封面
市場調查報告書
商品編碼
1477375

基於組織的基因組分析市場 - 全球行業規模、佔有率、趨勢、機會和預測,按技術、應用、最終用戶、地區和競爭細分,2019-2029F

Tissue Based Genomic Profiling Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Technology, By Application, By End-User, By Region and Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023 年,全球基於組織的基因組分析市場價值為 13.7 億美元,預計到 2029 年,預測期內將穩定成長,複合年成長率為 6.65%。來為醫療決策提供資訊。這項先進技術涉及分析患者組織樣本內的基因組改變,為與各種疾病(尤其是癌症)相關的基因突變、變化和生物標記提供重要見解。透過在分子層面上審視基因組景觀,基於組織的基因組分析有助於個人化醫療策略,指導臨床醫生選擇標靶療法並預測治療反應。事實證明,這種方法在腫瘤學中很有用,有助於識別驅動癌症生長的特定遺傳異常。基於組織的基因組分析不僅提高了診斷準確性,而且有望揭示其他疾病的複雜性,為針對個體獨特遺傳圖譜量身定做的更精確、更有效的醫療干預措施提供一條變革之路。

市場概況
預測期 2025-2029
2023 年市場規模 13.7億美元
2029 年市場規模 20.1億美元
2024-2029 年複合年成長率 6.65%
成長最快的細分市場 定序技術
最大的市場 北美洲

作為精準醫學的關鍵組成部分,全球基於組織的基因組分析市場正在見證顯著成長。這種創新方法涉及對組織樣本內基因組資訊的全面分析,從而能夠深入了解與各種疾病(特別是癌症)相關的遺傳改變。個人化醫療的日益普及推動了市場的發展,其中特定遺傳生物標記的識別指導了標靶治療的選擇。基因組技術的進步,加上對個人化治療策略的日益重視,有助於擴大以組織為基礎的基因組分析市場。作為腫瘤學的強大工具,它有助於更準確的診斷、預後和治療決策。隨著研究和技術的不斷進步,全球基於組織的基因組分析市場將根據個人獨特的基因譜提供量身定做的有效治療解決方案,從而在重塑醫療保健格局方面發揮關鍵作用。

主要市場促進因素

基因組技術的進步

慢性病發生率上升

腫瘤學的治療決策

主要市場挑戰

缺乏生物資訊學專業知識

臨床驗證和實用性

主要市場趨勢

下一代定序 (NGS) 的進步

液體活體組織切片採用率的成長

細分市場洞察

技術洞察

最終使用者見解

區域洞察

目錄

第 1 章:產品概述

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:客戶之聲

第 5 章:全球基於組織的基因組分析市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按技術(定序技術、免疫組織化學、其他)
    • 按應用(個人化醫療、腫瘤診斷、研究)
    • 按最終用戶(研究機構、臨床研究組織、醫院和診所、診斷實驗室、製藥和生物技術公司、其他)
    • 按地區
    • 按公司分類 (2023)
  • 市場地圖
    • 依技術
    • 按申請
    • 按最終用戶
    • 按地區

第 6 章:亞太地區基於組織的基因組分析市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 澳洲
    • 日本
    • 韓國

第 7 章:歐洲基於組織的基因組分析市場前景

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 歐洲:國家分析
    • 法國
    • 德國
    • 西班牙
    • 義大利
    • 英國

第 8 章:北美基於組織的基因組分析市場前景

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 9 章:南美洲基於組織的基因組分析市場前景

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 10 章:中東和非洲基於組織的基因組分析市場前景

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 埃及

第 11 章:市場動態

  • 促進要素
  • 挑戰

第 12 章:市場趨勢與發展

  • 最近的發展
  • 產品發布
  • 併購

第 13 章:全球基於組織的基因組分析市場:SWOT 分析

第 14 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第15章:競爭格局

  • Foundation Medicine Inc
  • Illumina, Inc.
  • QIAGEN NV
  • Roche Diagnostics Corp
  • Thermo Fisher Scientific Inc.
  • Exact Sciences Corp
  • Personal Genome Diagnostics Inc.

