封面
市場調查報告書
商品編碼
1493514

雷射捕捉顯微切割市場 - 全球產業規模、佔有率、趨勢、機會和預測,按產品、系統類型、應用、最終用戶、地區和競爭細分,2019-2029F

Laser Capture Microdissection Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Product, By System Types, By Application, By End User, By Region, and By Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 182 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023 年,全球雷射捕獲顯微切割市場價值為1.5981 億美元,預計到2029 年,該市場將以10.74% 的複合年成長率穩步成長。的尖端技術研究在直接顯微鏡可視化下從複雜的生物樣本中精確分離和收集特定細胞或組織區域。它使研究人員能夠選擇性地收穫目標細胞或感興趣的區域,同時保留其分子完整性以進行下游分析,例如基因組、轉錄組、蛋白質組或形態學研究。第一步涉及準備用於顯微切割的生物樣品。這可能包括組織切片、固定、包埋和染色,以可視化細胞形態並在顯微鏡下識別目標細胞或感興趣區域。將準備好的樣本安裝在與 LCM 系統相容的專用顯微鏡載玻片或膜上。將玻片放置在顯微鏡載物台上,使用光學顯微鏡或螢光成像對目標細胞或組織區域進行可視化。

市場概況
預測期 2025-2029
2023 年市場規模 1.5981億美元
2029 年市場規模 33156萬美元
2024-2029 年複合年成長率 10.74%
成長最快的細分市場 軟體和服務
最大的市場 北美洲

一旦識別出目標細胞或區域,就會使用電腦控制的光學元件將聚焦雷射光束精確地引導到樣品的選定區域。雷射能量引起樣本的局部加熱和熔化,從而可以精確切割目標細胞或組織區域並將其與周圍組織分離。分離的細胞或組織碎片被捕獲並黏附到專門的收集裝置上,例如熱塑性薄膜或黏合蓋。然後將收集裝置從顯微鏡載物台上取下以進行進一步處理或分析。根據研究目標和實驗要求,分離的細胞或組織樣本可以進行各種下游分析。這可能包括 DNA 定序、RNA 表達譜、蛋白質分析、組織學染色或電子顯微鏡,以研究分子特徵、細胞功能和病理特徵。

雷射捕獲顯微切割技術的不斷進步提高了儀器的性能、精度和易用性。紅外線雷射、自動樣品處理系統以及整合成像和分析軟體等創新提高了 LCM 系統的效率和功能,推動了研究實驗室、學術機構和臨床環境的採用。單細胞分析已成為研究生物系統中細胞異質性、細胞間相互作用和稀有細胞群的強大工具。雷射捕獲顯微切割可以從複雜的組織樣本中分離和分析單個細胞或小細胞簇,使研究人員能夠探索不同的細胞類型,識別細胞亞群,並發現新的生物學見解。雷射捕獲顯微切割可應用於廣泛的研究領域,包括腫瘤學、神經科學、發育生物學、傳染病和法醫學。研究人員利用 LCM 技術解剖複雜的組織樣本、研究基因表現模式、分析蛋白質譜並研究疾病機制,為基礎科學和臨床研究的進步做出貢獻。

主要市場促進因素

技術進步

對單細胞分析的日益關注

擴大生物醫學研究中的應用

主要市場挑戰

設備成本

與下游分析的兼容性有限

主要市場趨勢

更加重視樣品品質和完整性

細分市場洞察

產品洞察

系統類型見解

區域洞察

目錄

第 1 章:產品概述

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:客戶之聲

第 5 章:全球雷射捕獲顯微切割市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依產品(消耗品、試劑和培養基、檢測試劑盒、儀器、軟體和服務)
    • 依系統類型(紫外線 LCM、紅外線 LCM、紫外線和紅外線 LCM、免疫螢光 LCM)
    • 按應用(研究與發展、分子生物學、細胞生物學、法醫學、診斷、其他應用)
    • 按最終用戶(學術和政府研究機構、醫院、製藥和生物技術公司、合約研究組織 (CROS) 等)
    • 按地區
    • 按公司分類 (2023)
  • 市場地圖

