封面
市場調查報告書
商品編碼
1493601

腸道疾病檢測市場 - 全球產業規模、佔有率、趨勢、機會和預測,按疾病類型、最終用戶、地區和競爭細分,2019-2029F

Enteric Disease Testing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Disease Type, End User, by region, and Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 184 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023年全球腸道疾病檢測市場價值為39.8億美元,預計到2029年將在預測期內穩定成長,複合年成長率為4.69%。和腸。這些疾病通常由各種病原體引起,例如細菌、病毒和寄生蟲,可導致從輕微胃腸道不適到嚴重疾病的症狀。腸道病原體通常透過攝入傳播,通常是透過受污染的食物或水傳播。不良的衛生習慣也可能導致人際傳播,在某些情況下,腸道疾病可能會透過接觸受感染的動物或其環境而傳播。腸道疾病的嚴重程度可以從輕微的自限性到嚴重的危及生命。在某些情況下,腸道疾病會導致併發症,例如脫水、電解質失衡,在極端情況下還會導致器官衰竭。腸道疾病的持續時間因病原體而異。有些感染可能會在幾天內自行消退,而有些感染可能會變成慢性並持續數週甚至數月。

市場概況
預測期 2025-2029
2023 年市場規模 39.8億美元
2029 年市場規模 52.5億美元
2024-2029 年複合年成長率 4.69%
成長最快的細分市場 細菌性腸道疾病領域
最大的市場 北美洲

診斷技術的進步,特別是分子診斷和即時檢測的進步,提高了腸道疾病檢測的敏感度、特異性和速度。醫療保健提供者和公眾對腸道疾病早期診斷和管理重要性的認知不斷提高,推動了檢測的普及。更嚴格的食品安全法規和要求推動了透過檢測來識別和防止食源性病原體傳播的需求。對快速和即時診斷解決方案的需求一直在上升,特別是在偏遠和資源有限的環境中,及時診斷至關重要。新腸道病原體的出現以及流行病或大流行的可能性推動了對檢測和監測工作的投資。

主要市場促進因素

技術進步

食品安全法規不斷湧現

日益成長的公共衛生擔憂

主要市場挑戰

新出現的病原體和變種

樣品處理和儲存

主要市場趨勢

多重偵測

細分市場洞察

疾病類型見解

區域洞察

目錄

第 1 章:產品概述

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:客戶之聲

第 5 章:全球腸道疾病檢測市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依疾病類型(細菌性腸疾病、病毒性腸疾病、寄生蟲性腸疾病、輪狀病毒、諾羅病毒)
    • 按最終使用者(醫院和診所、診斷中心、其他)
    • 按地區
    • 按公司分類 (2023)
  • 市場地圖

第 6 章:亞太地區腸道疾病檢測市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依疾病類型
    • 按最終用戶
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 澳洲
    • 日本
    • 韓國

第 7 章:歐洲腸道疾病檢測市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依疾病類型
    • 按最終用戶
    • 按國家/地區
  • 歐洲:國家分析
    • 法國
    • 德國
    • 西班牙
    • 義大利
    • 英國

第 8 章:北美腸道疾病檢測市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依疾病類型
    • 按最終用戶
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 9 章:南美洲腸道疾病檢測市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依疾病類型
    • 按最終用戶
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 10 章:中東和非洲腸道疾病檢測市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依疾病類型
    • 按最終用戶
    • 按國家/地區
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:市場動態

  • 促進要素
  • 挑戰

第 12 章:市場趨勢與發展

  • 最近的發展
  • 產品發布
  • 併購

第 13 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第14章:競爭格局

  • Abbott Laboratories Ltd.
  • Becton Dickinson & Co
  • Biomerica Inc.
  • BIOMERIEUX SA
  • Bio-Rad Laboratories, Inc.
  • Cepheid
  • Coris BioConcept
  • DiaSorin SpA
  • Meridian Bioscience Inc.
  • Quest Diagnostics Incorporated