第 16 章:策略建議

第17章調查會社について,免責事項

簡介目錄
Product Code: 23890

Global Tissue Based Genomic Profiling Market was valued at USD 1.37 billion in 2023 and is anticipated to project steady growth in the forecast period with a CAGR of 6.65% through 2029. Tissue-based genomic profiling represents a cutting-edge approach in understanding the genetic makeup of tissues to inform medical decision-making. This advanced technique involves analyzing the genomic alterations within a patient's tissue sample, providing crucial insights into the genetic mutations, alterations, and biomarkers associated with various diseases, especially cancer. By scrutinizing the genomic landscape at a molecular level, tissue-based genomic profiling aids in personalized medicine strategies, guiding clinicians in selecting targeted therapies and predicting treatment responses. This method has proven instrumental in oncology, facilitating the identification of specific genetic abnormalities that drive cancer growth. Tissue-based genomic profiling not only enhances diagnostic accuracy but also holds promise for unraveling the complexities of other diseases, offering a transformative path towards more precise and effective medical interventions tailored to an individual's unique genetic profile.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 1.37 Billion
Market Size 2029USD 2.01 Billion
CAGR 2024-20296.65%
Fastest Growing SegmentSequencing Techniques
Largest MarketNorth America

The Global Tissue-Based Genomic Profiling market is witnessing remarkable growth as a pivotal component of precision medicine. This innovative approach involves the comprehensive analysis of genomic information within tissue samples, enabling a profound understanding of genetic alterations associated with various diseases, particularly cancer. The market is propelled by the increasing adoption of personalized medicine, where the identification of specific genetic biomarkers guides targeted therapy selection. Advancements in genomic technologies, coupled with a growing emphasis on individualized treatment strategies, contribute to the expansion of the Tissue-Based Genomic Profiling market. As a powerful tool in oncology, it facilitates more accurate diagnostics, prognosis, and treatment decisions. With ongoing research and technological advancements, the global Tissue-Based Genomic Profiling market is poised to play a pivotal role in reshaping the landscape of healthcare by offering tailored and effective therapeutic solutions based on an individual's unique genetic profile.

Key Market Drivers

Advancements in Genomic Technologies

Advancements in genomic technologies stand as a cornerstone in propelling the Global Tissue-Based Genomic Profiling market forward, reshaping the landscape of precision medicine. The rapid evolution of sequencing technologies, such as next-generation sequencing (NGS), has revolutionized the analysis of genetic information extracted from tissue samples. These technologies offer unprecedented speed, accuracy, and cost-effectiveness in deciphering the complex genomic makeup of tissues, enabling a comprehensive understanding of genetic alterations associated with diseases.

NGS, in particular, has significantly enhanced the throughput and scalability of genomic profiling, allowing for the simultaneous analysis of multiple genes and pathways. This has proven invaluable in oncology, where the identification of specific mutations and biomarkers informs targeted therapy decisions. The advent of single cell sequencing further refines the resolution, enabling the study of individual cells within a tissue sample, unveiling heterogeneity and providing insights into cellular diversity. Continuous improvements in bioinformatics and data analysis tools complement genomic technologies, facilitating the interpretation of vast datasets generated through tissue-based genomic profiling. Advanced algorithms enhance the identification of clinically relevant genetic alterations, supporting more precise diagnostics and therapeutic interventions. The integration of genomic technologies with other omics data, such as transcriptomics and proteomics, offers a holistic view of the molecular landscape, unraveling intricate interactions and pathways involved in diseases. This integrative approach enhances the depth of information derived from tissue samples, providing a more comprehensive understanding of the underlying biology.

