鋰離子二次電池負極材料技術趨勢及市場前景
市場調查報告書
商品編碼
1487709

鋰離子二次電池負極材料技術趨勢及市場前景

<2024> Technology Trends and Market Outlook of Lithium-ion Secondary Battery Anode Materials

出版日期: | 出版商: SNE Research | 英文 607 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

關於二次電池負極材料,以下三個問題仍在繼續解決。

(1)矽負極材料因快充問題而擴展

(2) 由於與IRA的關係,中國生產的石墨負極材料無法獲得補貼,作為對策,正在尋找中國以外的石墨來源。

(3)新一代電池(鈉離子電池、全固態電池)負極材料研發

首先,(1)由於需要透過高比容量和高速充電來提高能量密度,矽負極材料正在大力推廣,但最大的問題是矽負極材料平台還沒有出現。

目前主流的矽負極材料SiOx和Si-C仍然相當昂貴,與目前正在研發的新技術、新產品、新製造方法相比已經建立了技術和價格優勢。目前,全球有超過100家電池製造商、材料製造商、中型公司、創投公司和學術/研究機構正在進行矽負極材料的各種研發和商業化,我們也將看到其他製造方法的出現。 。

接下來,(2)我們將尋找中國以外的石墨負極材料供應商。目前,鋰離子電池負極材料98%是石墨,中國企業佔石墨供應量的90%以上。根據美國提出的IRA法案,原本決定從2025年1月起,不再向中國等FEOC(外國關注實體)公司生產的含有負極材料的xEV電池提供補貼。因此,我們在2024年5月決定將該條件的激活推遲兩年,並從2027年1月開始應用。

儘管還有兩年的時間,我們必須緊急尋找國外的石墨負極材料供應商。因此,需要尋找美國或歐洲的石墨公司,但從技術和數量上來說,找到合適的供應商並不容易。

最後,(3)SIB或ASB負極材料的研發。硬碳主要用作鈉離子電池的負極材料,鈉(Na)取代開採量有限的鋰(Li)作為電池中的運輸材料。另外,在矽負極材料中,有時會使用多孔硬碳作為奈米矽的載體,硬碳被認為是石墨和矽以外的材料中可用作負極材料的重要材料。

有時會使用碳基材料(石墨、硬碳)和矽作為全固態電池(ASSB)的負極材料,但也不斷考慮使用鋰金屬,如果鋰金屬據預測,二次電池負極材料的範圍將會擴大。我們應該關注硬碳(一種非晶碳材料)和鋰負極材料(一種完全金屬材料)的趨勢。順應這一趨勢,正在研發或部分應用的典型新型負極材料候選包括矽基和鋰金屬,並且對現有碳基負極材料的改進也在並行進行。

本報告對鋰離子二次電池負極材料進行了調查分析,包括各地區矽負極材料企業現狀、以矽基材料和鋰金屬為核心的最新技術趨勢、快速充電等技術設計。技術的行業趨勢。

目錄

索引

報告概要

第1章 負極材料技術狀況與開發趨勢

  • 簡介
  • 負極材料的種類
    • 鋰金屬
    • 碳基負極材料
    • 負極材料發展現狀

第2章 碳系負極材料

  • 碳系負極材料概要
  • 碳系負極材料的製造
    • 氣相炭化
    • 液相炭化
    • 固相炭化
  • 軟體碳系負極材料
    • 結構特性
    • 電化學性質
    • 電極反應機制
    • 生產方法
    • 人工石墨
    • 天然石墨
    • 低溫燒製碳
    • 其他材料
  • 硬碳負極材料
    • 結構特性
    • 電化學性質
    • 電極反應機制
    • 生產方法
  • 廢電池碳基負極材料的回收與循環利用

第3章 合金系負極材料

  • 合金系負極材料概要
  • 合金系負極材料的特性
  • 合金系負極材料的問題點和解決的辦法
    • 典型問題
    • 金屬複合負極材料
    • 金屬碳複合負極材料
  • SiOx系負極材料
    • 結構特性
    • 電化學性質
    • 生產方法
    • 預鋰化製程的應用
  • Si系負極材料的實用化的相關調查
    • 電化學行為的差異
    • 單矽電極和混合矽/石墨電極
  • 其他的Si系負極材料
  • 3D多孔質矽
    • 矽奈米管
    • 金屬/合金薄膜負極材料

第4章 複合負極材料

  • 氧化物基負極材料
  • 氮化物基負極材料
  • 二維層狀無機化合物(Mxene)

