到 2030 年將達到 8.3079 億美元,預測期內的複合年成長率為 12.21%。

空間組學是一個新興的研究領域,它將組學資料(包括基因組學、轉錄組學、蛋白質組學和代謝體學)與空間資訊相結合,以深入了解生物系統的分子和空間理解。空間組學保留了細胞和組織的空間組織,使研究人員能夠在自然生物環境中查看和查詢分子資料,這與傳統組學方法不同,因為傳統組學方法通常會因批量分析而失去空間背景。

根據《核酸研究》發表的一項研究,SpatialRef 是一個手動管理的空間 OMICS資料庫,包含多個物種的超過 900 萬個手動註釋的斑點。

個人化治療興趣日益濃厚

推動空間 OMICS 市場發展的最強大因素之一是向個人化或精準醫療的轉變。個人化治療需要徹底了解特定患者群體中疾病的細胞和分子動態。空間組學技術使科學家能夠創建組織內細胞異質性的複雜圖譜,為藥物反應、治療目標和疾病機制提供關鍵見解。此外,這在神經系統疾病中特別有用,因為了解不同大腦區域的潛在分子機制可以指南治療策略,以及在腫瘤學中,因為不同患者的腫瘤複雜性差異很大。

設備和技術成本高

空間資料創建和分析所需的先進工具和技術成本高是限制空間 OMICS 市場的主要因素之一。高解析度顯微鏡、質譜儀和次世代定序儀只是空間轉錄組學、空間蛋白質組學和空間代謝體學學中使用的昂貴設備的幾個例子。消耗品、試劑和專門的生物資訊軟體的成本進一步增加了財務負擔。此外,對於許多中小型企業和研究機構來說,如此高的初始成本將是難以承受的,這限制了空間組學技術的取得和使用。

多組學整合的發展

多組學資料(包括轉錄組學、蛋白質組學、代謝體學和基因組學)與空間資料的整合是空間組學市場最令人興奮的前景之一。透過整合空間背景和分子訊息,這種強大的組合使研究人員能夠徹底了解生物過程。透過可視化組織內的基因、蛋白質和代謝物的定位,可以識別影響藥物反應、疾病進展和其他生理過程的細胞交互作用和微環境因素。此外,這種多組學方法在藥物開發、神經科學和癌症研究等領域特別有用,這些領域對空間異質性的分子理解可以促進標靶治療和個人化醫療的進步。

資料的複雜性與分析的難度

另一個主要威脅是空間 OMICS資料的複雜性。空間分辨分子分析產生的大量資料以及各個 OMICS資料層之間的複雜關係使得資料分析和解釋極具挑戰性。此外,需要特定的軟體和計算技術來整合、視覺化和解釋空間維度所帶來的複雜層次。即使是經驗豐富的研究人員,如果沒有強大的計算基礎設施和先進的生物資訊學知識,也會很難從如此複雜的資料集中得出有意義的結論。

COVID-19 的影響:

太空 OMICS 市場受到了 COVID-19 疫情的嚴重影響,隨著科學家和醫療相關人員試圖追蹤病毒的變異、了解其行為並開發疫苗和標靶治療,疫情加速了先進 OMICS 技術的採用。由於需要大量高解析度的分子資料來在空間層面上研究病毒,對空間組學工具的需求(尤其是在轉錄組學、蛋白質組學和基因組學領域)不斷增加。這種日益成長的興趣推動了對空間組學技術的投資,激發了創新並擴大了這些技術在免疫學和病毒學中的應用範圍。

預測期內,福馬林固定石蠟包埋 (FFPE) 組織部分預計將實現最大幅度成長

福馬林固定、石蠟包埋 (FFPE) 組織部分預計將佔據空間 OMICS 市場的最大佔有率。回顧性研究經常使用 FFPE 組織樣本,因為它們保存期限長,並且易於在臨床和研究環境中儲存。這些組織樣本保持了生物樣本的分子完整性,因此可以徹底檢查基因表現、蛋白質水平和與組織結構相關的其他分子特徵。此外,許多基於 OMICS 的技術,包括空間轉錄組學、空間蛋白質組學等,使用 FFPE 樣本來研究癌症、感染疾病和神經退化疾病等疾病。

資料分析領域預計在預測期內實現最高複合年成長率

在空間 OMICS 市場中,資料分析部分預計將以最高的複合年成長率成長。空間組學技術產生的大量複雜、多維資料導致了對複雜的生物資訊學工具和資料分析平台的需求日益增加。為了處理、整合和解釋空間分辨的分子資料,本節涵蓋了先進的機器學習演算法、人工智慧和統計模型的創建和使用。此外,結合基因組學、轉錄組學、蛋白質組學和圖像資料的空間組學資料日益複雜,正在加速資料分析技術的創新。