第 6 章:北美雷射捕獲顯微切割市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依系統類型
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第 7 章:歐洲雷射捕獲顯微切割市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依系統類型
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 歐洲:國家分析
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙

第 8 章:亞太地區雷射捕捉顯微切割市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依系統類型
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

第 9 章:南美洲雷射捕獲顯微切割市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依系統類型
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 10 章:中東和非洲雷射捕獲顯微切割市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依系統類型
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:市場動態

  • 促進要素
  • 挑戰

第 12 章:市場趨勢與發展

  • 併購(如有)
  • 產品發布(如有)
  • 最近的發展

第 13 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第14章:競爭格局

  • Danaher Corporation
  • Thermo Fisher Scientific, Inc.
  • Carl Zeiss AG
  • DENOVA Sciences Pte Ltd.
  • Indivumed GmbH
  • Promega Corporation
  • Precision MicroFab LLC
  • Avant Diagnostics, Inc.
  • MIA Cellavie Inc.
  • CaresBio Laboratory LLC
  • Bio-Rad Laboratories, Inc

第 15 章:策略建議

第16章調查會社について,免責事項

簡介目錄
Product Code: 24053

Global Laser Capture Microdissection Market was valued at USD 159.81 million in 2023 and is accepted to grow with an steady growth in the forecast period at a CAGR of 10.74% through 2029. Laser Capture Microdissection (LCM) is a cutting-edge technology used in biomedical research to precisely isolate and collect specific cells or tissue regions from complex biological samples under direct microscopic visualization. It enables researchers to selectively harvest target cells or areas of interest while preserving their molecular integrity for downstream analysis, such as genomic, transcriptomic, proteomic, or morphological studies. The first step involves preparing the biological sample for microdissection. This may include tissue sectioning, fixation, embedding, and staining to visualize the cellular morphology and identify the target cells or regions of interest under a microscope. The prepared sample is mounted on a specialized microscope slide or membrane, which is compatible with the LCM system. The slide is placed on the microscope stage, and the target cells or tissue regions are visualized using light microscopy or fluorescence imaging.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 159.81 Million
Market Size 2029USD 331.56 Million
CAGR 2024-202910.74%
Fastest Growing SegmentSoftware and Services
Largest MarketNorth America

Once the target cells or regions are identified, a focused laser beam is precisely directed onto the selected area of the sample using computer-controlled optics. The laser energy induces localized heating and melting of the sample, allowing for the precise cutting and detachment of the target cells or tissue regions from the surrounding tissue. The detached cells or tissue fragments are captured and adhered to a specialized collection device, such as a thermoplastic film or adhesive cap. The collection device is then removed from the microscope stage for further processing or analysis. The isolated cells or tissue samples can be subjected to various downstream analyses, depending on the research objectives and experimental requirements. This may include DNA sequencing, RNA expression profiling, protein analysis, histological staining, or electron microscopy to investigate molecular signatures, cellular functions, and pathological features.

Continuous advancements in laser capture microdissection technology have improved instrument performance, precision, and ease of use. Innovations such as infrared lasers, automated sample handling systems, and integrated imaging and analysis software enhance the efficiency and capabilities of LCM systems, driving adoption across research laboratories, academic institutions, and clinical settings. Single-cell analysis has emerged as a powerful tool for studying cellular heterogeneity, cell-to-cell interactions, and rare cell populations in biological systems. Laser capture microdissection allows for the isolation and analysis of individual cells or small cell clusters from complex tissue samples, enabling researchers to explore diverse cell types, identify cellular subpopulations, and uncover novel biological insights. Laser capture microdissection finds applications across a wide range of research areas, including oncology, neuroscience, developmental biology, infectious diseases, and forensic science. Researchers use LCM technology to dissect complex tissue samples, study gene expression patterns, analyze protein profiles, and investigate disease mechanisms, contributing to advancements in basic science and clinical research.

