封面
市場調查報告書
商品編碼
1662634

2030 年生物相容性 3D 列印材料市場預測:按模式、材料類型、技術、應用、最終用戶和地區進行全球分析

Biocompatible 3D Printing Materials Market Forecasts to 2030 - Global Analysis By Form (Powder, Filament, Resins, Bioinks and Other Forms), Material Type, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,全球生物相容性 3D 列印材料市場預計在 2024 年將達到 12 億美元,到 2030 年將達到 40 億美元,預測期內的複合年成長率為 21.9%。

生物相容性 3D 列印意味著使用與活組織相容的材料創建3D結構。這些材料與人體接觸時不會引起任何不良反應,適用於植入、矯正器具、組織支架及藥物傳遞系統等醫療應用。該過程需要精確列印親和性材料,以創建自訂解決方案,從而促進與生物系統的整合並改善醫療保健中的患者結果。

根據美國衛生與公眾服務部的數據,醫院使用基本電子健康記錄(EHR) 系統的比率已從 2008 年的 9.4% 增加到 2021 年的 96%,標誌著數位化健康解決方案正在發生重大轉變。

對醫療保健和醫療設備的需求不斷增加

醫療保健和醫療設備領域對生物相容性 3D 列印的需求日益成長,其驅動力來自於個人化、自訂的植入、義肢和手術器械的需求。這項技術可以製定針對患者的具體解決方案,從而改善治療效果。此外,它還支持再生醫學和組織工程的進步,為創建功能性和生物相容性結構提供了新的可能性。因此,醫療保健行業正在迅速採用 3D 列印用於醫療應用。

產業認知和採用有限

工業界對生物相容性 3D 列印技術的認知和採用有限,阻礙了其在醫療保健領域的廣泛應用。許多醫療保健提供者尚未充分了解 3D 列印的潛力,從而減緩了其臨床應用。這可能會延遲客製化植入、義肢和再生療法的好處。此外,對新技術採用的抵制可能會阻礙市場充分發揮其成長潛力,限制創新並減少獲得先進醫療解決方案的機會。

3D 列印材料的進步

新興的3D列印材料對於市場發展至關重要,它能夠推動開發滿足醫療應用嚴格要求的新型聚合物、金屬和陶瓷。這些創新使得適用於植入、矯正器具和組織工程的耐用、靈活且親和性的材料成為可能。隨著材料性能的改進,3D 列印在醫學領域的應用範圍將不斷擴大,從而實現更大程度的客製化並改善患者的治療效果。

技術複雜性

生物相容性 3D 列印技術複雜,需要熟練的勞動力、先進的設備和專業知識,這可能會限制其廣泛應用。這使得小型醫療保健提供者和製造商在沒有大量投資的情況下難以採用該技術。此外,複雜的設計、印刷和後處理過程可能會延長生產時間並增加成本,從而限制醫療領域的效率和可擴展性並減緩市場成長。

COVID-19 的影響

這個市場透過創造個人化的醫療設備、植入和義肢正在徹底改變醫療保健。透過客製化解決方案改善患者治療效果並加速再生醫學和組織工程的進步。此外,該技術還提高了生產效率、降低了成本並加速了治療創新。然而,高成本、技術複雜性和監管障礙等挑戰可能會影響市場潛力。

預計長絲市場在預測期內將佔最大佔有率

預計預測期內長絲部分將佔據最大的市場佔有率。這些細絲由生物相容性聚合物、金屬或陶瓷製成,對人類使用安全,旨在促進組織整合。長絲技術的創新提高了強度、靈活性和生物活性,為客製化醫療解決方案開闢了新的可能性。然而,材料限制和製造成本對廣泛應用構成了挑戰。

預計預測期內組織工程領域將以最高的複合年成長率成長。

預計預測期內組織工程領域將呈現最高的成長率。 3D 列印可以精確設計模仿自然組織的結構,從而推動再生醫學的進步。透過使用生物相容性材料,這些列印支架可以促進癒合並最終有助於器官替換。該技術在治療損傷和疾病方面具有巨大的潛力,但在材料開發和監管部門核准面臨挑戰。

比最大的地區

在預測期內,由於先進的醫療保健基礎設施和個人化醫療設備的需求不斷增加,預計北美將佔據最大的市場佔有率。美國和加拿大在植入、義肢和組織工程的 3D 列印應用方面處於領先地位。監管支援以及生物相容性材料的技術進步進一步推動了市場成長。然而,高成本和技術複雜性對該地區的廣泛採用構成了挑戰。

複合年成長率最高的地區

預計預測期內亞太地區將呈現最高的複合年成長率。印度和東南亞等新興經濟體醫療領域的擴張促進了手術規劃模型、植入和矯正器具等醫療應用對 3D 列印的需求。此外,3D列印在該地區用於生產牙科植入、助聽器和人工關節的應用也越來越普遍。