As genomic technologies continue to evolve, with the emergence of third-generation sequencing and enhanced analytical methodologies, the Tissue-Based Genomic Profiling market is poised for further expansion. These technological advancements not only contribute to the scientific understanding of diseases but also hold the promise of unlocking new therapeutic targets, driving personalized medicine approaches, and ultimately improving patient outcomes across various medical specialties. The synergy between technological innovation and genomic profiling opens new frontiers in healthcare, positioning the field at the forefront of medical breakthroughs.

Rising Incidence of Chronic Diseases

The Global Tissue-Based Genomic Profiling market is profoundly influenced by the escalating incidence of chronic diseases, particularly the surging prevalence of cancer. As chronic diseases continue to pose a significant global health burden, the imperative to unravel their molecular underpinnings has intensified, driving the demand for advanced genomic profiling techniques. Cancer is characterized by intricate genetic alterations that dictate disease progression and response to treatment. Tissue-based genomic profiling plays a pivotal role in this context by providing a comprehensive analysis of the genetic landscape within affected tissues. The rising incidence of cancer worldwide underscores the critical need for precise diagnostics and targeted therapies, a demand met by tissue-based genomic profiling.

Beyond cancer, the market is witnessing an expansion into various other chronic diseases, including cardiovascular disorders, neurodegenerative conditions, and autoimmune disorders. As our understanding of the genomic basis of these diseases deepens, the application of tissue-based genomic profiling becomes increasingly vital in guiding therapeutic decisions and predicting disease trajectories. In the realm of oncology, tissue-based genomic profiling is instrumental in identifying actionable mutations and biomarkers, offering a roadmap for personalized treatment strategies. The advent of immunotherapy and targeted therapies necessitates a detailed genomic understanding to match patients with the most efficacious interventions, driving the market's growth. The rising incidence of chronic diseases not only propels the Tissue-Based Genomic Profiling market but also underscores the urgency to transition towards precision medicine.

Tailoring treatments based on an individual's unique genetic profile has the potential to revolutionize patient care, optimizing therapeutic outcomes, and minimizing adverse effects. As the global healthcare landscape grapples with the increasing burden of chronic diseases, tissue-based genomic profiling stands as a beacon of hope, promising a more nuanced and effective approach to diagnosis, treatment, and disease management.

Therapeutic Decision-Making in Oncology

Therapeutic decision-making in oncology has undergone a transformative shift with the advent of tissue-based genomic profiling, positioning itself at the forefront of precision medicine. In the realm of cancer treatment, understanding the genetic alterations driving tumor growth is paramount for tailoring therapies to individual patients. Tissue-based genomic profiling plays a pivotal role in this context, unraveling the complex genomic landscape within cancerous tissues and providing clinicians with invaluable insights into specific mutations and biomarkers. Oncologists, armed with the data from genomic profiling, can make more informed decisions regarding the selection of targeted therapies and immunotherapies.

Identifying actionable mutations allows for the customization of treatment regimens, optimizing the chances of therapeutic success while minimizing potential side effects. The ability to pinpoint genetic abnormalities associated with drug responsiveness or resistance empowers clinicians to choose interventions that align with the unique genetic profile of each patient. The application of tissue-based genomic profiling extends beyond initial diagnosis, influencing treatment monitoring and guiding decisions in the face of disease progression or recurrence. It facilitates real-time adjustments to therapeutic strategies, ensuring a dynamic and personalized approach to patient care.

The integration of tissue-based genomic profiling into clinical trials has become increasingly prevalent, aiding in the identification of suitable candidates based on their genetic makeup. This not only expedites the development of novel targeted therapies but also enhances the efficiency of clinical trial recruitment and outcomes. As therapeutic decision-making in oncology evolves towards a more individualized and precise paradigm, the global Tissue-Based Genomic Profiling market becomes an indispensable ally. Its role in shaping the future of cancer treatment is evident, promising improved patient outcomes, prolonged survival, and a paradigm shift towards more effective and tailored interventions in the fight against this complex and heterogeneous disease.

