下一代電池鋰金屬負極材料技術發展現況及市場預測(2024年)
市場調查報告書
商品編碼
1403147

下一代電池鋰金屬負極材料技術發展現況及市場預測(2024年)

<2024> Technology Development Status and Market Forecast of Lithium Metal Anode Materials for Next-Gen Batteries

出版日期: | 出版商: SNE Research | 英文 271 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

隨著21世紀氣候變遷變得更加嚴重,開發再生和清潔能源技術的需求日益增加。 隨著各種法規的到位,並積極努力保護環境,透過環境法規實現永續發展的社會,二次電池產業正在引領環保能源產業的發展方向。 隨著交通從內燃機轉向電動車,各種鋰離子二次電池的研究正在積極進行。

自1990年代投入實際應用以來,鋰離子二次電池作為各種電子設備和電動車的電源取得了巨大成功。 然而,由於負極的理論容量較低(~372mAh/g)和單位體積容量較低(~735mAh/cm3),使用石墨負極的傳統鋰離子電池在實現高能量密度方面受到限制。 為了滿足對鋰二次電池不斷增長的需求,有必要開發超越傳統鋰離子電池的新電池技術。

鋰金屬具有最高的理論容量(~3,860 mAh/g)、最低的電化學勢(-3.04 V vs. SHE)和最低的密度(0.53 g/cm3)。 由於這些特性,鋰金屬被認為是實現單位重量和單位體積的高能量和功率密度的最有前途的材料。

此外,正在積極研究使用不含鋰或僅含有少量鋰的材料作為陽極的無陽極技術。 負極材料會影響電池的充電速度和壽命,因此消除或減少負極材料有利於提高電池的能量密度並延長其壽命。

本報告對鋰金屬負極市場進行了調查,提供了鋰金屬技術、無負極技術以及鋰金屬相關企業和研究機構的技術和發展現狀等資訊。 它也預測了到2030年鋰金屬負極材料市場的需求和規模。

目錄

第一章簡介

第二章負極材料技術及發展現況

  • 鋰離子二次電池負極材料概述
  • 鋰離子二次電池負極材料的發展趨勢
    • 負極材料(鋰金屬負極)的未來發展
    • 負極材料(非負極)的未來發展

第三章金屬鋰製造技術及供應狀況

  • 鋰生產供應狀況
    • 世界鋰儲量
    • 世界鋰產量
    • 鋰資源:礦物
    • 鋰資源:礦石
    • 鋰資源:鹽水
    • 鋰材料供應結構
    • 鋰需求前景
  • 鋰金屬製造技術
    • 鋰材料技術
    • 鋰薄膜技術
  • 鋰薄膜技術
    • 鋰減薄製程的局限性
    • 成本結構高

第四章鋰金屬負極研究發展趨勢及主要問題

  • 鋰金屬負極的發展歷史
    • 發展史概述
    • 鋰金屬電池 (LMB) 的歷史
    • 鋰金屬電池(LMB)的初步開發
    • 鋰離子電池的發展及市場壟斷
    • 鋰金屬電池 (LMB) 的需求不斷增加
  • 鋰金屬負極的主要問題
    • 鋰枝晶生長
    • SEI層問題
  • 鋰金屬負極的研發趨勢
    • 人工SEI
    • 全新結構設計
    • 電解質改性
    • 負極設計

第五章鋰金屬負極發展現況:依企業劃分

  • 摘要
  • 亞洲公司
    • Samsung SDI
    • LGES
    • SK on
    • CATL
    • EVE
    • Prologium
    • Qingtao Energy
    • Welion
    • Hyundai Motors
    • POSCO
    • Neba Corporation
    • Ulvac Inc
    • Santoku
    • Honjo metal
    • Wuxi Sunenergy Lithium Industrial
    • China Energy Lithium
    • Ganfeng Lithium
    • Tianqi Lithium
    • Montavista
    • Shenzen Inx Technology
    • BTR
    • SoftBank Next-Generation Battery Lab
    • National Institute of Advanced Industrial Science and Technology (AIST)
    • National Institute for Materials Science-ALCA SPRING
  • 歐洲公司
    • Blue Solutions
    • Volkswagen
    • Mercedes-Benz
    • SIDRABE
    • IMEC
  • 北美公司
    • SES
    • QuantumScape
    • Solid Power
    • Factorial Energy
    • Soelect
    • TeraWatt
    • Hydro Quebec
    • Brightvolt
    • Sion Power
    • SEEO
    • Cuberg
    • Enpower Greentech
    • PolyPlus
    • Sepion Technologies Inc
    • Ion Storage Systems
    • Sakuu
    • GM
    • Ford
    • Li Metal Corp
    • Ionic Materials
    • Albemarle
    • SQM
    • Livent Corp
    • Pure Lithium Corp
  • 主要公司摘要

