封面
市場調查報告書
商品編碼
1510464

光網路和通訊市場 - 全球產業規模、佔有率、趨勢、機會和預測,按組件、技術、垂直領域、地區和競爭細分,2019-2029F

Optical Networking and Communications Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Technology, By Vertical, By Region, and Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023 年,全球光網路和通訊市場估值為261.7 億美元,預計到2029 年,預測期內將實現強勁成長,複合年成長率為9.21%。通訊至關重要的技術和解決方案。光網路利用光脈衝傳輸資料,在實現全球高速、可靠且可擴展的通訊網路方面發揮著至關重要的作用。隨著雲端運算、視訊串流和 IoT(物聯網)等應用驅動的對更快資料傳輸、增加頻寬和無縫連接的需求激增,市場持續快速發展。光纖、網路設備和軟體定義網路 (SDN) 的創新正在重塑企業和個人在日益數位化和互聯的世界中連接、通訊和營運的方式。

市場概況
預測期 2025-2029
2023 年市場規模 261.7億美元
2029 年市場規模 448億美元
2024-2029 年複合年成長率 9. 21%
成長最快的細分市場 資訊科技與電信
最大的市場 亞太地區

主要市場促進因素

對高速網路和頻寬的需求不斷成長

雲端運算和資料中心的日益採用

物聯網 (IoT) 與智慧科技的興起

主要市場挑戰

資本強度和基礎設施投資

監管和政策障礙

光網路的安全問題

主要市場趨勢

向更高資料速率和容量演進

軟體定義網路 (SDN) 與網路功能虛擬化 (NFV) 的整合

細分市場洞察

垂直洞察

區域洞察

目錄

第 1 章:服務概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 研究年份
    • 主要市場區隔

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:COVID-19 對全球光網路與通訊市場的影響

第 5 章:客戶之聲

第 6 章:全球光網路與通訊市場概述

第 7 章:全球光網路與通訊市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按組件(光纖、光收發器、光放大器、光開關、光環行器等)
    • 按技術(WDM、SONET/SDH、光纖通道等)
    • 按行業(IT 和電信、BFSI、政府和航太與國防、醫療保健、能源與公用事業等)
    • 按地區(北美、歐洲、南美、中東和非洲、亞太地區)
  • 按公司分類 (2023)
  • 市場地圖

第 8 章:北美光網路與通訊市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按組件
    • 依技術
    • 按垂直方向
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第 9 章:歐洲光網路與通訊市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按組件
    • 依技術
    • 按垂直方向
    • 按國家/地區
  • 歐洲:國家分析
    • 德國
    • 法國
    • 英國
    • 義大利
    • 西班牙
    • 荷蘭
    • 比利時

第 10 章:南美光網路與通訊市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按組件
    • 依技術
    • 按垂直方向
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 哥倫比亞
    • 阿根廷
    • 智利

第 11 章:中東和非洲光網路和通訊市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按組件
    • 依技術
    • 按垂直方向
    • 按國家/地區
  • 中東和非洲:國家分析
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 南非
    • 土耳其

第 12 章:亞太地區光網路與通訊市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按組件
    • 依技術
    • 按垂直方向
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲
    • 泰國
    • 馬來西亞

第 13 章:市場動態

  • 促進要素
  • 挑戰

第 14 章:市場趨勢與發展

第 15 章:公司簡介

  • Ciena Corporation
  • Fujitsu Limited
  • Cisco Systems, Inc.
  • Nokia Corporation
  • Adtran, Inc.
  • Huawei Technologies Co., Ltd.
  • Infinera Corporation
  • ZTE Corporation
  • Coherent Corp.

第 16 章:策略建議

第17章調查會社について,免責事項

簡介目錄
Product Code: 23076

Global Optical Networking and Communications Market was valued at USD 26.17 billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 9.21% through 2029. The Global Optical Networking and Communications Market encompasses an array of technologies and solutions pivotal to modern telecommunications infrastructure. Optical networking, utilizing light pulses to transmit data, plays a crucial role in enabling high-speed, reliable, and scalable communication networks worldwide. As demand surges for faster data transmission, increased bandwidth, and seamless connectivity driven by applications like cloud computing, video streaming, and IoT (Internet of Things), the market continues to evolve rapidly. Innovations in optical fibers, network equipment, and software-defined networking (SDN) are reshaping how businesses and individuals connect, communicate, and operate in an increasingly digital and interconnected world.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 26.17 Billion
Market Size 2029USD 44.80 Billion
CAGR 2024-20299. 21%
Fastest Growing SegmentIT & Telecom
Largest MarketAsia Pacific