第 15 章:策略建議

第16章調查會社について,免責事項

簡介目錄
Product Code: 21131

Global Enteric Disease Testing Market was valued at USD 3.98 billion in 2023 and is anticipated to witness an steady growth in the forecast period with a CAGR of 4.69% through 2029. Enteric diseases are a group of illnesses that primarily affect the gastrointestinal tract, including the stomach and intestines. These diseases are typically caused by various pathogens, such as bacteria, viruses, and parasites, and they can lead to symptoms ranging from mild gastrointestinal discomfort to severe illness. Enteric pathogens are typically transmitted through ingestion, often via contaminated food or water. Person-to-person transmission can also occur through poor hygiene practices, and in some cases, enteric diseases may be transmitted through contact with infected animals or their environment. The severity of enteric diseases can range from mild and self-limiting to severe and life-threatening. In some cases, enteric diseases can lead to complications, such as dehydration, electrolyte imbalances, and, in extreme cases, organ failure. The duration of enteric diseases varies depending on the causative agent. Some infections may resolve on their own within a few days, while others can become chronic and persist for weeks or even months.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 3.98 Billion
Market Size 2029USD 5.25 Billion
CAGR 2024-20294.69%
Fastest Growing SegmentBacterial Enteric Diseases Segment
Largest MarketNorth America

Advances in diagnostic technologies, particularly in molecular diagnostics and point-of-care testing, have improved the sensitivity, specificity, and speed of enteric disease testing. Increasing awareness among healthcare providers and the public about the significance of early diagnosis and management of enteric diseases has driven testing uptake. Stricter food safety regulations and requirements have propelled the need for testing to identify and prevent the spread of foodborne pathogens. The demand for rapid and point-of-care testing solutions has been on the rise, especially in remote and resource-limited settings, where timely diagnosis is critical. The emergence of new enteric pathogens and the potential for epidemics or pandemics have driven investment in testing and surveillance efforts.

Key Market Drivers

Technological Advancements

Molecular techniques, such as Polymerase Chain Reaction (PCR) and real-time PCR, have revolutionized enteric disease testing. They enable the detection of specific DNA or RNA sequences of pathogens, offering high sensitivity and specificity. These methods allow for the identification of multiple pathogens in a single test, reducing the time required for diagnosis. Next-Generation Sequencing (NGS) technology has advanced the field by providing comprehensive genetic information about enteric pathogens. This has been particularly valuable for outbreak investigation, epidemiology, and understanding genetic variations in pathogens. Multiplex assays allow the simultaneous detection of multiple pathogens in a single test. They have significantly improved testing efficiency and reduce the number of samples required. Portable and easy-to-use Point-of-Care Testing (POCT) devices have been developed for enteric disease testing. These devices provide rapid results, making them suitable for use in remote or resource-limited settings.

Automation has streamlined the enteric disease testing process in clinical laboratories. Automated systems can handle sample processing, testing, and result reporting, reducing the risk of human error and increasing throughput. Advances in serological and immunoassay techniques, such as ELISA (Enzyme-Linked Immunosorbent Assay), have improved the detection of antibodies or antigens associated with enteric pathogens. These tests are essential for assessing previous exposure or vaccination status. The development of biosensors and nanotechnology has enabled the creation of highly sensitive and rapid diagnostic tools. These technologies can detect the presence of pathogens at very low concentrations. Microfluidic devices allow for the manipulation of small volumes of liquid, making them suitable for miniaturized and efficient testing platforms. They are particularly useful for point-of-care testing. AI and machine learning algorithms are being used to analyze test results and identify patterns in large datasets. This can aid in the interpretation of complex diagnostic information and provide insights into disease trends. Digital health platforms and telemedicine services are increasingly being used to transmit test results, allowing for remote consultation with healthcare providers and enhancing patient access to their diagnostic information.

Innovations in sample preservation and transportation technologies have extended the shelf life of samples and made it possible to transport them to testing facilities over longer distances. Technological advancements have allowed for the monitoring of environmental factors, such as water quality and food safety, which can impact the spread of enteric diseases. Genomic epidemiology combines genomics and epidemiology to track the spread of enteric pathogens, which is particularly valuable in understanding outbreaks and transmission patterns. Bioinformatics software and tools aid in the analysis and interpretation of genomic data, facilitating the identification of pathogen strains and genetic variations. This factor will help in the development of the Global Enteric Disease Testing Market.

Increasing Surge in Food Safety Regulations

Enteric diseases, often caused by bacterial, viral, or parasitic pathogens, can be transmitted through contaminated food and water. By testing food products for these pathogens, the risk of foodborne illnesses is reduced. Food safety regulations set by government agencies require food manufacturers and producers to meet specific standards for pathogen control. Compliance often involves routine testing for enteric pathogens to verify the safety of products. Rigorous food safety practices and testing contribute to consumer confidence in the safety of the food supply. Consumers are more likely to purchase and consume products from companies that adhere to food safety regulations. Food safety regulations aim to protect public health by minimizing the risk of foodborne outbreaks. Rapid detection and response to outbreaks are critical, and enteric disease testing helps identify the source of contamination.