佔比最大的地區:

預計北美地區將佔據空間 OMICS 市場的最大佔有率。頂尖學術機構和生物技術公司的存在、大量的研發投資以及完善的醫療保健基礎設施都為該地區帶來了優勢。腫瘤學、免疫學和神經病學研究對尖端儀器的強烈需求使美國處於空間組學技術發展的前沿。在主要參與者以及公共和私營部門的大量資金的推動下,各個領域的創新和空間 OMICS 的使用得到了推動。此外,北美的監管框架也鼓勵尖端生物醫學技術的創造和應用,加強該地區的市場領導地位。

複合年成長率最高的地區:

空間 OMICS 市場預計將在亞太地區實現最高的複合年成長率。該地區採用空間組學技術是由於生物技術領域的爆炸式成長以及對研究和醫療保健基礎設施的投資不斷增加。中國、日本和印度等國家在基因組學、分子生物學和生物醫學研究方面取得了重大進展,推動了學術和臨床領域對空間組學工具的需求。此外,資料分析技能的提高以及對這些領域的感染疾病、癌症研究和個人化醫療的重視也推動了市場的爆炸性成長。

免費客製化服務

訂閱此報告的客戶可享有以下免費自訂選項之一:

  • 公司簡介
    • 對其他市場公司(最多 3 家公司)進行全面分析
    • 主要企業的 SWOT 分析(最多 3 家公司)
  • 地理細分
    • 根據客戶興趣對主要國家進行的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭性基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業進行基準化分析

目錄

第1章執行摘要

第 2 章 前言

  • 概述
  • 相關利益者
  • 研究範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 研究資訊來源
    • 主要研究資訊來源
    • 二手研究資料資訊來源
    • 先決條件

第3章 市場走勢分析

  • 驅動程式
  • 限制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19 的影響

第 4 章 波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球空間 OMICS 市場按解決方案類型分類

  • 裝置
    • 模式
      • 自動化
      • 半自動
      • 手動的
    • 類型
      • 定序平台
      • 全球健康
      • 顯微鏡
      • 流式細胞技術
      • 質譜分析
      • 其他類型
  • 耗材
  • 軟體
    • 生物資訊學工具
    • 影像工具
    • 儲存和管理資料庫

6. 全球空間組學市場(依樣本類型)

  • 福馬林固定石蠟包埋 (FFPE) 組織
  • 新鮮冷凍組織

7. 全球空間 OMICS 市場(依工作流程)

  • 樣品製備
  • 儀器分析
  • 資料分析

8. 全球空間組學市場(依技術分類)

  • 空間轉錄組學
  • 空間蛋白質體學
  • 空間基因體學

9. 全球空間組學市場(按應用)

  • 診斷
  • 轉化研究
  • 藥物研發
  • 單細胞分析
  • 細胞生物學
  • 其他用途

第 10 章 全球空間 OMICS 市場(按最終用戶)

  • 學術和研究機構
  • 生物製藥和生物技術公司
  • 合約研究組織
  • 其他最終用戶

第 11 章 全球空間 OMICS 市場(按地區)

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第12章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章 公司概況

  • Biognosys AG
  • Ultivue, Inc.
  • Diagenode Diagnostics(Hologic, Inc.)
  • Advanced Cell Diagnostics, Inc.
  • Fluidigm Corporation
  • Danaher Corporation
  • Bruker Corporation
  • ZEISS Group
  • Bio-Rad Laboratories, Inc.
  • PerkinElmer, Inc.
  • NanoString Technologies, Inc.
  • Akoya Biosciences, Inc.
  • Brooks Automation, Inc.
  • Vizgen Corporation
  • Rebus Biosystems, Inc.
Product Code: SMRC28313

According to Stratistics MRC, the Global Spatial OMICS Market is accounted for $416.20 million in 2024 and is expected to reach $830.79 million by 2030 growing at a CAGR of 12.21% during the forecast period. Spatial OMICS is an advanced field of study that integrates spatial information with omics data, such as genomics, transcriptomics, proteomics, and metabolomics, to provide a detailed molecular and spatial understanding of biological systems. Spatial omics maintains the spatial organization of cells and tissues, allowing researchers to view and examine molecular data in its natural biological setting, in contrast to traditional omics techniques that frequently lose spatial context because of bulk analysis.

According to a study published in Nucleic Acids Research, SpatialRef is a manually curated spatial omics database that aggregates over 9 million manually annotated spots across multiple species.