提供免費客製化

訂閱此報告的客戶可享有以下免費自訂選項之一:

  • 公司簡介
    • 對其他市場參與企業(最多 3 家公司)進行全面分析
    • 主要企業的 SWOT 分析(最多 3 家公司)
  • 地理細分
    • 根據客戶興趣對主要國家進行市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭性基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第 2 章 前言

  • 概述
  • 相關利益者
  • 研究範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 研究資訊來源
    • 主要研究資訊來源
    • 二手研究資料資訊來源
    • 先決條件

第3章 市場走勢分析

  • 介紹
  • 驅動程式
  • 限制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19 的影響

第 4 章 波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間的競爭

5. 全球生物相容性 3D 列印材料市場(按類型)

  • 介紹
  • 粉末
  • 燈絲
  • 樹脂
  • 生物墨水
  • 其他

5. 全球生物相容性 3D 列印材料市場(依材料類型)

  • 介紹
  • 聚合物
  • 金屬
  • 陶瓷製品
  • 複合材料
  • 其他

7. 全球生物相容性 3D 列印材料市場(依技術分類)

  • 介紹
  • 熔融沈積成型 (FDM)
  • 立體光刻技術(SLA)
  • 選擇性雷射燒結 (SLS)
  • 生物列印

8. 全球生物相容性 3D 列印材料市場(按應用)

  • 介紹
  • 醫療植入
  • 組織工程
  • 義肢
  • 藥物輸送系統
  • 手術器械
  • 其他

第9章。

  • 介紹
  • 醫院和診所
  • 研究所
  • 醫療設備製造商
  • 學術機構
  • 其他

第 10 章全球生物相容性 3D 列印材料市場(按地區)

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲地區

第11章 重大進展

  • 協議、夥伴關係、合作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第12章 公司概況

  • Stratasys Ltd.
  • 3D Systems
  • Materialise NV
  • Formlabs
  • Sculpteo
  • Carbon, Inc.
  • EnvisionTEC
  • EOS GmbH
  • BASF 3D Printing Solutions
  • HP Inc.
  • Tethon 3D
  • Protolabs
  • Optomec
  • Regemat 3D
  • Fiocruz
Product Code: SMRC28495

According to Stratistics MRC, the Global Biocompatible 3D Printing Materials Market is accounted for $1.2 billion in 2024 and is expected to reach $4.0 billion by 2030 growing at a CAGR of 21.9% during the forecast period. Biocompatible 3D printing is the use of materials that are compatible with living tissue to create three-dimensional structures. These materials do not cause harmful reactions when in contact with the human body, making them suitable for medical applications such as implants, prosthetics, tissue scaffolds, and drug delivery systems. The process involves precise printing of bio-friendly materials to create custom-made solutions that can promote healing, integration with biological systems, and improve patient outcomes in healthcare.

According to the United States Department of Health and Human Services, the use of basic Electronic Health Record (EHR) systems in hospitals went from 9.4% in 2008 to 96% in 2021 demonstrating a significant move toward digital health solutions.

Market Dynamics:

Driver:

Increasing demand in healthcare and medical devices

The increasing demand for biocompatible 3D printing in healthcare and medical devices is driven by the need for personalized, custom-fit implants, prosthetics, and surgical tools. This technology enables the creation of patient-specific solutions, improving treatment outcomes. Additionally, it supports advancements in regenerative medicine and tissue engineering, offering new possibilities for creating functional, biocompatible structures. As a result, the healthcare sector is rapidly adopting 3D printing for medical applications.

Restraint:

Limited industry awareness and adoption

Limited industry awareness and adoption of biocompatible 3D printing technology hinders its widespread use in healthcare. Many healthcare providers may not fully understand its potential, leading to slow integration into clinical practice. This can delay the benefits of customized implants, prosthetics, and regenerative treatments. Additionally, resistance to adopting new technologies can prevent the market from realizing its full growth potential, limiting innovation and reducing access to advanced medical solutions.

Opportunity:

Advances in 3D printing materials

Advances in 3D printing materials are crucial for the market, enabling the development of new polymers, metals, and ceramics that meet the stringent requirements of medical applications. These innovations allow for more durable, flexible, and bio-friendly materials suitable for implants, prosthetics, and tissue engineering. As material properties improve, the scope of 3D printing in healthcare expands, fostering greater customization and enhancing patient outcomes in medical treatments.