第5章 高功率負極材料

  • 高功率負極材料概述
  • 插入材料
    • 碳材料
    • LTO (Li4Ti5O12)
  • 合金材料
  • 過渡材料
  • 奈米結構細顆粒
    • 奈米結構微碳材料
    • 奈米結構微型Li4Ti5O
    • 奈米結構微矽碳複合活性材料
  • 多通道結構石墨
  • 矽石墨雜化材料(SEAG)
  • 石墨烯-SiO2材質(石墨烯球)
  • 從負極角度實現快速充電
    • 負極材料的影響因素
    • 電極的影響因素
    • 各大電池廠商的快充技術設計
    • 快速充電負極技術開發實例
  • 結論與展望

第6章 Li金屬負極

  • 鋰金屬負極概述
  • 鋰金屬負極的研發現狀
  • 鋰金屬負極實際應用的問題與展望
  • 無負極LIB

第7章 負極的安全性的影響

  • 負極的熱穩定性
  • 快速充電時的安全性

第8章 全球負極材料的供給情形及預測

  • 負極材料需求預測:依應用分類(2021-2035)
  • 負極材料需求預測:依類型(2021-2035)
  • 負極材料總出貨量(供應量):依供應商劃分(2021-2024年)
  • 負極材料M/S出貨(供應)總數:依供應商分類(2021-2024年)
    • SDI/LGC/SKI/松下/寧德時代/ATL/比亞迪/力神/國軒/AESC/中航鋰電
  • 天然石墨 (NG) 負極材料出貨量:依供應商劃分(2021-2024 年)
  • NG負極材料的出貨數量:依供應商劃分(2021-2024年)
  • 人造石墨(AG)負極材料的出貨量:依供應商劃分(2021-2024年)
  • AG負極材料出貨量:依供應商劃分(2021-2024年)
  • 矽負極材料的出貨量和 M/S:按供應商劃分(2023 年)
  • 負極材料供應商現況綜合分析(2023年)
  • 負極材料供應商NG產能擴充計畫及供需展望(2021-2030年)
  • 負極材料供應商AG(SG)產能擴充計畫及供需展望(2021-2030年)
  • 負極材料價格展望:按類型劃分(2021-2030 年)
  • 負極材料市場規模預測(2021-2030年)

第9章 負極材料需求的現況與展望:LIB各供應商

  • 負極材料的整體需求表現、前景與挑戰
  • 主要鋰離子電池供應商負極材料需求現況及展望
  • 主要企業供需狀況

第10章 石墨系負極材料企業的現狀

  • 全球排名前 12 的公司
    • BTR/杉杉/紫辰/凱金/尚泰/新中/新豐華/坤田/東島/POSCO/Resonac/三菱
  • 中國/日本/韓國的其他公司
    • 日立/三菱/日本碳素/JFE/東海碳素/昭及電工/信越/吳羽
  • 美國/歐洲/其他地區的公司
    • Syrah/Westwater/Talga/NMG/Next source Mat./Mangnis/Renascor/Epsilon/Urbix/Novonix/Anovion

第11章 矽系負極材料企業的現狀

  • 日韓矽負極企業
    • Shin-Etsu/JMC(日本金屬化學)/Daejoo Electronic Materials/Posco Future M/Posco Silicon Solution(原 TERA TECHNOS)/SKMG14 (SK Materials-Group14)/SK Ultimus (Nexeon)/MK Electronics/Iljin Electric/EG/Hansol Chemical/Innox Advanced Materials (TRS)/FIC New Materials/LPN/Osaka Titanium/TCK (Tokai Carbon Korea)/Truewin (原NM Tech)/Korea Metal Silicon/EN Plus/Lotte Energy Materials (Enwires)/Dongjin Semichem/SJ Advanced Materials/IL Science/S Material/HNS Co., Ltd./Wipinetech/Hana Materials/Grabsil/BSG Materials/Actro/Siri Energy
  • 中國矽負極企業
    • IOPSILION、天目/成都貴寶/iAmetal、北京易金/國軒/新華/金基/傑瑞/華為/浩新科技/桂源/玉嶺新能源/浙江立辰/蘭溪智德
  • 美國、歐洲等地區矽負極企業
    • Group14(美國)/Nexeon(英國)/Sila Nano(美國)/Amprius(美國)/Enovix(美國)/Elkem(挪威)/Enevate(美國)/Neo Battery(加拿大)/OneD(美國)/Nanograf(美國)/StoreDot(以色列)/Targray(加拿大)/Global Graphene Group(美國)/EO Cell(美國)/ADVANO(美國)/Nanospan(美國)/LeydenJar(荷蘭)/Trion Battery(加拿大)/Cenate (挪威)/SiCONA(澳洲)/Alkegen(美國)/pH Matter LLC(美國)/Paraclete Energy(美國)/Himadri Specialty Chem(印度)/E-Magy(荷蘭)/Ionblox(美國)/Nanomakers(法國) )/SiLi-ion(美國)/Ionic Mineral Tech(美國)/Ionobell(美國)/Coretec 集團(美國)/Enwires(法國)/FARADPOWER(美國)/SilLion(美國)/Talga(澳洲)/SGL碳SE (德國)