Key Market Drivers

Advancements in Technology

Technological advancements have led to the development of laser capture microdissection systems with higher precision and accuracy in isolating target cells or tissue regions. Enhanced laser optics, microdissection platforms, and software algorithms enable researchers to precisely dissect cells or tissue structures with minimal damage to surrounding areas, ensuring high-quality samples for downstream analysis. Modern LCM systems incorporate advanced automation features and user-friendly interfaces that streamline experimental workflows and improve operational efficiency. Automated sample handling, image recognition algorithms, and robotic manipulation enable researchers to process samples more efficiently, reduce manual intervention, and increase sample throughput, thereby accelerating research and data generation. Integration of laser capture microdissection systems with downstream molecular analysis platforms, such as PCR, microarrays, next-generation sequencing (NGS), and mass spectrometry, enhances the capabilities of LCM technology for comprehensive molecular profiling studies. Seamless integration facilitates sample transfer, data analysis, and result interpretation, enabling researchers to extract valuable insights from complex biological samples.

Technological innovations have expanded the application areas of laser capture microdissection beyond traditional research fields, such as cancer biology and neuroscience, to include emerging areas such as single-cell analysis, spatial transcriptomics, and 3D tissue imaging. These advancements enable researchers to explore new research questions, uncover novel biomarkers, and gain deeper insights into complex biological processes and disease mechanisms. Miniaturization of LCM systems and the development of portable devices have increased accessibility to laser capture microdissection technology in diverse research settings, including academic laboratories, clinical research facilities, and field-based studies.

Compact and portable LCM systems offer flexibility in experimental design, sample collection, and on-site analysis, empowering researchers to conduct studies in remote or resource-limited environments. Modern laser capture microdissection systems feature customizable configurations and modular designs that cater to the specific needs and preferences of researchers. Modular components, interchangeable optics, and customizable software interfaces allow users to adapt LCM systems to different experimental requirements, sample types, and research applications, enhancing versatility and usability in diverse research settings. This factor will help in the development of the Global Laser Capture Microdissection Market.

Growing Focus on Single-Cell Analysis

Laser capture microdissection allows researchers to precisely isolate individual cells or small cell clusters from complex tissue samples with spatial precision. By targeting specific cells of interest, researchers can dissect and collect cells based on morphological, phenotypic, or spatial characteristics, enabling downstream molecular analysis at the single-cell level. Laser capture microdissection preserves the integrity and viability of isolated cells during the microdissection process. By minimizing mechanical trauma and contamination, LCM technology ensures that isolated cells retain their molecular signatures, gene expression profiles, and functional properties, providing accurate insights into cellular biology and disease mechanisms. Laser capture microdissection enhances the sensitivity and specificity of single-cell analysis by minimizing sample contamination and background noise. By isolating target cells from adjacent tissue regions or cell populations, LCM technology enables researchers to focus exclusively on the molecular signatures and biological features of individual cells, improving the accuracy and reliability of downstream analyses.

Laser capture microdissection enables multiplexed molecular profiling of individual cells, allowing researchers to simultaneously analyze multiple biomarkers, gene expression patterns, and signaling pathways within heterogeneous cell populations. By combining LCM with advanced molecular techniques, such as RNA sequencing, immunohistochemistry, and proteomics, researchers can unravel complex cellular interactions and identify key regulatory mechanisms underlying disease progression and treatment response. Single-cell analysis facilitated by laser capture microdissection holds significant implications for personalized medicine and precision therapeutics.

By characterizing the molecular profiles of individual cells within patient samples, clinicians can tailor treatment strategies, predict treatment outcomes, and monitor disease progression with greater precision and efficacy, ultimately improving patient care and clinical outcomes. Ongoing advancements in laser capture microdissection technology, including improved instrument performance, automation capabilities, and integration with downstream analysis platforms, further drive the demand for LCM technology in single-cell analysis applications. These technological innovations enhance the efficiency, throughput, and scalability of single-cell analysis workflows, empowering researchers to address complex biological questions and translational challenges in biomedical research and clinical practice. This factor will pace up the demand of the Global Laser Capture Microdissection Market.