Key Market Challenges

Lack of Bioinformatics Expertise

The global Tissue-Based Genomic Profiling market encounters a significant challenge related to the demand for specialized bioinformatics expertise. As genomic technologies continue to evolve, the analysis and interpretation of vast and intricate genomic datasets generated through tissue-based profiling necessitate advanced computational skills and bioinformatics proficiency. Bioinformatics serves as the bridge between raw genomic data and clinically actionable insights, playing a pivotal role in deciphering the complex genetic alterations within tissue samples.

One of the primary challenges lies in the scarcity of professionals equipped with the necessary bioinformatics skills. The interdisciplinary nature of bioinformatics requires individuals with a deep understanding of both biological and computational concepts. Addressing this shortage involves initiatives to enhance bioinformatics education and training programs, ensuring a pipeline of skilled professionals capable of navigating the complexities of genomic data analysis. The rapid pace of technological advancements in genomics demands continuous updating of bioinformatics tools and algorithms. Bioinformaticians must stay abreast of evolving methodologies to effectively interpret genomic data and extract meaningful clinical information.

Collaboration between bioinformatics experts, clinicians, and researchers becomes paramount to leverage collective expertise and address the intricate challenges posed by genomic data analysis. Standardization of bioinformatics workflows and methodologies is another critical aspect. Establishing best practices and standardized protocols for genomic data analysis enhances reproducibility and ensures consistency across different laboratories and research institutions. This standardization is essential for fostering interoperability and comparability of genomic data, enabling seamless collaboration and data sharing. In addressing the bioinformatics expertise challenge, the global Tissue-Based Genomic Profiling market stands to benefit from investments in education, training programs, and collaborative initiatives. Empowering a workforce well-versed in both genomics and computational biology is pivotal for unlocking the full potential of tissue-based genomic profiling, ultimately translating complex genetic information into actionable insights for improved patient care.

Clinical Validation and Utility

Clinical validation and utility represent crucial aspects influencing the adoption and success of the global Tissue-Based Genomic Profiling market. While advancements in genomics have provided unprecedented insights into the genetic basis of diseases, demonstrating the clinical validity and utility of genomic profiling is imperative for its integration into routine clinical practice. Clinical validation involves establishing the accuracy and reliability of genomic profiling in identifying genetic alterations associated with specific diseases. Rigorous studies and trials are essential to validate the analytical and clinical performance of genomic profiling technologies, ensuring that the information derived is both accurate and clinically relevant. This validation is particularly crucial in oncology, where tissue-based genomic profiling plays a central role in guiding therapeutic decisions.

Beyond validation, demonstrating the utility of tissue-based genomic profiling in improving patient outcomes is essential. Clinical utility encompasses the impact of genomic information on treatment decisions, patient management, and overall healthcare outcomes. Robust evidence supporting the ability of genomic profiling to guide personalized treatment strategies, predict therapeutic responses, and influence clinical decision-making is vital for garnering acceptance among healthcare providers. The integration of tissue-based genomic profiling into clinical trials further contributes to its validation and utility. Incorporating genomic information in trial designs helps identify patient subgroups likely to respond to specific treatments, expediting drug development and personalized medicine approaches. Challenges arise in navigating the complex landscape of genomic data interpretation and translating genetic insights into actionable clinical strategies. Overcoming these challenges through collaborative research efforts, real-world evidence generation, and the development of standardized guidelines enhances the clinical validity and utility of tissue-based genomic profiling.

Key Market Trends

Advancements in Next-Generation Sequencing (NGS)

Advancements in Next-Generation Sequencing (NGS) have emerged as a cornerstone in revolutionizing the Global Tissue-Based Genomic Profiling market. NGS technologies represent a paradigm shift in genomic analysis, offering unprecedented speed, scalability, and cost-effectiveness compared to traditional sequencing methods. These advancements play a pivotal role in enhancing the depth and breadth of genomic profiling from tissue samples, thereby propelling precision medicine to new heights.