第六章鋰金屬負極市場展望

  • 鋰金屬負極市場前景概述
    • 鋰金屬負極電池的種類及成本結構
    • 採用鋰金屬負極的路線圖
    • 鋰金屬負極電池商業化場景
  • 鋰金屬負極市場展望
    • 鋰金屬負極需求預測
    • 鋰金屬負極價格展望
    • 鋰金屬負極價格預測基礎
    • 鋰金屬電池 (SLMB) 市場規模預測
    • 預測鋰金屬電池 (SLMB) 的採用
    • 鋰金屬電池(SLMB)的使用前景
簡介目錄
Product Code: 213

With the growing seriousness of climate change in the 21st century, the need for renewable and clean energy technology development has become increasingly urgent. Amidst various regulations and active efforts to achieve environmental protection and a sustainable society through environmental regulations, the secondary battery industry is a leading eco-friendly energy industry. As transportation shifts from internal combustion engines to electric vehicles, research on various types of lithium-ion batteries is actively underway.

Since their commercialization in the 1990s, lithium-ion batteries have been highly successful in powering various electronic devices and electric vehicles. However, conventional lithium-ion batteries with graphite anodes have limitations in achieving high energy density due to the low theoretical capacity (~372 mAh/g) and volumetric capacity (~735 mAh/cm3) of the anode. Meeting the growing demand for lithium secondary batteries requires the development of new battery technologies beyond conventional lithium-ion batteries.

Lithium metal has a very high theoretical capacity (~3860 mAh/g), the lowest electrochemical potential (-3.04 V vs. SHE), and the lowest density (0.53 g/cm3). Due to these characteristics, lithium metal is considered the most promising material for achieving high energy and power density per unit weight and volume.

In addition, anode-less/anode-free technologies, which use lithium-free materials for the anode or apply only a small amount of lithium, are also being actively researched. Since the anode material affects the charging speed and lifespan of the battery, eliminating or reducing it has the advantage of increasing the energy density of the battery and increasing its lifespan.

This report covers the latest trends centered on lithium metal and anode-free technologies, which are considered promising anode materials for the future. It also examined the technology and development status of more than 50 lithium metal-related companies and research institutes in Korea, China, Japan, North America, and Europe. Lastly, the market analysis section predicts the demand and size of the lithium metal anode material market by 2030, taking into account the utilization in xEVs and other emerging applications within the next-generation battery market landscape.

Strong Points of this report:

  • 1. Li metal manufacturing technologies and issues
  • 2. Understanding the overall R&D trends of Li metal anode and anodeless
  • 3.Technology trends and strategies of major players related to Li metal anodes

Table of Contents

1. Introduction

  • 1.1. Required Characteristics of Li-Ion Secondary Batteries
  • 1.2. Development Trends of Li-Ion Secondary Batteries

2. Anode Material Technology and Development Status

  • 2.1. Overview of Li-Ion Secondary Battery Anode Materials
  • 2.2. Development Trends in Li-Ion Secondary Battery Anode Materials
    • 2.2.1. Future Developments in Anode Materials (Li-metal anode)
    • 2.2.2. Future Developments in Anode Materials (Anodeless)

3. Li Metal Manufacturing Technology and Supply Status

  • 3.1. Lithium Production and Supply Status
    • 3.1.1. Global Li reserves
    • 3.1.2. Global Li production
    • 3.1.3. Li resources: Mineral
    • 3.1.5. Li resources: Ores
    • 3.1.6. Li resources: Brines
    • 3.1.7. Lithium Material Supply Structure
    • 3.1.8. Li Demand Outlook
  • 3.2. Li Metal Manufacturing Technology
    • 3.2.1. Li Material Technology
    • 3.2.2. Li Thin-Film Technology
  • 3.3. Li Thin-Film Technology
    • 3.3.1. Li Thinning Process Limitations
    • 3.3.2. High-Cost Structure