Key Market Drivers

Increasing Demand for High-Speed Internet and Bandwidth

The relentless growth of digital content, coupled with the rising prevalence of data-intensive applications and services, is a primary driver fueling the global optical networking and communications market. As businesses and consumers alike continue to embrace cloud computing, streaming services, and other data-centric activities, there is an escalating demand for high-speed internet connectivity and increased bandwidth. Optical networking technologies, such as fiber optics, play a pivotal role in meeting these demands by offering significantly higher data transfer rates compared to traditional copper-based systems.

The insatiable appetite for faster and more reliable internet connectivity is particularly evident in the expansion of 5G networks, which require robust optical communication infrastructure to support the increased data traffic. The global rollout of 5G technology is driving the deployment of fiber optic networks to facilitate the ultra-fast and low-latency communication needed for applications like autonomous vehicles, augmented reality, and the Internet of Things (IoT). As a result, the optical networking and communications market is witnessing substantial growth as service providers and enterprises invest in upgrading and expanding their optical infrastructure to meet the evolving connectivity requirements of the digital age.

Growing Adoption of Cloud Computing and Data Centers

The rapid adoption of cloud computing and the proliferation of data centers are significant drivers propelling the global optical networking and communications market. Cloud-based services and applications have become integral to modern business operations, offering scalability, flexibility, and cost efficiency. This trend has led to an exponential increase in data traffic between end-users and data centers. Optical networking, with its high-speed and high-capacity capabilities, is essential for efficiently managing the transmission of large volumes of data within and between data centers.

The ongoing trend of data center decentralization, driven by the need for lower latency and improved reliability, is contributing to the demand for advanced optical communication solutions. Data centers are increasingly interconnected using optical fiber networks to ensure seamless communication and data transfer between geographically dispersed facilities. This interconnectivity is crucial for supporting real-time applications, such as online gaming, video conferencing, and financial transactions, where latency is a critical factor.

Rise of Internet of Things (IoT) and Smart Technologies

The proliferation of Internet of Things (IoT) devices and the widespread adoption of smart technologies are emerging as powerful drivers for the global optical networking and communications market. The IoT ecosystem, comprising interconnected devices and sensors, relies on a robust and efficient communication infrastructure to transmit and analyze data in real-time. Optical networking technologies, particularly fiber optics, offer the necessary bandwidth, speed, and reliability to support the massive data flows generated by IoT devices.

Smart cities, industrial automation, and various IoT applications depend on optical communication networks to enable seamless connectivity and communication between devices. The demand for smart homes, connected vehicles, and industrial IoT solutions is contributing to the deployment of advanced optical networking solutions. As the IoT ecosystem continues to expand, the need for a resilient and high-performance communication infrastructure is propelling the growth of the global optical networking and communications market. Optical networks play a pivotal role in ensuring the connectivity and data transfer required for the effective functioning of smart devices and systems in diverse sectors, driving the market forward.

Key Market Challenges

Capital Intensity and Infrastructure Investment

One of the significant challenges facing the global optical networking and communications market is the considerable capital intensity associated with deploying and maintaining advanced optical infrastructure. Building a robust optical communication network, especially one based on fiber optics, requires substantial upfront investment in both equipment and infrastructure. This includes the cost of high-quality optical fibers, sophisticated networking equipment, and the installation of the physical infrastructure, such as laying fiber optic cables and setting up network nodes.

For many emerging markets and smaller enterprises, the financial commitment required for establishing a comprehensive optical network can be a daunting barrier. The need for ongoing maintenance and upgrades to keep pace with evolving technologies further compounds the financial challenge. This capital intensity can slow down the adoption of optical networking solutions, hindering market growth in regions or industries where budget constraints are a significant consideration.

Regulatory and Policy Hurdles

The global optical networking and communications market faces regulatory and policy challenges that can impede its development and standardization. Regulatory frameworks governing the deployment of optical networks vary across regions, and navigating these diverse regulations poses a complex challenge for industry players. Issues related to right-of-way permissions, spectrum allocation, and compliance with national or regional standards can create bottlenecks in the implementation of optical communication infrastructure.