One key aspect of NGS progress is the continuous improvement in sequencing platforms, enabling the generation of vast amounts of data with higher accuracy and reduced turnaround times. The evolution of short-read and long-read sequencing technologies provides researchers and clinicians with versatile tools to explore various genomic complexities. Short-read sequencing facilitates the identification of single nucleotide variations, small insertions, and deletions, while long-read sequencing enhances the detection of structural variations and complex genomic rearrangements. The advent of targeted NGS panels and whole-exome sequencing has refined the focus on relevant genomic regions, allowing for more cost-effective and efficient profiling. This is particularly beneficial in the clinical setting, where targeted sequencing can provide actionable insights for therapeutic decision-making, especially in oncology.

NGS has also enabled the exploration of non-coding regions, such as introns and intergenic regions, unraveling the functional significance of these often-overlooked genomic areas. The comprehensive analysis of both coding and non-coding regions enhances our understanding of the intricate regulatory mechanisms underlying diseases, fostering a more holistic approach to tissue-based genomic profiling.

The integration of NGS with other omics data, such as transcriptomics and epigenomics, facilitates a multi-dimensional understanding of genomic alterations. This holistic approach enhances the identification of potential therapeutic targets and biomarkers for diverse diseases. As NGS technologies continue to evolve, innovations like single-cell sequencing and spatial transcriptomics further expand the capabilities of tissue-based genomic profiling. These advancements not only empower researchers with unprecedented resolution but also pave the way for more precise diagnostics, targeted therapies, and personalized treatment strategies in the dynamic landscape of precision medicine.

Growth in Liquid Biopsy Adoption

The adoption of liquid biopsy represents a transformative trend in the global Tissue-Based Genomic Profiling market, offering a paradigm shift in the way genetic information is obtained and monitored. Liquid biopsy involves the analysis of circulating biomarkers, such as cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and other nucleic acids present in bodily fluids, eliminating the need for traditional tissue biopsies. This less invasive approach holds particular significance in situations where obtaining tissue samples is challenging or impractical. In oncology, liquid biopsy has gained prominence as a powerful tool for real-time monitoring of tumor dynamics and genetic changes.

The ability to detect ctDNA shed by tumors into the bloodstream provides a comprehensive view of the genetic landscape, allowing for the identification of specific mutations and alterations. This dynamic monitoring is especially valuable for tracking treatment responses, assessing minimal residual disease, and detecting the emergence of resistance mutations over the course of therapy. Liquid biopsy's adoption extends beyond oncology, encompassing applications in prenatal testing, infectious disease diagnostics, and monitoring of organ transplant rejection. In prenatal testing, the analysis of cell-free fetal DNA in maternal blood offers insights into fetal chromosomal abnormalities without the need for invasive procedures. For infectious diseases, the detection of pathogen-derived nucleic acids provides a rapid and non-invasive method for diagnosing infections. The key advantages of liquid biopsy lie in its non-invasiveness, potential for serial monitoring, and the ability to capture the spatial and temporal heterogeneity of tumors.

Liquid biopsy facilitates the analysis of tumor-derived genetic material from metastatic sites that may be challenging to access through traditional biopsies. As liquid biopsy technologies continue to evolve, overcoming challenges related to sensitivity and specificity, they hold immense promise for complementing and, in some cases, even replacing tissue-based genomic profiling. The integration of liquid biopsy into routine clinical practice signifies a transformative trend, offering a more patient-friendly and adaptable approach to genomic analysis with broad implications for precision medicine.