Market Dynamics:

Driver:

Growing interest in customized treatment

One of the strongest factors propelling the spatial OMICS market is the move toward personalized or precision medicine. A thorough grasp of the cellular and molecular dynamics of diseases in particular patient populations is necessary for personalized treatments. Scientists can produce intricate maps of cellular heterogeneity within tissues using spatial OMICS technologies, which provide vital insights into drug responses, therapeutic targets, and disease mechanisms. Additionally, this is especially helpful in neurological disorders, where knowledge of the molecular mechanisms underlying the various brain regions can guide treatment strategies, and oncology, where tumor complexity varies greatly from patient to patient.

Restraint:

High equipment and technology costs

The high cost of the sophisticated tools and technologies needed for the creation and analysis of spatial data is one of the main factors limiting the market for spatial OMICS. High-resolution microscopes, mass spectrometers, and next-generation sequencers are just a few examples of the costly equipment used in spatial transcriptomics, spatial proteomics, and spatial metabolomics. The financial burden is further increased by the price of consumables, reagents, and specialized bioinformatics software. Furthermore, these large upfront costs can be unaffordable for many smaller businesses and research institutions, which restrict their access to and use of spatial OMICS technologies.

Opportunity:

Developments in the integration of multiple omics

Integrating multi-omics data-such as transcriptomics, proteomics, metabolomics, and genomics-with spatial data is one of the most exciting prospects in the spatial OMICS market. Through the integration of spatial context and molecular information, this potent combination enables researchers to obtain a thorough understanding of biological processes. Identification of cellular interactions and microenvironmental factors that impact drug response, disease progression, and other physiological processes is made possible by the ability to visualize the localization of genes, proteins, or metabolites within tissues. Moreover, this multi-omics approach is especially helpful in fields like drug development, neuroscience, and cancer research, where a molecular understanding of spatial heterogeneity can result in advances in targeted therapies and personalized medicine.

Threat:

Complexity of data and analysis difficulties

One other major threat is the complexity of spatial omics data. Due to the vast amount of data produced by spatially resolved molecular profiling and the complex relationships among the various omics data layers, data analysis and interpretation are exceedingly difficult. Additionally, in order to integrate, visualize, and interpret the additional layer of complexity brought about by the spatial dimension, specific software and computational techniques are needed. Even seasoned researchers may find it difficult to draw significant conclusions from these intricate datasets without strong computing infrastructure and advanced bioinformatics knowledge.

Covid-19 Impact:

The market for spatial OMICS was significantly impacted by the COVID-19 pandemic, which sped up the adoption of advanced omics technologies as scientists and medical professionals tried to track the virus's mutations, comprehend its behaviour, and create vaccines and targeted treatments. The demand for spatial omics tools, especially in the domains of transcriptomics, proteomics, and genomics, increased due to the requirement for extensive, high-resolution molecular data to investigate the virus at a spatial level. Investments in spatial omics technologies were fuelled by this spike in interest, which encouraged innovation and increased the range of uses for these technologies in immunology and virology.

The Formalin-Fixed Paraffin-Embedded (FFPE) Tissue segment is expected to be the largest during the forecast period

In the spatial OMICS market, the formalin-fixed paraffin-embedded (FFPE) tissue segment is expected to have the largest share. Retrospective studies frequently use FFPE tissue samples because of their long shelf life and ease of storage in clinical and research settings. These tissue samples allow for a thorough examination of gene expression, protein levels, and other molecular properties in relation to tissue architecture because they maintain the molecular integrity of biological specimens. Moreover, many omics-based methods, including spatial transcriptomics, spatial proteomics, and others, use FFPE samples to investigate diseases like cancer, infectious diseases, and neurodegenerative conditions.

The Data Analysis segment is expected to have the highest CAGR during the forecast period

In the spatial OMICS market, the data analysis segment is anticipated to grow at the highest CAGR. The demand for sophisticated bioinformatics tools and data analysis platforms has increased as a result of the massive volumes of complex, multidimensional data generated by spatial omics technologies. In order to process, integrate, and interpret the spatially resolved molecular data, this section covers the creation and use of advanced machine learning algorithms, artificial intelligence, and statistical models. Additionally, innovation in data analysis techniques is being fueled by the growing complexity of spatial omics data, which blends genomic, transcriptomic, proteomic, and imaging data.

Region with largest share:

The market for spatial OMICS is expected to be largest share by the North America segment. A strong presence of top academic institutions and biotechnology companies, substantial investments in research and development, and an established healthcare infrastructure all contribute to the region's advantages. With a strong need for state-of-the-art instruments in research in oncology, immunology, and neurology, the US has been at the forefront of developments in spatial omics technologies. Innovation and the use of spatial omics in many different fields have been fuelled by the presence of important players and significant funding from the public and private sectors. Furthermore, the regulatory framework in North America also encourages the creation and application of cutting-edge biomedical technologies, which strengthens the region's market leadership.