Failure to comply with food safety regulations can lead to legal and financial consequences for food manufacturers and suppliers. To avoid liability, companies invest in testing to ensure their products meet safety standards. Many countries have stringent food safety regulations for imported food products. Compliance with these regulations is essential for companies engaged in international trade and export. Enteric disease testing helps meet these requirements. In the event of foodborne outbreaks or recalls, enteric disease testing is crucial for identifying the source of contamination. Rapid and accurate testing is necessary to prevent further distribution of contaminated products. Enteric disease testing extends beyond food products to environmental and facility monitoring. Testing surfaces, equipment, and production areas helps prevent cross-contamination.

By implementing enteric disease testing as part of their food safety programs, companies can proactively identify potential risks and take corrective actions to mitigate those risks. In addition to preventing foodborne illness, enteric disease testing supports quality assurance by ensuring the consistent quality of food products. The demand for food safety testing has driven innovation in testing methods, making them more sensitive, specific, and efficient. This innovation benefits both regulatory compliance and food safety. As the food supply chain becomes increasingly global, ensuring food safety is more complex. Enteric disease testing helps identify and control pathogens across international supply chains. This factor will pace up the demand of the Global Enteric Disease Testing Market.

Growing Public Health Concerns

Public health agencies and organizations continuously monitor and conduct surveillance of enteric diseases to detect outbreaks, track disease trends, and assess the impact of these diseases on the population. This data helps identify areas and populations at higher risk, prompting the need for testing. Early detection and containment of enteric disease outbreaks are critical to preventing widespread illness and transmission. Timely and accurate testing is essential in identifying and controlling outbreaks. Identifying individuals who may have been exposed to enteric pathogens is a key component of controlling the spread of these diseases. Testing is integral to contact tracing efforts, which are crucial in limiting further transmission. Public health authorities often promote vaccination against certain enteric diseases, such as typhoid and cholera. Testing may be used to determine vaccination status and the need for vaccination in specific populations. Public health officials assess the risk of enteric diseases in various settings, including healthcare facilities, schools, long-term care facilities, and communities. Testing helps identify and mitigate these risks.

Public health agencies monitor water and food safety to prevent the transmission of enteric diseases through contaminated water and food sources. Testing is a key component of this monitoring and risk reduction. Public health organizations run awareness and education campaigns to inform the public about enteric diseases, their symptoms, and prevention strategies. These campaigns often emphasize the importance of testing when symptoms are present. Public health concerns regarding the transmission of enteric diseases while traveling have prompted awareness and recommendations for travelers to seek testing before and after international trips. In the context of global health security, public health agencies and governments are vigilant about the potential spread of enteric pathogens. Rapid testing and response strategies are a part of preparedness and response plans.

When there is a suspected or confirmed case of an enteric disease, public health authorities conduct investigations to identify the source of infection and its potential impact on the community. Testing plays a central role in these investigations. Public health laboratories are involved in testing and monitoring efforts. These labs provide valuable data to epidemiologists and health officials to inform public health decisions. Public health concerns drive the allocation of resources to address enteric diseases, including funding for testing infrastructure and capacity building. Public health agencies are concerned with emergency preparedness for outbreaks, natural disasters, and bioterrorism events. Rapid testing is vital in these scenarios to ensure a prompt response. This factor will accelerate the demand of the Global Enteric Disease Testing Market.

Key Market Challenges

Emerging Pathogens and Variants

Emerging pathogens and their variants may have different genetic characteristics or unique virulence factors. Detecting and characterizing these variations can be challenging, as conventional testing methods may not effectively identify them. Traditional diagnostic tests, which are developed for known pathogens, may not perform well when applied to emerging or newly discovered pathogens. The accuracy of tests can be compromised if they are not designed to detect these novel pathogens. Emerging pathogens and variants can exhibit resistance to commonly used antibiotics, making accurate diagnosis even more critical. Failure to identify these pathogens can result in inappropriate treatment, contributing to the development of antimicrobial resistance. Emerging pathogens require close monitoring and surveillance to track their spread, prevalence, and genetic changes. Testing plays a crucial role in collecting data for epidemiological studies. Rapid identification and characterization of emerging pathogens are essential for controlling outbreaks and implementing effective public health measures to prevent further transmission.