Segmental Insights

Technology Insights

Based on Technology, the Sequencing Techniques emerged as the fastest growing segment in Global Tissue Based Genomic Profiling Market in 2023. This is attributed to its pivotal role in comprehensively analyzing genetic alterations. Next-generation sequencing (NGS) and other advanced sequencing technologies enable the precise identification of mutations, fusions, and other genomic variations in tissue samples. This detailed molecular profiling guides personalized treatment strategies in oncology, driving the prominence of this segment. As these techniques offer high throughput and accuracy, they are preferred for uncovering the complex genomic landscape of tissues in various cancers. The demand for in-depth genomic insights in clinical decision-making solidifies the Sequencing Techniques segment as a key driver in shaping the global landscape of tissue-based genomic profiling.

End User Insights

Based on end user, the hospitals & clinics segment dominated the Global Tissue Based Genomic Profiling Market in 2023. This is because the hospitals and clinics play a central role in the adoption of genomic profiling technologies for precision medicine, particularly in oncology. They possess the necessary infrastructure, expertise, and patient data, facilitating seamless integration of tissue-based genomic profiling into routine clinical practice. The increasing awareness of personalized medicine benefits among healthcare professionals and patients contributes to the segment's dominance. The accessibility and widespread utilization of these services in hospital and clinic settings solidify their leading position in the global market.

Regional Insights

The dominance of the North America segment in the global Tissue-Based Genomic Profiling market stems from various key factors that collectively contribute to its leadership position. North America boasts advanced healthcare infrastructure and substantial investments in research and development (R&D). The region's robust healthcare system enables widespread access to cutting-edge technologies and facilitates the adoption of innovative medical practices, including tissue-based genomic profiling.

The higher prevalence of chronic diseases in North America, such as cancer, cardiovascular diseases, and neurological disorders, has driven the demand for precision medicine. Tissue-based genomic profiling plays a pivotal role in precision medicine by providing personalized insights into the genetic makeup of individual patients, guiding targeted therapies and treatment strategies. North America is home to a myriad of leading biotechnology and pharmaceutical companies that are at the forefront of genomic research and innovation. These companies leverage their expertise and resources to develop and commercialize tissue-based genomic profiling technologies, further driving market growth.

The well-established regulatory framework in North America ensures the safety, efficacy, and quality of genomic profiling technologies. Regulatory agencies such as the Food and Drug Administration (FDA) in the United States play a crucial role in evaluating and approving genomic profiling assays, facilitating their rapid adoption and integration into clinical practice. Collaborative efforts between academic institutions, research organizations, and industry players contribute significantly to advancing genomic research and applications in North America. Collaborative research projects, clinical trials, and knowledge-sharing initiatives foster innovation and drive the development of novel genomic profiling technologies.

North America's leadership in the Tissue-Based Genomic Profiling market is underpinned by its advanced healthcare infrastructure, high disease burden, presence of leading industry players, robust regulatory environment, and collaborative research ecosystem. These factors collectively solidify North America's position as a frontrunner in driving the adoption and advancement of tissue-based genomic profiling technologies, shaping the future of precision medicine in the region and beyond.

Key Market Players

Foundation Medicine Inc

Illumina, Inc.

QIAGEN N.V.

Roche Diagnostics Corp

Thermo Fisher Scientific Inc.

Exact Sciences Corp

Personal Genome Diagnostics Inc.

Report Scope:

In this report, the Global Tissue Based Genomic Profiling Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Tissue Based Genomic Profiling Market, By Technology:

    Sequencing Techniques Immunohistochemistry Others

Tissue Based Genomic Profiling Market, By Application:

    Personalized Medicine Oncological Diagnostics Research

Tissue Based Genomic Profiling Market, By End user:

    Research Institutes Clinical Research Organizations Hospitals & Clinics Diagnostic Laboratories Pharmaceutical & Biotechnology Companies, Others

Tissue Based Genomic Profiling Market, By Region:

    North America

United States

Canada

Mexico

    Europe

France

United Kingdom

Italy

Germany

Spain

    Asia Pacific

China

India

Japan

Australia

South Korea

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Egypt

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Tissue Based Genomic Profiling Market.