Region with highest CAGR:

In the spatial OMICS market, the Asia Pacific region is anticipated to have the highest CAGR. Adoption of spatial omics technologies in the region is being driven by the biotechnology sector's explosive growth as well as rising investments in research and healthcare infrastructure. Significant advancements in genomics, molecular biology, and biomedical research are being made by nations like China, Japan, and India, which is increasing the need for spatial omics tools in both academic and clinical settings. Moreover, improvements in data analysis skills and the growing emphasis on infectious diseases, cancer research, and personalized medicine in these fields are also fueling the market's explosive growth.

Key players in the market

Some of the key players in Spatial OMICS market include Biognosys AG, Ultivue, Inc., Diagenode Diagnostics (Hologic, Inc.), Advanced Cell Diagnostics, Inc., Fluidigm Corporation, Danaher Corporation, Bruker Corporation, ZEISS Group, Bio-Rad Laboratories, Inc., PerkinElmer, Inc., NanoString Technologies, Inc., Akoya Biosciences, Inc., Brooks Automation, Inc., Vizgen Corporation and Rebus Biosystems, Inc.

Key Developments:

In April 2024, Bio-Rad Laboratories, Inc. a global leader in life science research and clinical diagnostics products, announced a collaboration agreement with Oncocyte Corporation (Nasdaq: OCX), a precision diagnostics company, to develop and commercialize transplant monitoring products using Bio-Rad's Droplet Digital(TM) PCR (ddPCR(TM)) instruments and reagents.

In February 2024, Life sciences and diagnostics company Bruker has agreed to acquire ELITechGroup, a provider of in-vitro diagnostic (IVD) systems, in a €870m ($942m) cash deal. ELITechGroup will be acquired from TecFin, a controlled affiliate of pre-eminent private equity company PAI Partners.

In January 2024, Biognosys announced the operational readiness of its new proteomics facility in Massachusetts. This US expansion facilitates access to select proteomics contract research organization (CRO) services for our US biopharma customers.

Solution Types Covered:

  • Instruments
  • Consumables
  • Software

Sample Types Covered:

  • Formalin-Fixed Paraffin-Embedded (FFPE) Tissue
  • Fresh Frozen Tissue

Workflows Covered:

  • Sample Preparation
  • Instrumental Analysis
  • Data Analysis

Technologies Covered:

  • Spatial Transcriptomics
  • Spatial Proteomics
  • Spatial Genomics

Applications Covered:

  • Diagnostics
  • Translation Research
  • Drug Discovery and Development
  • Single Cell Analysis
  • Cell Biology
  • Other Applications

End Users Covered:

  • Academic and Research Institutions
  • Biopharmaceutical & Biotechnological Companies
  • Contract Research Organization
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Spatial OMICS Market, By Solution Type

  • 5.1 Introduction
  • 5.2 Instruments
    • 5.2.1 Mode
      • 5.2.1.1 Automated
      • 5.2.1.2 Semi-automated
      • 5.2.1.3 Manual
    • 5.2.2 Type
      • 5.2.2.1 Sequencing Platforms
      • 5.2.2.2 IHC
      • 5.2.2.3 Microscopy
      • 5.2.2.4 Flow Cytometry
      • 5.2.2.5 Mass Spectrometry
      • 5.2.2.6 Other Types
  • 5.3 Consumables
  • 5.4 Software
    • 5.4.1 Bioinformatics Tools
    • 5.4.2 Imaging Tools
    • 5.4.3 Storage & Management Databases

6 Global Spatial OMICS Market, By Sample Type

  • 6.1 Introduction
  • 6.2 Formalin-Fixed Paraffin-Embedded (FFPE) Tissue
  • 6.3 Fresh Frozen Tissue

7 Global Spatial OMICS Market, By Workflow

  • 7.1 Introduction
  • 7.2 Sample Preparation
  • 7.3 Instrumental Analysis
  • 7.4 Data Analysis

8 Global Spatial OMICS Market, By Technology

  • 8.1 Introduction
  • 8.2 Spatial Transcriptomics
  • 8.3 Spatial Proteomics
  • 8.4 Spatial Genomics

9 Global Spatial OMICS Market, By Application

  • 9.1 Introduction
  • 9.2 Diagnostics
  • 9.3 Translation Research
  • 9.4 Drug Discovery and Development
  • 9.5 Single Cell Analysis
  • 9.6 Cell Biology
  • 9.7 Other Applications