4. Li Metal Anode R&D Trend and Main Issue

  • 4.1. Li Metal Anode Development History
    • 4.1.1. Development History Overview
    • 4.1.2. Li metal battery(LMB) History
    • 4.1.3. Initial Development of the Li Metal Battery (LMB)
    • 4.1.4. Li Ion Battery Development and Market Dominance
    • 4.1.5. Growing Need for Lithium Metal Batteries (LMBs)
  • 4.2. Li Metal Anode Main Issue
    • 4.2.1. Li Dendritic Growth
    • 4.2.2. SEI Layer issue
  • 4.3. Li Metal Anode R&D Trends
    • 4.3.1. Artificial SEI
    • 4.3.2. New structure design
    • 4.3.3. Electrolyte modification
    • 4.3.4. Anodeless design

5. Development Status of Li Metal Anode by Company

  • 5.1. Overview
  • 5.2. Asian Companies
    • 5.2.1. Samsung SDI
    • 5.2.2. LGES
    • 5.2.3. SK on
    • 5.2.4. CATL
    • 5.2.5. EVE
    • 5.2.6. Prologium
    • 5.2.7. Qingtao Energy
    • 5.2.8. Welion
    • 5.2.9. Hyundai Motors
    • 5.2.10. POSCO
    • 5.2.11. Neba Corporation
    • 5.2.12. Ulvac Inc
    • 5.2.13. Santoku
    • 5.2.14. Honjo metal
    • 5.2.15. Wuxi Sunenergy Lithium Industrial
    • 5.2.16. China Energy Lithium
    • 5.2.17. Ganfeng Lithium
    • 5.2.18. Tianqi Lithium
    • 5.2.19. Montavista
    • 5.2.20. Shenzen Inx Technology
    • 5.2.21. BTR
    • 5.2.22. SoftBank Next-Generation Battery Lab
    • 5.2.23. National Institute of Advanced Industrial Science and Technology (AIST)
    • 5.2.24. National Institute for Materials Science-ALCA SPRING
  • 5.3. European Companies
    • 5.3.1. Blue Solutions
    • 5.3.2. Volkswagen
    • 5.3.3. Mercedes-Benz
    • 5.3.4. SIDRABE
    • 5.3.5. IMEC
  • 5.4. North American Companies
    • 5.4.1. SES
    • 5.4.2. QuantumScape
    • 5.4.3. Solid Power
    • 5.4.4. Factorial Energy
    • 5.4.5. Soelect
    • 5.4.6. TeraWatt
    • 5.4.7. Hydro Quebec
    • 5.4.8. Brightvolt
    • 5.4.9. Sion Power
    • 5.4.10. SEEO
    • 5.4.11. Cuberg
    • 5.4.12. Enpower Greentech
    • 5.4.13. PolyPlus
    • 5.4.14. Sepion Technologies Inc
    • 5.4.15. Ion Storage Systems
    • 5.4.16. Sakuu
    • 5.4.17. GM
    • 5.4.18. Ford
    • 5.4.19. Li Metal Corp
    • 5.4.20. Ionic Materials
    • 5.4.21. Albemarle
    • 5.4.22. SQM
    • 5.4.23. Livent Corp
    • 5.4.24. Pure Lithium Corp
  • 5.5. Summary of Key Companies

6. Li Metal Anode Market Outlook

  • 6.1. Overview of Li Metal Anode Market Outlook
    • 6.1.1. Li Metal Anode Battery Types and Cost Structure
    • 6.1.2. Li Metal Anode Adoption Roadmap
    • 6.1.3. Commercialization Scenarios of Li Metal Anode Battery
  • 6.2. Li Metal Anode Market Outlook
    • 6.2.1. Li Metal Anode Demand Outlook
    • 6.2.2. Li Metal Anode Price Outlook
    • 6.2.3. Li Metal Anode Price Forecast Rationale
    • 6.2.4. Li Metal Battery (SLMB) Market Size Forecast
    • 6.2.5. Forecast of Li Metal Battery (SLMB) Adoption
    • 6.2.6. Outlook by Li Metal Battery (SLMB) Application