Sample Handling and Storage

The risk of contamination during sample collection, handling, and storage is a primary concern. Even minor contamination can lead to false-positive or false-negative test results. Many enteric pathogens are sensitive to temperature. Inadequate temperature control during sample storage can lead to pathogen inactivation or overgrowth of contaminants, affecting the test results. Preserving the viability of enteric pathogens within the sample is essential for accurate testing. Preservation methods vary depending on the type of pathogen and the intended testing approach. Efficient logistics are required to ensure timely and appropriate transport of samples from the collection site to the testing facility. Delays or inadequate transportation can compromise the quality of samples. Depending on the type of testing, an adequate sample volume may be required. Collecting an insufficient volume can affect the sensitivity of the test and may necessitate recollection. Maintaining the proper storage conditions is crucial. For example, refrigeration is often needed to preserve the integrity of samples, but access to consistent refrigeration can be a challenge in some settings. Samples must be correctly labeled and identified to prevent mix-ups or confusion that could lead to erroneous test results. Over time, samples can degrade, leading to the loss of pathogen viability and making accurate testing impossible. Proper storage duration is essential to prevent sample degradation.

Key Market Trends

Multiplex Assays

Multiplex assays streamline the testing process by combining multiple tests into one, reducing the time and resources required for individual tests. Testing multiple targets in a single assay can provide faster results, which is crucial for timely diagnosis and patient management. Multiplex assays can detect a broad range of enteric pathogens, including bacteria, viruses, and parasites, in a single test. This comprehensive approach is valuable for diagnosing complex cases and outbreaks. Using a single sample for multiple tests reduces the need for additional specimen collection, preserving valuable samples for confirmatory or future testing. Laboratories can optimize their workforce by performing multiple tests in one run, leading to cost savings in terms of labor and resources. Multiplex assays contribute to resource efficiency, such as reduced consumption of reagents and consumables, making them more sustainable. The combination of multiple tests into one can enhance the overall accuracy and reliability of results. False negatives or positives can be minimized. Multiplex assays can be customized to detect specific combinations of pathogens, making them adaptable to local epidemiological needs.

Segmental Insights

Disease Type Insights

In 2023, the Global Enteric Disease Testing Market largest share was held by bacterial enteric diseases segment and is predicted to continue expanding over the coming years. Bacterial enteric diseases are widespread and can have significant public health implications. Diseases caused by bacteria like Salmonella, Escherichia coli (E. coli), and Campylobacter can result in outbreaks, severe illness, and even fatalities. This high prevalence and potential for severe outcomes make the testing for bacterial enteric diseases a top priority for healthcare systems. Many bacterial enteric diseases are foodborne illnesses, making them a focus of regulatory agencies, food safety organizations, and healthcare providers. Testing for these pathogens is crucial in identifying contaminated food sources and preventing outbreaks. Certain bacterial enteric diseases have epidemic potential, meaning they can quickly spread through communities or regions. Early and accurate detection is essential to control and manage outbreaks, which often garners significant attention and resources. Bacterial enteric disease testing has a long history of standardization and regulation. Many bacterial pathogens are well-established targets for diagnostic testing, and there are established protocols and methods in place for their detection. This standardization facilitates testing and regulatory approval. Bacterial enteric diseases can mimic the symptoms of other gastrointestinal conditions, making precise diagnosis vital for effective treatment. Clinicians rely on accurate diagnostic tests to guide patient care. Many countries have public health surveillance systems in place to monitor and report cases of bacterial enteric diseases. This surveillance relies on effective diagnostic testing to track the spread of infections and respond to outbreaks.

Regional Insights

The North America region dominates the Global Enteric Disease Testing Market in 2023. North America, particularly the United States and Canada, boasts highly developed healthcare infrastructure with advanced clinical laboratories and medical facilities. These facilities are well-equipped for comprehensive diagnostic testing, including enteric disease testing. The region is home to numerous leading healthcare and biotechnology companies, as well as prominent academic and research institutions. This fosters innovation in diagnostic technologies and methods for enteric disease testing. North America has stringent regulatory standards and quality control measures in place, ensuring that diagnostic tests meet high-quality and safety criteria. This encourages the development and adoption of reliable enteric disease testing methods. Both the United States and Canada have established public health programs and agencies dedicated to monitoring and controlling infectious diseases. These agencies often rely on advanced testing methods to carry out their surveillance and response efforts. North America experiences a notable burden of enteric diseases, including foodborne illnesses. This, coupled with the region's advanced healthcare system, creates a substantial demand for enteric disease testing.

Key Market Players

Abbott Laboratories Ltd.

Beckton Dickinson & Co.

Biomerica Inc.

BIOMERIEUX SA

Bio-Rad Laboratories, Inc.