Expanding Applications in Biomedical Research

Biomedical research increasingly recognizes the importance of cellular heterogeneity in various diseases and biological processes. Laser Capture Microdissection enables researchers to precisely isolate specific cell populations from heterogeneous samples, allowing for in-depth analysis of gene expression, protein profiles, and cellular functions within distinct cell subsets. In oncology, laser capture microdissection facilitates the identification of cancer-specific biomarkers, tumor heterogeneity, and molecular pathways driving disease progression. By isolating tumor cells from surrounding stroma or normal tissue, researchers can elucidate critical molecular alterations and identify potential targets for diagnostic and therapeutic interventions. LCM plays a crucial role in neuroscience research by enabling the isolation of neurons, glial cells, and other neural populations from brain tissue. This allows for the study of neurodegenerative diseases, synaptic plasticity, and neural circuitry at the cellular level, leading to insights into disease mechanisms and the development of novel treatments.

Laser Capture Microdissection is increasingly used to study host-pathogen interactions and immune responses in infectious diseases. By isolating infected cells or specific immune cell subsets from tissue samples, researchers can investigate pathogen invasion, host defense mechanisms, and immune evasion strategies, ultimately informing the development of vaccines and therapeutics. LCM facilitates the study of developmental processes and tissue regeneration by isolating specific cell types during embryogenesis, organogenesis, and wound healing. Researchers can analyze gene expression patterns, signaling pathways, and cellular interactions to elucidate the molecular mechanisms underlying tissue development, regeneration, and repair. In the era of personalized medicine, laser capture microdissection enables researchers to analyze patient-derived samples and identify individualized treatment strategies based on molecular profiling and biomarker discovery.

By integrating laser capture microdissection with genomic, transcriptomic, and proteomic analyses, researchers can tailor therapeutic interventions to patients' unique genetic and molecular profiles, improving treatment efficacy and patient outcomes. Laser Capture Microdissection is instrumental in drug discovery and target validation studies by providing insights into drug response mechanisms, resistance mechanisms, and target expression profiles within specific cell populations. By isolating drug-resistant cells or target-expressing cells from tissue samples, researchers can validate drug targets, assess drug efficacy, and optimize therapeutic strategies for clinical translation. This factor will accelerate the demand of the Global Laser Capture Microdissection Market.

Key Market Challenges

Cost of Equipment

Laser Capture Microdissection instruments and systems can be expensive to acquire, with prices ranging from tens of thousands to hundreds of thousands of dollars depending on the model and specifications. The high initial investment required to purchase laser capture microdissection equipment can pose a barrier to entry for smaller research labs, academic institutions, and facilities with limited budgets. In addition to the initial purchase cost, laser capture microdissection systems often require ongoing maintenance, calibration, and servicing to ensure optimal performance and reliability. These operating expenses, including the costs of consumables, reagents, and accessories, can further strain limited research budgets and resources, particularly in academic and non-profit settings.

The total cost of ownership (TCO) of laser capture microdissection equipment extends beyond the initial purchase price and includes expenses associated with instrument maintenance, training, technical support, and upgrades over the equipment's lifespan. The cumulative TCO of laser capture microdissection systems can be substantial, making it challenging for research institutions to justify the investment and allocate resources effectively. Research funding limitations and budget constraints restrict the ability of research labs and institutions to invest in expensive capital equipment such as laser capture microdissection systems. Competition for limited funding sources, declining research budgets, and uncertain economic conditions further exacerbate the financial challenges associated with acquiring and maintaining laser capture microdissection equipment.

Limited Compatibility with Downstream Analysis

Incompatibility between laser capture microdissection systems and downstream analysis platforms can result in data loss, sample contamination, or experimental artifacts. Differences in sample handling, storage conditions, and processing protocols may compromise the integrity of captured samples and adversely affect the quality and reliability of downstream analyses, such as genomic, transcriptomic, or proteomic profiling. Incompatible laser capture microdissection and downstream analysis workflows can lead to workflow disruptions and delays in research projects. Researchers may encounter technical challenges, protocol inconsistencies, or data transfer issues when transitioning from sample collection and preparation using laser capture microdissection to subsequent molecular or cellular analyses, impeding progress, and hindering data interpretation.

Laser capture microdissection systems and downstream analysis platforms may utilize proprietary formats, software interfaces, or data formats that are not compatible with each other. This lack of interoperability restricts the seamless exchange of data, metadata, and analytical results between laser capture microdissection instruments and downstream analysis tools, complicating data integration, interpretation, and collaboration among researchers. laser capture microdissection -generated data often require specialized bioinformatics tools, computational algorithms, and analytical workflows for interpretation and visualization. Incompatibility with existing data analysis pipelines or software platforms may necessitate custom solutions, additional training, or expertise in bioinformatics and data science, posing challenges for researchers with limited computational resources or expertise.

