鋰離子電池電解液鋰鹽及添加劑技術趨勢及市場前景
市場調查報告書
商品編碼
1526416

鋰離子電池電解液鋰鹽及添加劑技術趨勢及市場前景

<2024> LIB Electrolyte Li-salts, Additives Technology Trends & Market Outlook

出版日期: | 出版商: SNE Research | 英文 292 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

電解質是鋰離子二次電池四大主要材料之一。主要由溶劑、鋰鹽、添加劑組成。

一般來說,鋰離子二次電池有機電解液所需的重要性能是鋰離子電導率和電化學穩定性。因此,無論使用哪種電極,為了確保良好的電池性能,重要的是使用具有良好的鋰離子遷移率並且在電池的工作電位範圍內不會發生嚴重的電化學分解反應的電解質。

在鋰離子二次電池中,鋰鹽是電解液的主要成分,在決定電池性能和穩定性方面發揮重要作用。鋰鹽確保鋰離子的導電性,並作為有效移動電池內電荷的介質。典型的鋰鹽包括六氟磷酸鋰(LiPF 6 )、三氟甲磺酸鋰(LiTFSI)和雙(氟磺?基)亞胺鋰(LiFSI)。 LiPF6因其高電導率和低溫穩定性而被廣泛使用,但高溫下的熱不穩定和水解引起的副作用已被指出是問題。

作為替代方案,人們正在研究具有優異導電性和熱穩定性的鋰鹽,例如 LiFSI。特別是,LiFSI比LiPF6表現出更好的化學和熱穩定性,並具有高離子電導率和低電阻的特性。此外,LiFSI 具有低黏度和出色的電化學穩定性,有助於提高電池壽命和安全性。但存在製造成本和腐蝕性等缺點,因此正確的組合是提高電池性能和安全性的關鍵。

添加劑在提高鋰離子二次電池電解質性能方面發揮重要作用。添加劑主要用於提高電解質穩定性、電導率和界面性能。例如,促進固體電解質界面(SEI)形成的添加劑有助於提高電池壽命和穩定性。典型的添加劑包括氟代碳酸亞乙酯(FEC)和碳酸亞乙烯酯(VC),它們形成SEI層並提高負極的穩定性。硫化物添加劑還可以提高陰極的穩定性並增強其在高電壓下的性能。

最近的研究開發了多種新型添加劑,並努力透過組合它們來優化電池性能。例如,與 LiFSI 一起使用的某些添加劑可以擴大電解質的電位窗口並延長循環壽命,同時保持高能量密度。這些添加劑的綜效是提高鋰離子二次電池的能量密度、循環壽命、安全性等各項性能指標的重要因素。 LiFSI與添加劑的創新組合將對加速下一代高性能鋰離子二次電池的商業化發揮關鍵作用。

在電解質中發揮重要作用的鋰鹽和添加劑傳統上主要由日本企業供應,但隨著中國企業大幅擴大產能,情況發生了變化。以最常用的通用鋰鹽LiPF6為例,鋰鹽技術過去僅限於少數幾家公司,包括日本的Stella Chemifa、Morita、Kanto Denka和韓國的Hoosung,這些公司可以提供電池品質隨著技術的發展和產能的擴大,天賜材料、DFD等大公司現在已經是絕對的強者。另外,在日本,三菱化學、中央硝子、日本觸媒等擁有自主專利的企業幾乎壟斷了特種鋰鹽(LiFSI等)和添加劑的市場,但現在韓國的Cheonbo和中國的HSC、Genyuan和其他公司則通過繞過專利和獨特技術繼續增加其市場份額。

在本報告中,我們對鋰離子電池電解液市場進行了研究和分析,提供了鋰鹽和添加劑的主要特性和應用的詳細技術信息,以及供應狀況、市場前景以及鋰離子電池產品和生產狀況的資訊。