Available Customizations:

Global Tissue Based Genomic Profiling Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Tissue Based Genomic Profiling Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Technology (Sequencing Techniques, Immunohistochemistry, Others)
    • 5.2.2. By Application (Personalized Medicine, Oncological Diagnostics, Research)
    • 5.2.3. By End-User (Research Institutes, Clinical Research Organizations, Hospitals & Clinics, Diagnostic Laboratories, Pharmaceutical & Biotechnology Companies, Others)
    • 5.2.4. By Region
    • 5.2.5. By Company (2023)
  • 5.3. Market Map
    • 5.3.1. By Technology
    • 5.3.2. By Application
    • 5.3.3. By End-User
    • 5.3.4. By Region

6. Asia Pacific Tissue Based Genomic Profiling Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Technology
    • 6.2.2. By Application
    • 6.2.3. By End-User
    • 6.2.4. By Country
  • 6.3. Asia Pacific: Country Analysis
    • 6.3.1. China Tissue Based Genomic Profiling Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Technology
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End-User
    • 6.3.2. India Tissue Based Genomic Profiling Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Technology
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End-User
    • 6.3.3. Australia Tissue Based Genomic Profiling Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Technology
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End-User
    • 6.3.4. Japan Tissue Based Genomic Profiling Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Technology
        • 6.3.4.2.2. By Application
        • 6.3.4.2.3. By End-User
    • 6.3.5. South Korea Tissue Based Genomic Profiling Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Technology
        • 6.3.5.2.2. By Application
        • 6.3.5.2.3. By End-User

7. Europe Tissue Based Genomic Profiling Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology
    • 7.2.2. By Application
    • 7.2.3. By End-User
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Tissue Based Genomic Profiling Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Technology
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End-User
    • 7.3.2. Germany Tissue Based Genomic Profiling Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Technology
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End-User
    • 7.3.3. Spain Tissue Based Genomic Profiling Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Technology
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End-User
    • 7.3.4. Italy Tissue Based Genomic Profiling Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Technology
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End-User
    • 7.3.5. United Kingdom Tissue Based Genomic Profiling Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Technology
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End-User

8. North America Tissue Based Genomic Profiling Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology
    • 8.2.2. By Application
    • 8.2.3. By End-User
    • 8.2.4. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Tissue Based Genomic Profiling Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End-User
    • 8.3.2. Mexico Tissue Based Genomic Profiling Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End-User
    • 8.3.3. Canada Tissue Based Genomic Profiling Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End-User

9. South America Tissue Based Genomic Profiling Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology
    • 9.2.2. By Application
    • 9.2.3. By End-User
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Tissue Based Genomic Profiling Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End-User
    • 9.3.2. Argentina Tissue Based Genomic Profiling Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End-User
    • 9.3.3. Colombia Tissue Based Genomic Profiling Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End-User

10. Middle East and Africa Tissue Based Genomic Profiling Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Technology
    • 10.2.2. By Application
    • 10.2.3. By End-User
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Tissue Based Genomic Profiling Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End-User
    • 10.3.2. Saudi Arabia Tissue Based Genomic Profiling Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End-User
    • 10.3.3. UAE Tissue Based Genomic Profiling Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End-User
    • 10.3.4. Egypt Tissue Based Genomic Profiling Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Technology
        • 10.3.4.2.2. By Application
        • 10.3.4.2.3. By End-User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. Global Tissue Based Genomic Profiling Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Foundation Medicine Inc
    • 15.1.1. Business Overview
    • 15.1.2. Company Snapshot
    • 15.1.3. Products & Services
    • 15.1.4. Financials (In case of listed)
    • 15.1.5. Recent Developments
    • 15.1.6. SWOT Analysis
  • 15.2. Illumina, Inc.
  • 15.3. QIAGEN N.V.
  • 15.4. Roche Diagnostics Corp
  • 15.5. Thermo Fisher Scientific Inc.
  • 15.6. Exact Sciences Corp
  • 15.7. Personal Genome Diagnostics Inc.

16. Strategic Recommendations

17. About Us & Disclaimer