Key Market Trends

Increasing Focus on Sample Quality and Integrity

There is a growing emphasis on improving the precision of laser capture microdissection techniques to ensure the accurate isolation of target cells or tissue regions while minimizing damage to surrounding structures. Advanced laser optics, imaging systems, and microdissection platforms enable researchers to achieve higher spatial resolution and finer control over sample collection, enhancing the quality and integrity of captured samples. Maintaining sample purity and minimizing contamination is paramount in laser capture microdissection to prevent cross-contamination between different cell populations or tissue compartments. By implementing stringent sample preparation protocols, sterile handling procedures, and contamination control measures, researchers can preserve sample integrity and minimize the risk of experimental artifacts or false-positive results in downstream analyses.

Optimizing tissue fixation and staining protocols is essential for preserving cellular morphology, antigenicity, and nucleic acid integrity during laser capture microdissection. By selecting appropriate fixatives, staining reagents, and labeling methods, researchers can enhance tissue contrast, improve cell visualization, and facilitate accurate identification and isolation of target cells within complex tissue specimens. Validating the molecular integrity of captured samples is critical for ensuring the reliability and reproducibility of downstream molecular analyses, such as genomic, transcriptomic, and proteomic profiling. Quality control assays, RNA integrity assessment, and validation experiments help confirm the preservation of RNA, DNA, and protein molecules in laser capture microdissection samples, providing assurance of data quality and reliability.

Segmental Insights

Product Insights

The Reagents and Media segment is projected to experience significant dominance in the Global Laser Capture Microdissection Market during the forecast period. As laser capture microdissection technology becomes more widely adopted in research laboratories and academic institutions worldwide, there is a corresponding rise in the demand for reagents and media specifically designed for LCM applications. These specialized reagents and media are essential for sample preparation, staining, and preservation during the microdissection process. Laser capture microdissection is used across a wide range of research areas, including cancer biology, neuroscience, developmental biology, and infectious diseases. Each application requires specific reagents and media formulations optimized for tissue fixation, staining protocols, and nucleic acid preservation. The diversification of LCM applications drives the development and commercialization of new reagents and media products tailored to meet the evolving needs of researchers in various fields.

Ongoing advancements in LCM technology and instrumentation have led to the development of more efficient and user-friendly systems with enhanced capabilities. These advancements drive the demand for complementary reagents and media that can maximize the performance and reliability of LCM workflows. Manufacturers are continually innovating to develop reagents and media formulations that improve sample quality, increase throughput, and streamline experimental protocols. Single-cell analysis has emerged as a powerful tool in biomedical research for studying cellular heterogeneity, cell-to-cell interactions, and rare cell populations. Laser capture microdissection enables the isolation of individual cells or small cell clusters from complex tissue samples for downstream molecular analysis. Reagents and media play a critical role in preserving cell morphology, RNA integrity, and protein expression levels during the microdissection and sample preparation process, making them indispensable components of single-cell analysis workflows.

System Types Insights

The Infrared LCM segment is projected to experience significant growth in the Global Laser Capture Microdissection Market during the forecast period. Infrared (IR) lasers offer superior tissue penetration compared to ultraviolet (UV) lasers traditionally used in LCM systems. IR lasers can penetrate deeper into tissue samples without causing damage to adjacent structures, enabling the precise isolation of target cells or tissue regions embedded within complex tissue architectures. Infrared laser microdissection minimizes the risk of sample degradation and photodamage by reducing exposure to harmful UV radiation. This preservation of sample integrity allows researchers to capture high-quality RNA, DNA, proteins, and other biomolecules for downstream molecular analysis without compromising data quality or reliability.