Cepheid

Coris BioConcept

DiaSorin S.p.A.

Meridian Bioscience Inc.

Quest Diagnostics Incorporated

Report Scope:

In this report, the Global Enteric Disease Testing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Enteric Disease Testing Market, By Disease Type:

    Bacterial Enteric Diseases Viral Enteric Diseases Parasitic Enteric Diseases Rotavirus Norovirus

Enteric Disease Testing Market, By End-User:

    Hospitals & Clinics Diagnostic Centers Others

Enteric Disease Testing Market, By region:

    North America

United States

Canada

Mexico

    Asia-Pacific

China

India

South Korea

Australia

Japan

    Europe

Germany

France

United Kingdom

Spain

Italy

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Enteric Disease Testing Market.

Available Customizations:

Global Enteric Disease Testing Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Enteric Disease Testing Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Disease Type (Bacterial Enteric Diseases, Viral Enteric Diseases, Parasitic Enteric Diseases, Rotavirus, Norovirus)
    • 5.2.2. By End user (Hospitals & Clinics, Diagnostic Centers, Others)
    • 5.2.3. By Region
    • 5.2.4. By Company (2023)
  • 5.3. Market Map

6. Asia Pacific Enteric Disease Testing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Disease Type
    • 6.2.2. By End User
    • 6.2.3. By Country
  • 6.3. Asia Pacific: Country Analysis
    • 6.3.1. China Enteric Disease Testing Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Disease Type
        • 6.3.1.2.2. By End User
    • 6.3.2. India Enteric Disease Testing Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Disease Type
        • 6.3.2.2.2. By End User
    • 6.3.3. Australia Enteric Disease Testing Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Disease Type
        • 6.3.3.2.2. By End User
    • 6.3.4. Japan Enteric Disease Testing Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Disease Type
        • 6.3.4.2.2. By End User
    • 6.3.5. South Korea Enteric Disease Testing Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Disease Type
        • 6.3.5.2.2. By End User

7. Europe Enteric Disease Testing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Disease Type
    • 7.2.2. By End User
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Enteric Disease Testing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Disease Type
        • 7.3.1.2.2. By End User
    • 7.3.2. Germany Enteric Disease Testing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Disease Type
        • 7.3.2.2.2. By End User
    • 7.3.3. Spain Enteric Disease Testing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Disease Type
        • 7.3.3.2.2. By End User
    • 7.3.4. Italy Enteric Disease Testing Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Disease Type
        • 7.3.4.2.2. By End User
    • 7.3.5. United Kingdom Enteric Disease Testing Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Disease Type
        • 7.3.5.2.2. By End User

8. North America Enteric Disease Testing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Disease Type
    • 8.2.2. By End User
    • 8.2.3. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Enteric Disease Testing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Disease Type
        • 8.3.1.2.2. By End User
    • 8.3.2. Mexico Enteric Disease Testing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Disease Type
        • 8.3.2.2.2. By End User
    • 8.3.3. Canada Enteric Disease Testing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Disease Type
        • 8.3.3.2.2. By End User

9. South America Enteric Disease Testing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Disease Type
    • 9.2.2. By End User
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Enteric Disease Testing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Disease Type
        • 9.3.1.2.2. By End User
    • 9.3.2. Argentina Enteric Disease Testing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Disease Type
        • 9.3.2.2.2. By End User
    • 9.3.3. Colombia Enteric Disease Testing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Disease Type
        • 9.3.3.2.2. By End User

10. Middle East and Africa Enteric Disease Testing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Disease Type
    • 10.2.2. By End User
    • 10.2.3. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Enteric Disease Testing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Disease Type
        • 10.3.1.2.2. By End User
    • 10.3.2. Saudi Arabia Enteric Disease Testing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Disease Type
        • 10.3.2.2.2. By End User
    • 10.3.3. UAE Enteric Disease Testing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Disease Type
        • 10.3.3.2.2. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Product

14. Competitive Landscape

  • 14.1. Abbott Laboratories Ltd.
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (In case of listed companies)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Becton Dickinson & Co
  • 14.3. Biomerica Inc.
  • 14.4. BIOMERIEUX SA
  • 14.5. Bio-Rad Laboratories, Inc.
  • 14.6. Cepheid
  • 14.7. Coris BioConcept
  • 14.8. DiaSorin S.p.A.
  • 14.9. Meridian Bioscience Inc.
  • 14.10.Quest Diagnostics Incorporated

15. Strategic Recommendations

16. About Us & Disclaimer