目錄

第1章 概要

  • 背景
  • 電解液概要
  • 電解液的成分和特性

第二章鋰鹽/添加劑發展趨勢

  • 鋰鹽的發展趨勢
    • 鋰鹽概述
    • 功能及特點:依鋰鹽類型分類
  • 添加劑發展趨勢
    • 高壓負極氧化膜形成用添加劑
    • 低壓負極氧化膜形成用添加劑
    • 使用還原分解型化合物的負極SEI形成製程
    • 可再生結構破壞的 SEI 層的功能添加劑
    • 可去除導致電池性能惡化的反應性化合物的添加劑
    • 用於高鎳基正極界面穩定性的電解質添加劑
    • 改善輸出特性的電解質添加劑
    • 使用LiFSI鹽的電解液
    • 提高熱穩定性的阻燃添加劑
    • 高容量負極界面穩定添加劑
    • 富鎳高壓系統添加劑(含/不含 SiOx)
    • 矽負極添加劑
    • LFP正極添加劑
    • LMFP正極添加劑
    • 用於 HF、LFP/LMFP 正極的金屬捕獲添加劑
    • LMR正極添加劑
    • 安全添加劑
  • 鋰鹽及添加劑的合成機制研究
    • 氟電解質(LiFSI)
    • VC(碳酸亞乙烯酯合成)添加劑
    • VC(碳酸亞乙烯酯合成)添加劑
    • VEC(乙烯基碳酸亞乙酯)添加劑
  • 全固態電池添加劑
    • 對全固態電池的需求
    • 固態電池的問題
    • 固體電解質解決方案
    • 全固態電池開發(正負極表面改質)
    • 提高全固態電池壽命的研究
    • 由全固態電池供應商開發

第3章 鋰鹽/添加劑市場趨勢與預測

  • LIB電解液市場背景
    • 下游預測
    • 供需的預測
    • 電解液零組件材料預測
    • 成本結構
  • 鋰鹽/添加劑市場現狀與預測
    • 通用鋰鹽(LiPF6)
    • 特殊鋰鹽
    • 電解液添加劑
簡介目錄
Product Code: 228

Electrolyte is one of the 4 major materials of lithium-ion secondary batteries. It is largely composed of solvents, lithium salts, and additives.

In general, the important characteristics required for organic electrolytes for lithium-ion secondary batteries are lithium-ion conductivity and electrochemical stability. Therefore, regardless of the electrode used, an electrolyte with excellent lithium-ion mobility and no serious electrochemical decomposition reaction within the battery operating potential range must be used to secure excellent battery performance.

In lithium-ion secondary batteries, lithium salts are the main components of the electrolyte and play an important role in determining the performance and stability of the battery. Lithium salts secure the conductivity of lithium ions and act as a medium that effectively transfers charges within the battery. Representative lithium salts include lithium hexafluorophosphate (LiPF6), lithium trifluoromethanesulfonate (LiTFSI), and lithium bis(fluorosulfonyl)imide (LiFSI). LiPF6 is widely used due to its high conductivity and stability at low temperatures, but its thermal instability at high temperatures and side effects due to hydrolysis are pointed out as problems.

As an alternative, lithium salts such as LiFSI are being studied, which offer excellent conductivity and thermal stability. LiFSI shows particularly superior chemical and thermal stability than LiPF6, and is characterized by high ionic conductivity and low electrical resistance. In addition, LiFSI provides low viscosity and excellent electrochemical stability, contributing to improving the lifespan and safety of batteries. However, it also has disadvantages such as manufacturing cost and corrosiveness, so an appropriate combination is the key to improving battery performance and safety.

Additives play an important role in improving the performance of electrolytes in lithium-ion secondary batteries. Additives are mainly used to improve the stability, conductivity, and interfacial properties of electrolytes. For example, additives that promote the formation of a solid electrolyte interphase (SEI) contribute to improving the life and stability of the battery. Representative additives include fluoroethylene carbonate (FEC) and vinylene carbonate (VC), which form an SEI layer to enhance the stability of the anode. In addition, sulfide-based additives improve the stability of the cathode, thereby enhancing performance at high voltages.

Recent studies have been developing various new additives, and efforts are being made to optimize battery performance through their combination. For example, certain additives used with LiFSI can widen the electrochemical window of the electrolyte and extend the cycle life while maintaining high energy density. The synergy with these additives is a key factor in improving various performance indicators of lithium-ion secondary batteries, such as energy density, cycle life, and safety. The innovative combination of LiFSI and additives will play an important role in accelerating the commercialization of next-generation high-performance lithium-ion secondary batteries.