The use of infrared lasers broadens the application range of laser capture microdissection to include a wider variety of tissue types, including dense and heavily pigmented samples. IR LCM systems can effectively capture cells from challenging tissue specimens, such as brain tissue, melanoma, and other heavily pigmented tissues, which may be difficult to dissect using conventional UV-based LCM platforms. Infrared laser capture microdissection is compatible with a variety of downstream molecular analysis techniques, including PCR, microarray analysis, next-generation sequencing (NGS), and mass spectrometry. This compatibility allows researchers to perform comprehensive molecular profiling and biomarker discovery studies using samples isolated with IR LCM systems, thereby facilitating the elucidation of disease mechanisms and identification of therapeutic targets.

Regional Insights

North America emerged as the dominant player in the Global Laser Capture Microdissection Market in 2023. North America boasts a robust infrastructure for research and development, with well-established academic institutions, research centers, and biotechnology companies. The region's strong emphasis on scientific innovation and technological advancement creates fertile ground for the adoption and utilization of cutting-edge technologies like laser capture microdissection.

The United States, in particular, allocates a significant portion of its GDP to healthcare spending. This substantial investment fuels research initiatives and drives demand for advanced tools and technologies in biomedical research, including laser capture microdissection systems. Many prominent manufacturers of laser capture microdissection instruments and systems are based in North America. These companies leverage the region's skilled workforce, infrastructure, and market demand to develop and market their products, further consolidating North America's position as a leader in the global LCM market.

Key Market Players

Danher Corporation

Thermo Fisher Scientific, Inc.

Carl Zeiss AG

DENOVA Sciences Pte Ltd.

Indivumed GmbH

Promega Corporation

Precision MicroFab LLC

Avant Diagnostics, Inc.

MIA Cellavie Inc.

CaresBio Laboratory LLC

Bio-Rad Laboratories, Inc

Report Scope:

In this report, the Global Laser Capture Microdissection Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Laser Capture Microdissection Market, By Product:

    Consumables Reagents and Media Assay Kits Instruments Software and Services

Laser Capture Microdissection Market, By System Types:

    Ultraviolet LCM Infrared LCM Ultraviolet and Infrared LCM Immunofluorescence LCM

Laser Capture Microdissection Market, By Application:

    Research and Development Molecular Biology Cell Biology Forensic Science Diagnostics Other Applications

Laser Capture Microdissection Market, By End User:

    Academic and Government Research Institutes Hospitals Pharmaceutical and Biotechnology Companies Contract Research Organizations (CROS) Others

Laser Capture Microdissection Market, By Region:

    North America

United States

Canada

Mexico

    Europe

Germany

United Kingdom

France

Italy

Spain

    Asia-Pacific

China

Japan

India

Australia

South Korea

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Laser Capture Microdissection Market.

Available Customizations:

Global Laser Capture Microdissection market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Laser Capture Microdissection Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product (Consumables, Reagents and Media, Assay Kits, Instruments, Software and Services)
    • 5.2.2. By System Types (Ultraviolet LCM, Infrared LCM, Ultraviolet and Infrared LCM, Immunofluorescence LCM)
    • 5.2.3. By Application (Research and Development, Molecular Biology, Cell Biology, Forensic Science, Diagnostics, Other Applications)
    • 5.2.4. By End User (Academic and Government Research Institutes, Hospitals, Pharmaceutical and Biotechnology Companies, Contract Research Organizations (CROS), others)
    • 5.2.5. By Region
    • 5.2.6. By Company (2023)
  • 5.3. Market Map

6. North America Laser Capture Microdissection Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product
    • 6.2.2. By System Types
    • 6.2.3. By Application
    • 6.2.4. By End User
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Laser Capture Microdissection Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Product
        • 6.3.1.2.2. By System Types
        • 6.3.1.2.3. By Application
        • 6.3.1.2.4. By End User
    • 6.3.2. Canada Laser Capture Microdissection Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Product
        • 6.3.2.2.2. By System Types
        • 6.3.2.2.3. By Application
        • 6.3.2.2.4. By End User
    • 6.3.3. Mexico Laser Capture Microdissection Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Product
        • 6.3.3.2.2. By System Types
        • 6.3.3.2.3. By Application
        • 6.3.3.2.4. By End User