Threat:

Technical complexity

The technical complexity of biocompatible 3D printing can hinder its widespread adoption, as it requires skilled labor, advanced equipment, and specialized knowledge. This makes the technology difficult to implement for smaller healthcare providers or manufacturers without significant investment. Additionally, the intricate design, printing, and post-processing steps can lead to longer production times and increased costs, limiting efficiency and scalability in the healthcare sector, and slowing market growth.

Covid-19 Impact:

The market is revolutionizing healthcare by enabling the creation of personalized medical devices, implants, and prosthetics. It enhances patient outcomes through customized solutions, while fostering advancements in regenerative medicine and tissue engineering. Additionally, the technology improves production efficiency, reduces costs, and accelerates innovation in medical treatments. However, challenges such as high costs, technical complexity, and regulatory hurdles can impact its full market potential.

The filament segment is expected to be the largest during the forecast period

The filament segment is expected to account for the largest market share during the forecast period. These filaments, made from biocompatible polymers, metals, or ceramics, are designed to be safe for human use and promote tissue integration. Innovations in filament technology improve strength, flexibility, and bioactivity, expanding the possibilities for customized medical solutions. However, material limitations and production costs still present challenges for widespread adoption.

The tissue engineering segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the tissue engineering segment is predicted to witness the highest growth rate. 3D printing allows for the precise design of structures mimicking natural tissues, enabling advancements in regenerative medicine. By using biocompatible materials, these printed scaffolds promote healing and may eventually aid in organ replacement. This technology holds great promise for treating injuries and diseases but faces challenges in material development and regulatory approval.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share driven by advanced healthcare infrastructure and increasing demand for personalized medical devices. The U.S. and Canada lead in adopting 3D printing for implants, prosthetics, and tissue engineering. Regulatory support, alongside technological advancements in biocompatible materials, is further accelerating market growth. However, high costs and technical complexities remain challenges for widespread adoption in the region.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. The expansion of the healthcare sector in emerging economies such as India and Southeast Asia is contributing to the demand for 3D printing in medical applications, including surgical planning models, implants, and orthotic devices. Additionally, the use of 3D printers in the production of dental implants, hearing aids, and joint replacements is becoming more widespread in the region.

Key players in the market

Some of the key players in Biocompatible 3D Printing Materials market include Stratasys Ltd., 3D Systems, Materialise NV, Formlabs, Sculpteo, Carbon, Inc., EnvisionTEC, EOS GmbH, BASF 3D Printing Solutions, HP Inc., Tethon 3D, Protolabs, Optomec, Regemat 3D and Fiocruz.

Key Developments:

In September 2024, Fiocruz made an investment in affordable, open-source 3D bioprinters developed in partnership with the Oswaldo Cruz Institute and Veiga de Almeida University. This technology was intended to produce artificial biological tissues for various applications, including biomedical research, healthcare, and the food industry, utilizing bioink rather than conventional printing materials.

In April 2024, Materialise and Renishaw announced a partnership to enhance efficiency and productivity for manufacturers using Renishaw's RenAM 500 series of additive manufacturing systems. This collaboration provides Renishaw users access to Materialise's advanced build processor software and Magics for data preparation, enabling a streamlined workflow from design to finished part, while optimizing production time and operations.

Forms Covered:

  • Powder
  • Filament
  • Resins
  • Bioinks
  • Other Forms

Material Types Covered:

  • Polymers
  • Metals
  • Ceramics
  • Composites
  • Other Material Types

Technologies Covered:

  • Fused Deposition Modeling (FDM)
  • Stereolithography (SLA)
  • Selective Laser Sintering (SLS)
  • Bioprinting

Applications Covered:

  • Medical Implants
  • Tissue Engineering
  • Prosthetics
  • Drug Delivery Systems
  • Surgical Instruments
  • Other Applications

End Users Covered:

  • Hospitals and Clinics
  • Research Institutes
  • Medical Device Manufacturers
  • Academic Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Biocompatible 3D Printing Materials Market, By Form

  • 5.1 Introduction
  • 5.2 Powder
  • 5.3 Filament
  • 5.4 Resins
  • 5.5 Bioinks
  • 5.6 Other Forms

5 Global Biocompatible 3D Printing Materials Market, By Material Type

  • 6.1 Introduction
  • 6.2 Polymers
  • 6.3 Metals
  • 6.4 Ceramics
  • 6.5 Composites
  • 6.6 Other Material Types

7 Global Biocompatible 3D Printing Materials Market, By Technology

  • 7.1 Introduction
  • 7.2 Fused Deposition Modeling (FDM)
  • 7.3 Stereolithography (SLA)
  • 7.4 Selective Laser Sintering (SLS)
  • 7.5 Bioprinting

8 Global Biocompatible 3D Printing Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Medical Implants
  • 8.3 Tissue Engineering
  • 8.4 Prosthetics
  • 8.5 Drug Delivery Systems
  • 8.6 Surgical Instruments
  • 8.7 Other Applications