第12章 參考文獻

簡介目錄
Product Code: 222

There are three issues below that continue to be issued regarding anode materials for secondary batteries.

1) Expansion of silicon anode materials due to fast charging issues

2) In relation to IRA, subsidies cannot be applied to Chinese graphite anode materials, and as a countermeasure to this, graphite sourcing sources outside of China are being discovered.

3) R&D on anode materials for next-generation batteries (Sodium-ion batteries, All-solid-state batteries)

First, 1) Silicon anode materials are being driven strongly due to the need for improved energy density and fast charging due to high specific capacity, but the biggest issue is that a dominant silicon anode material platform has not yet emerged.

SiOx and Si-C, which are currently the mainstream silicon anode materials, are still quite expensive, and it is difficult to say that technological and price superiority has yet been established compared to new technologies, products, and manufacturing methods currently being researched or developed. Currently, more than 100 battery companies, material companies, mid-sized companies, start-ups, or academic/research institutes around the world are conducting various research and development and product launches on silicon anode materials, so technologically advanced products and manufacturing methods will emerge in the future. In this report, we investigated these silicon anode material companies in detail.

Second, 2) discovering sourcing sources for graphite anode materials outside of China. Currently, 98% of LIB anode materials are graphite, and Chinese companies account for more than 90% of graphite supply. In accordance with the IRA bill proposed by US, it was initially decided not to provide subsidies for xEV batteries containing anode materials manufactured by companies in foreign countries of concern (FEOC) such as China from January 2025, but it was difficult to apply this in reality. Therefore, in May 2024, they decided to postpone the triggering of these conditions for two years and apply them from January 2027.

Although we have gained two years of time, we must immediately discover sources for graphite anode materials outside of China. Therefore, we need to look for graphite companies in the US or Europe, but it is not easy to find a suitable supplier in terms of technology and quantity. In this report, we also investigated the status of non-Chinese graphite anode material companies in detail, such as in Australia, Europe, and the United States.

Lastly, 3) R&D on SIB or ASB anode materials. Hard carbon is mainly used as the anode material for sodium-ion batteries, which adopted sodium (Na) as a transport material in batteries instead of lithium (Li), which has a limited amount of mining. In addition, in some silicon anode materials, porous hard carbon is used as a support for nano silicon, so hard carbon is considered an important material that can be used as the anode material among materials other than graphite and silicon.

In some cases, carbon-based materials (graphite, hard carbon) or silicon are used as anode materials for all-solid-state batteries (ASSB), but Li-metal is also being continuously reviewed, so if Li-metal is used, the scope of secondary battery anode materials is expected to be expanded. We should be interested in the trend of hard carbon, which is an amorphous carbon material, or lithium anode material, a complete metal. Representative new anode material candidates that are being researched/developed or partially applied in line with this trend include silicon-based and Li metal, and improvements to existing carbon-based anode materials are also being carried out in parallel, and research on anode-free and fast charging technology is actively underway. This report reflects these recent trends and R&D status.

In particular, the latest technological trends centered on silicon-based materials and Li metal were discussed in depth, and the performance improvement of existing and new materials and the R&D status of hybrid products were also examined. This report also looked at industry trends in fast charging technology design and anode-free technology.

In addition, this report analyzed the use of anode materials and SCM of major battery companies in detail for the past three years. Each type (natural graphite, artificial graphite, silicon-based) of supply-chain companies were divided into Tier1, Tier2, and countries, and more than 100 companies were analyzed in detail.

We hope this report will be helpful in analyzing the global secondary battery market, anode material market and in business strategy.