10 Global Spatial OMICS Market, By End User

  • 10.1 Introduction
  • 10.2 Academic and Research Institutions
  • 10.3 Biopharmaceutical & Biotechnological Companies
  • 10.4 Contract Research Organization
  • 10.5 Other End Users

11 Global Spatial OMICS Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Biognosys AG
  • 13.2 Ultivue, Inc.
  • 13.3 Diagenode Diagnostics (Hologic, Inc.)
  • 13.4 Advanced Cell Diagnostics, Inc.
  • 13.5 Fluidigm Corporation
  • 13.6 Danaher Corporation
  • 13.7 Bruker Corporation
  • 13.8 ZEISS Group
  • 13.9 Bio-Rad Laboratories, Inc.
  • 13.10 PerkinElmer, Inc.
  • 13.11 NanoString Technologies, Inc.
  • 13.12 Akoya Biosciences, Inc.
  • 13.13 Brooks Automation, Inc.
  • 13.14 Vizgen Corporation
  • 13.15 Rebus Biosystems, Inc.

List of Tables

  • Table 1 Global Spatial OMICS Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Spatial OMICS Market Outlook, By Solution Type (2022-2030) ($MN)
  • Table 3 Global Spatial OMICS Market Outlook, By Instruments (2022-2030) ($MN)
  • Table 4 Global Spatial OMICS Market Outlook, By Mode (2022-2030) ($MN)
  • Table 5 Global Spatial OMICS Market Outlook, By Type (2022-2030) ($MN)
  • Table 6 Global Spatial OMICS Market Outlook, By Consumables (2022-2030) ($MN)
  • Table 7 Global Spatial OMICS Market Outlook, By Software (2022-2030) ($MN)
  • Table 8 Global Spatial OMICS Market Outlook, By Bioinformatics Tools (2022-2030) ($MN)
  • Table 9 Global Spatial OMICS Market Outlook, By Imaging Tools (2022-2030) ($MN)
  • Table 10 Global Spatial OMICS Market Outlook, By Storage & Management Databases (2022-2030) ($MN)
  • Table 11 Global Spatial OMICS Market Outlook, By Sample Type (2022-2030) ($MN)
  • Table 12 Global Spatial OMICS Market Outlook, By Formalin-Fixed Paraffin-Embedded (FFPE) Tissue (2022-2030) ($MN)
  • Table 13 Global Spatial OMICS Market Outlook, By Fresh Frozen Tissue (2022-2030) ($MN)
  • Table 14 Global Spatial OMICS Market Outlook, By Workflow (2022-2030) ($MN)
  • Table 15 Global Spatial OMICS Market Outlook, By Sample Preparation (2022-2030) ($MN)
  • Table 16 Global Spatial OMICS Market Outlook, By Instrumental Analysis (2022-2030) ($MN)
  • Table 17 Global Spatial OMICS Market Outlook, By Data Analysis (2022-2030) ($MN)
  • Table 18 Global Spatial OMICS Market Outlook, By Technology (2022-2030) ($MN)
  • Table 19 Global Spatial OMICS Market Outlook, By Spatial Transcriptomics (2022-2030) ($MN)
  • Table 20 Global Spatial OMICS Market Outlook, By Spatial Proteomics (2022-2030) ($MN)
  • Table 21 Global Spatial OMICS Market Outlook, By Spatial Genomics (2022-2030) ($MN)
  • Table 22 Global Spatial OMICS Market Outlook, By Application (2022-2030) ($MN)
  • Table 23 Global Spatial OMICS Market Outlook, By Diagnostics (2022-2030) ($MN)
  • Table 24 Global Spatial OMICS Market Outlook, By Translation Research (2022-2030) ($MN)
  • Table 25 Global Spatial OMICS Market Outlook, By Drug Discovery and Development (2022-2030) ($MN)
  • Table 26 Global Spatial OMICS Market Outlook, By Single Cell Analysis (2022-2030) ($MN)
  • Table 27 Global Spatial OMICS Market Outlook, By Cell Biology (2022-2030) ($MN)
  • Table 28 Global Spatial OMICS Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 29 Global Spatial OMICS Market Outlook, By End User (2022-2030) ($MN)
  • Table 30 Global Spatial OMICS Market Outlook, By Academic and Research Institutions (2022-2030) ($MN)
  • Table 31 Global Spatial OMICS Market Outlook, By Biopharmaceutical & Biotechnological Companies (2022-2030) ($MN)
  • Table 32 Global Spatial OMICS Market Outlook, By Contract Research Organization (2022-2030) ($MN)
  • Table 33 Global Spatial OMICS Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.