7. Europe Laser Capture Microdissection Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product
    • 7.2.2. By System Types
    • 7.2.3. By Application
    • 7.2.4. By End User
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Laser Capture Microdissection Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Product
        • 7.3.1.2.2. By System Types
        • 7.3.1.2.3. By Application
        • 7.3.1.2.4. By End User
    • 7.3.2. United Kingdom Laser Capture Microdissection Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Product
        • 7.3.2.2.2. By System Types
        • 7.3.2.2.3. By Application
        • 7.3.2.2.4. By End User
    • 7.3.3. Italy Laser Capture Microdissection Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Product
        • 7.3.3.2.2. By System Types
        • 7.3.3.2.3. By Application
        • 7.3.3.2.4. By End User
    • 7.3.4. France Laser Capture Microdissection Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Product
        • 7.3.4.2.2. By System Types
        • 7.3.4.2.3. By Application
        • 7.3.4.2.4. By End User
    • 7.3.5. Spain Laser Capture Microdissection Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Product
        • 7.3.5.2.2. By System Types
        • 7.3.5.2.3. By Application
        • 7.3.5.2.4. By End User

8. Asia-Pacific Laser Capture Microdissection Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product
    • 8.2.2. By System Types
    • 8.2.3. By Application
    • 8.2.4. By End User
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Laser Capture Microdissection Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Product
        • 8.3.1.2.2. By System Types
        • 8.3.1.2.3. By Application
        • 8.3.1.2.4. By End User
    • 8.3.2. India Laser Capture Microdissection Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Product
        • 8.3.2.2.2. By System Types
        • 8.3.2.2.3. By Application
        • 8.3.2.2.4. By End User
    • 8.3.3. Japan Laser Capture Microdissection Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Product
        • 8.3.3.2.2. By System Types
        • 8.3.3.2.3. By Application
        • 8.3.3.2.4. By End User
    • 8.3.4. South Korea Laser Capture Microdissection Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Product
        • 8.3.4.2.2. By System Types
        • 8.3.4.2.3. By Application
        • 8.3.4.2.4. By End User
    • 8.3.5. Australia Laser Capture Microdissection Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Product
        • 8.3.5.2.2. By System Types
        • 8.3.5.2.3. By Application
        • 8.3.5.2.4. By End User

9. South America Laser Capture Microdissection Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product
    • 9.2.2. By System Types
    • 9.2.3. By Application
    • 9.2.4. By End User
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Laser Capture Microdissection Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Product
        • 9.3.1.2.2. By System Types
        • 9.3.1.2.3. By Application
        • 9.3.1.2.4. By End User
    • 9.3.2. Argentina Laser Capture Microdissection Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Product
        • 9.3.2.2.2. By System Types
        • 9.3.2.2.3. By Application
        • 9.3.2.2.4. By End User
    • 9.3.3. Colombia Laser Capture Microdissection Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Product
        • 9.3.3.2.2. By System Types
        • 9.3.3.2.3. By Application
        • 9.3.3.2.4. By End User

10. Middle East and Africa Laser Capture Microdissection Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Product
    • 10.2.2. By System Types
    • 10.2.3. By Application
    • 10.2.4. By End User
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Laser Capture Microdissection Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Product
        • 10.3.1.2.2. By System Types
        • 10.3.1.2.3. By Application
        • 10.3.1.2.4. By End User
    • 10.3.2. Saudi Arabia Laser Capture Microdissection Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Product
        • 10.3.2.2.2. By System Types
        • 10.3.2.2.3. By Application
        • 10.3.2.2.4. By End User
    • 10.3.3. UAE Laser Capture Microdissection Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Product
        • 10.3.3.2.2. By System Types
        • 10.3.3.2.3. By Application
        • 10.3.3.2.4. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Product

14. Competitive Landscape

  • 14.1. Danaher Corporation
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Thermo Fisher Scientific, Inc.
  • 14.3. Carl Zeiss AG
  • 14.4. DENOVA Sciences Pte Ltd.
  • 14.5. Indivumed GmbH
  • 14.6. Promega Corporation
  • 14.7. Precision MicroFab LLC
  • 14.8. Avant Diagnostics, Inc.
  • 14.9. MIA Cellavie Inc.
  • 14.10.CaresBio Laboratory LLC
  • 14.11.Bio-Rad Laboratories, Inc

15. Strategic Recommendations

16. About Us & Disclaimer