Table of Contents

INDEX

Report Overview

Chapter 1. Anode Material Technology Status and Development Trend

  • 1.1. Introduction
  • 1.2. Types of Anode Material
    • 1.2.1. Li-metal
    • 1.2.2. Carbon-based Anode Material
    • 1.2.3. Anode Material Development Status

Chapter 2. Carbon-based Anode Material

  • 2.1. Overview of Carbon-based Anode Material
  • 2.2. Manufacturing Carbon-based Anode Material
    • 2.2.1. Gas-phase Carbonization
    • 2.2.2. Liquid-phase Carbonization
    • 2.2.3. Solid-phase Carbonization
  • 2.3. Soft Carbon-based Anode Material
    • 2.3.1. Structural Properties
    • 2.3.2. Electrochemial Properties
    • 2.3.3. Electrode Reaction Mechanism
    • 2.3.4. Manufacturing Method
    • 2.3.5. Artificial Graphite
    • 2.3.6. Natural Graphite
    • 2.3.7. Carbon Calcinated in Low Temperature
    • 2.3.8. Other Materials
  • 2.4. Hard Carbon-based Anode Material
    • 2.4.1. Structural Properties
    • 2.4.2. Electrochemical Properties
    • 2.4.3. Electrode Reaction Mechanism
    • 2.4.4. Manufacturing Method
  • 2.5. Recollecting and Recycling of Carbon-based Anode Materials from Waste Batteries

Chapter 3. Alloy-based Anode Material

  • 3.1. Overview of Alloy-based Anode Material
  • 3.2. Properties of Alloy-based Anode Material
  • 3.3. Problems and Solutions of Alloy-based Anode Material
    • 3.3.1. Representative Problems
    • 3.3.2. Metal Composite Anode Material
    • 3.3.3. Metal-Carbon Composite Anode Material
  • 3.4. SiOx-based Anode Material
    • 3.4.1. Structural Properties
    • 3.4.2. Electrochemical Properties
    • 3.4.3. Manufacturing Method
    • 3.4.4. Application of Prelithiation Process
  • 3.5. Research on Practical Application of Si-based Anode Material
    • 3.5.1. Difference of Electrochemical Behaviors
    • 3.5.2. Single Si Electrode and Si/Graphite Mixed Electrode
  • 3.6. Other Si-based Anode Materials
  • 3.6.1 3D Porous Si
    • 3.6.2. Si Nanotube
    • 3.6.3. Metal/Alloy Thin Film Anode Material

Chapter 4. Compound Anode Material

  • 4.1. Oxide-based Anode Material
  • 4.2. Nitride-based Anode Material
  • 4.3 2D Planar Structure Inorganic Compound (Mxenes)

Chapter 5. High Power Anode Material

  • 5.1. Overview of High Power Anode Material
  • 5.2. Intercalation Material
    • 5.2.1. Carbon Material
    • 5.2.2. LTO(Li4Ti5O12)
  • 5.3. Alloy-based Material
  • 5.4. Transition Material
  • 5.5. Nano-structured Micro Particles
    • 5.5.1. Nano-structured Micro Carbon Material
    • 5.5.2. Nano-structured Micro Li4Ti5O
    • 5.5.3. Nano-structured Micro Si-Carbon Composite Active Material
  • 5.6. Multi Channel Structure Graphite
  • 5.7. Si-Graphite Hybrid Material (SEAG)
  • 5.8. Graphene-SiO2 Material (Graphene Ball)
  • 5.9. Fast Charging from Anode Perspective
    • 5.9.1. Influence Factors of Anode Material
    • 5.9.2. Influence Factors of Electrode
    • 5.9.3. Fast Charging Technology Design of Major Battery Manufacturers
    • 5.9.4. Cases of Anode Technology Development for Fast Charging
  • 5.10. Conclusion and Outlook

Chapter 6. Li-metal Anode

  • 6.1. Overview of Li-metal Anode
  • 6.2. R&D Status of Li-metal Anode
    • 6.2.1. Artificial Surface Protection Layer (ASEI, formation of Artificial SEI layer)
    • 6.2.2. New Structure
    • 6.2.3. Hybrid Structure
    • 6.2.4. Electrolyte modification
  • 6.3. Problem and Outlook of Practical Application for Lithium Metal Anode
  • 6.4. Anode-Free LIB