9 Global Biocompatible 3D Printing Materials Market, By End User

  • 9.1 Introduction
  • 9.2 Hospitals and Clinics
  • 9.3 Research Institutes
  • 9.4 Medical Device Manufacturers
  • 9.5 Academic Institutions
  • 9.6 Other End Users

10 Global Biocompatible 3D Printing Materials Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Stratasys Ltd.
  • 12.2 3D Systems
  • 12.3 Materialise NV
  • 12.4 Formlabs
  • 12.5 Sculpteo
  • 12.6 Carbon, Inc.
  • 12.7 EnvisionTEC
  • 12.8 EOS GmbH
  • 12.9 BASF 3D Printing Solutions
  • 12.10 HP Inc.
  • 12.12 Tethon 3D
  • 12.12 Protolabs
  • 12.13 Optomec
  • 12.14 Regemat 3D
  • 12.15 Fiocruz

List of Tables

  • Table 1 Global Biocompatible 3D Printing Materials Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Biocompatible 3D Printing Materials Market Outlook, By Form (2022-2030) ($MN)
  • Table 3 Global Biocompatible 3D Printing Materials Market Outlook, By Powder (2022-2030) ($MN)
  • Table 4 Global Biocompatible 3D Printing Materials Market Outlook, By Filament (2022-2030) ($MN)
  • Table 5 Global Biocompatible 3D Printing Materials Market Outlook, By Resins (2022-2030) ($MN)
  • Table 6 Global Biocompatible 3D Printing Materials Market Outlook, By Bioinks (2022-2030) ($MN)
  • Table 7 Global Biocompatible 3D Printing Materials Market Outlook, By Other Forms (2022-2030) ($MN)
  • Table 8 Global Biocompatible 3D Printing Materials Market Outlook, By Material Type (2022-2030) ($MN)
  • Table 9 Global Biocompatible 3D Printing Materials Market Outlook, By Polymers (2022-2030) ($MN)
  • Table 10 Global Biocompatible 3D Printing Materials Market Outlook, By Metals (2022-2030) ($MN)
  • Table 11 Global Biocompatible 3D Printing Materials Market Outlook, By Ceramics (2022-2030) ($MN)
  • Table 12 Global Biocompatible 3D Printing Materials Market Outlook, By Composites (2022-2030) ($MN)
  • Table 13 Global Biocompatible 3D Printing Materials Market Outlook, By Other Material Types (2022-2030) ($MN)
  • Table 14 Global Biocompatible 3D Printing Materials Market Outlook, By Technology (2022-2030) ($MN)
  • Table 15 Global Biocompatible 3D Printing Materials Market Outlook, By Fused Deposition Modeling (FDM) (2022-2030) ($MN)
  • Table 16 Global Biocompatible 3D Printing Materials Market Outlook, By Stereolithography (SLA) (2022-2030) ($MN)
  • Table 17 Global Biocompatible 3D Printing Materials Market Outlook, By Selective Laser Sintering (SLS) (2022-2030) ($MN)
  • Table 18 Global Biocompatible 3D Printing Materials Market Outlook, By Bioprinting (2022-2030) ($MN)
  • Table 19 Global Biocompatible 3D Printing Materials Market Outlook, By Application (2022-2030) ($MN)
  • Table 20 Global Biocompatible 3D Printing Materials Market Outlook, By Medical Implants (2022-2030) ($MN)
  • Table 21 Global Biocompatible 3D Printing Materials Market Outlook, By Tissue Engineering (2022-2030) ($MN)
  • Table 22 Global Biocompatible 3D Printing Materials Market Outlook, By Prosthetics (2022-2030) ($MN)
  • Table 23 Global Biocompatible 3D Printing Materials Market Outlook, By Drug Delivery Systems (2022-2030) ($MN)
  • Table 24 Global Biocompatible 3D Printing Materials Market Outlook, By Surgical Instruments (2022-2030) ($MN)
  • Table 25 Global Biocompatible 3D Printing Materials Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 26 Global Biocompatible 3D Printing Materials Market Outlook, By End User (2022-2030) ($MN)
  • Table 27 Global Biocompatible 3D Printing Materials Market Outlook, By Hospitals and Clinics (2022-2030) ($MN)
  • Table 28 Global Biocompatible 3D Printing Materials Market Outlook, By Research Institutes (2022-2030) ($MN)
  • Table 29 Global Biocompatible 3D Printing Materials Market Outlook, By Medical Device Manufacturers (2022-2030) ($MN)
  • Table 30 Global Biocompatible 3D Printing Materials Market Outlook, By Academic Institutions (2022-2030) ($MN)
  • Table 31 Global Biocompatible 3D Printing Materials Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.