Lithium salts and additives, which play a key role in electrolytes, were mostly supplied by Japanese companies in the past, but the landscape has changed as Chinese companies have significantly expanded their production capacity. In the case of LiPF6, the most commonly used general-purpose lithium salt, only a few companies, including Stella Chemifa, Morita, and Kanto Denka in Japan and Hoosung in Korea, could supply battery-quality products in the past, but in the past, large companies such as Tinci Materials and DFD have become absolute powerhouses in the current market through the development of lithium salt technology and expansion of production capacity. In the case of special lithium salts (such as LiFSI) and additives, companies that held original patents, such as Mitsubishi Chemical, Central Glass, and Nippon Shokubai in Japan, almost monopolized the market, but currently, Cheonbo in Korea and HSC and Genyuan in China are continuously increasing their market share based on bypass patents or their own technologies.

In this report, we have organized in detail the technical information on lithium salts and additives, which are the most essential components of lithium-ion secondary battery electrolytes, and have provided a multi-faceted outlook on the market for lithium salts and additives based on our various outlook data to help readers understand the overall market situation.

Finally, we have tried to provide researchers and interested parties in this field with a wide range of insights from technology to market by summarizing the business status and future plans of major lithium salt and additive manufacturers.

Strong points of this report:

  • 1. Includes detailed technical information on the main characteristics and applications of lithium salts and additives
  • 2. Provides objective data through market outlook based on our forecast and various data
  • 3. Understands the main supply status and outlook of the lithium salt and additives market
  • 4. Includes detailed information on the products and production status of major players in Korea, China, and Japan

Table of Contents

Chapter I. Overview

  • 1.1. Background
  • 1.2. Electrolyte Overview
  • 1.3. Electrolyte components and properties

Chapter II. Li-Salts / Additives Development Trends

  • 2.1. Lithium Salt Development Trends
    • 2.1.1. Lithium Salts Overview
    • 2.1.2. Functions and features for each lithium salt type
  • 2.2. Additives Development Trends
    • 2.2.1. Additives for high voltage anodic film formation
    • 2.2.2. Additives for low voltage anodic film formation
    • 2.2.3. Process of forming the anode SEI by reductive-decomposing-type compounds
    • 2.2.4. Functional additive to regenerate the structurally destroyed SEI layer
    • 2.2.5. Reactive compound-removing additive that causes performance deterioration of batteries
    • 2.2.6. Electrolyte additives for high-Ni-based cathode interfacial stabilization
    • 2.2.7. Electrolyte additives for improved output characteristics
    • 2.2.8. Electrolytes using LiFSI salt
    • 2.2.9. Flame retardant additives to improve thermal stability
    • 2.2.10. Additives for interfacial stabilization of high-capacity anodes
    • 2.2.11. Ni-rich and high voltage system additives (w/ or w/o SiOx)
    • 2.2.12. Additives for silicon anodes
    • 2.2.13. Additives for LFP cathodes
    • 2.2.14. Additives for LMFP cathodes
    • 2.2.15. HF, Metal scavenger functional additives for LFP & LMFP cathodes
    • 2.2.16. Additives for LMR cathodes
    • 2.2.17. Additives for safety
  • 2.3. Study on Lithium Salt and Additive Synthesis Mechanisms
    • 2.3.1. F Electrolyte(LiFSI)
    • 2.3.2. VC (Vinylene Carbonate Synthesis) additives
    • 2.3.3. VC (Vinylene Carbonate Synthesis) additives
    • 2.3.4. VEC (Vinylethylene Carbonate) additives
  • 2.4. All-Solid-State Battery Additives
    • 2.4.1. The need for all-solid-state batteries
    • 2.4.2. All-solid-state battery issue
    • 2.4.3. Solutions for solid electrolytes
    • 2.4.4. All-solid-state cell battery development (surface modification of cathode, anode)
    • 2.4.5. Research on improving the lifetime of all-solid-state batteries
    • 2.4.6. Developments by all-solid-state battery vendor

Chapter III. Lithium Salt/Additives Market Trends and Forecasts

  • 3.1. LIB Electrolyte Market Background
    • 3.1.1. Downstream Forecast
    • 3.1.2. Supply and Demand Forecast
    • 3.1.3. Electrolyte Component Material Forecast
    • 3.1.4. Cost Structure
  • 3.2. Lithium Salts/Additives Market Status and Forecast
    • 3.2.1. General-purpose lithium salts (LiPF6)
    • 3.2.2. Specialty lithium salts
    • 3.2.3. Electrolyte additives