Chapter 7. Anode's Effect on Safety

  • 7.1. Thermal Stability of Anode
  • 7.2. Safety During Fast Charging

Chapter 8. Global Supply Status and Outlook of Anode Material

  • 8.1. Anode Material Demand Outlook by Application ('21~'35)
  • 8.2. Anode Material Demand Outlook by Type ('21~'35)
  • 8.3. Anode Material Total Shipment(Supply) Volume by Supplier ('21~'24)
  • 8.4. Anode Material Total Shipment(Supply) M/S by Supplier ('21~'24)
    • SDI/LGC/SKI/Panasonic/CATL/ATL/BYD/Lishen/Guoxuan/AESC/CALB
  • 8.5. Shipment Volume of Natural Graphite(NG) Anode Material by Supplier ('21~24)
  • 8.6. Shipment M/S of NG Anode Material by Supplier ('21~24)
  • 8.7. Shipment Volume of Artificial Graphite(AG) Anode Material by Supplier ('21~24)
  • 8.8. Shipment M/S of AG Anode Material by Supplier ('21~24)
  • 8.9. Silicon Anode Material Shipment Volume & M/S by Supplier (In 2023)
  • 8.10. Comprehensive Analysis of Anode Material Supplier Status (In 2023)
  • 8.11. Anode Material Supplier NG Capa. Expansion Plan & Demand/Supply Outlook ('21~'30)
  • 8.12. Anode Material Supplier AG(SG) Capa. Expansion Plan & Demand/Supply Outlook ('21~'30)
  • 8.13. Anode Material Price Outlook by Type ('21~'30)
  • 8.14. Anode Material Market Size Outlook ('21~'30)

Chapter 9. Current Status and Outlook of Anode Material Demand by LIB Suppliers

  • 9.1. Anode Material's Overall Demand Performance, Outlook and Issues
  • 9.2. Current Status and Outlook of Anode Material Demand by Major LIB Suppliers
  • 9.3. Supply/Demand Status Among Major Companies

Chapter 10. Current Status of Graphite-Focused Anode Material Companies

  • 10.1. Global Top12
    • BTR/Shanshan/Zichen/Kaijin/Shangtai/Shinzoom/XFH/Kuntian/Dongdao/POSCO/Resonac/Mitsubishi
  • 10.2. Other Companies in China/Japan/Korea
    • Hitachi/Mitsubishi/Nippon Carbon/JFE/Tokai Carbon/Showa Denko/Shinetsu/Kureha
  • 10.3. Companies in US/Europe/Other Regions
    • Syrah/Westwater/Talga/NMG/Next source Mat./Mangnis/Renascor/Epsilon/Urbix/Novonix/Anovion

Chapter 11. Current Status of Silicon-Focused Anode Material Companies

  • 11.1. Si-Anode Companies in Japan, Korea
    • Shin-Etsu/JMC (Japan Metal & Chemicals)/Daejoo Electronic Materials/Posco Future M/Posco Silicon Solution (Former TERA TECHNOS)/SKMG14 (SK Materials-Group14)/SK Ultimus (Nexeon)/MK Electronics/Iljin Electric/EG/Hansol Chemical/Innox Advanced Materials (TRS)/FIC New Materials/LPN/Osaka Titanium/TCK(Tokai Carbon Korea)/Truewin (formerly NM Tech)/Korea Metal Silicon/EN Plus/Lotte Energy Materials (Enwires)/Dongjin Semichem/SJ Advanced Materials/IL Science/S Material/HNS Co., Ltd./Wipinetech/ Hana Materials/Grabsil/BSG Materials/Actro/Siri Energy
  • 11.2. Si-Anode Companies in China
    • IOPSILION, Tianmu/Chengdu Guibao/iAmetal, Beijing Yijin/Gotion/Shinghwa/Kingi/JereH/Huawei/Haoxin Tech /Guiyuan/Yuling New Energy/Zhejiang Lichen /Lanxi Zhide
  • 11.3. Si-Anode Companies in US, Europe and Other regions
    • Group14 (US)/Nexeon (UK)/Sila Nano (US)/Amprius (US)/Enovix (US)/Elkem (Nor)/Enevate (US)/Neo Battery (Canada)/OneD (US)/Nanograf (US)/StoreDot (Israel)/Targray (Canada)/Global Graphene Group (US)/EO Cell (US)/ADVANO (US) /Nanospan (US)/LeydenJar (Nether.)/Trion Battery (Canada)/Cenate (Norway)/SiCONA (AU)/Alkegen (US)/pH Matter LLC (US)/Paraclete Energy (US)/Himadri Specialty Chem (India)/E-Magy (Nether)/Ionblox (US)/Nanomakers (Fra.)/SiLi-ion (US)/Ionic Mineral Tech (US)/Ionobell (US)/The Coretec group (US)/Enwires (Fra.)/FARADPOWER (US)/SilLion (US)/Talga (AU)/SGL Carbon SE (Ger)

Chapter 12. References