In some cases, regulatory uncertainty may lead to delays in project approvals and increase the overall cost of network deployment. Additionally, varying regulations can hinder interoperability and the seamless integration of optical networks on a global scale. To foster the growth of the optical networking market, there is a need for consistent and supportive regulatory frameworks that facilitate the deployment of advanced communication technologies while ensuring compliance with safety and security standards.

Security Concerns in Optical Networks

As the reliance on optical networking and communications grows, so does the importance of addressing security concerns associated with these networks. Optical networks, particularly those based on fiber optics, are susceptible to various security threats, including interception of data signals, physical cable tampering, and distributed denial-of-service (DDoS) attacks. The very nature of optical signals, which can be tapped without a direct physical connection, poses challenges for ensuring the confidentiality and integrity of transmitted data.

Securing optical networks requires implementing advanced encryption techniques and robust authentication mechanisms to protect against unauthorized access and data breaches. However, developing and implementing effective security measures can be complex and may introduce additional latency to the network, impacting performance. Balancing the need for high-speed data transmission with robust security protocols is an ongoing challenge for the optical networking industry, requiring continuous innovation to stay ahead of potential threats and vulnerabilities. Addressing these security concerns is crucial to building trust in optical communication technologies and fostering widespread adoption across industries and applications.

Key Market Trends

Evolution towards Higher Data Rates and Capacity

One prominent trend shaping the landscape of the global optical networking and communications market is the relentless pursuit of higher data rates and increased network capacity. As the demand for data-intensive applications continues to surge, driven by trends such as 5G connectivity, cloud computing, and the Internet of Things (IoT), network operators and enterprises are pushing the boundaries of optical communication technologies.

The transition from traditional copper-based networks to optical fiber networks is a key enabler of this trend. Optical fibers, with their ability to transmit data using light signals, offer significantly higher bandwidth and data transfer rates compared to copper cables. To address the escalating demand for faster and more reliable connectivity, the industry is witnessing the development and deployment of advanced optical communication solutions, including coherent optical systems, wavelength-division multiplexing (WDM), and terabit-per-second (Tbps) transmission technologies.

The evolution towards higher data rates involves the exploration of new optical spectrum bands, such as the utilization of the C-band and L-band, to accommodate more channels and increase overall network capacity. This trend is not only driven by the demand for enhanced consumer experiences but also by the requirements of emerging technologies like augmented reality, virtual reality, and artificial intelligence, which rely on robust and high-capacity communication networks.

Integration of Software-Defined Networking (SDN) and Network Function Virtualization (NFV)

Another transformative trend in the global optical networking and communications market is the increasing integration of Software-Defined Networking (SDN) and Network Function Virtualization (NFV). SDN and NFV technologies are playing a pivotal role in enhancing the flexibility, efficiency, and programmability of optical networks, enabling more dynamic and responsive communication infrastructures.

SDN allows for centralized control and programmability of network resources, facilitating dynamic management and optimization of optical networks. By decoupling the control plane from the data plane, SDN enables operators to adapt to changing traffic patterns, allocate resources more efficiently, and implement network changes rapidly. This flexibility is particularly valuable in accommodating the diverse and dynamic connectivity requirements of modern applications and services.

NFV complements SDN by virtualizing network functions traditionally performed by dedicated hardware, such as routers and switches. This virtualization enables the creation of flexible and scalable network architectures, reducing reliance on physical infrastructure and promoting cost savings. In the context of optical networking, NFV contributes to the creation of virtualized optical network functions (VONFs), allowing for more efficient resource utilization and simplified network management.

The integration of SDN and NFV in optical networking is not only a technological advancement but also a response to the evolving needs of service providers and enterprises. It enables them to adapt their networks more rapidly to changing demands, improve resource utilization, and enhance overall network efficiency, marking a significant trend that is reshaping the future of global optical networking and communications.

Segmental Insights

Vertical Insights

The BFSI segment dominated the market in 2023. The BFSI sector generates and processes massive volumes of data, including financial transactions, customer information, and market data. Optical networking technologies are crucial for meeting the growing bandwidth requirements associated with these data-intensive operations.

The BFSI industry relies heavily on network infrastructure for mission-critical operations such as real-time transactions, market data feeds, and communication between branches and data centers. Optical networks offer high reliability and security, ensuring the integrity of financial transactions.

Optical networking is essential for connecting data centers within the BFSI sector. High-speed, low-latency connections between data centers are crucial for ensuring the seamless operation of financial applications and services.

Optical networking technologies help organizations meet these regulatory standards by providing encrypted and reliable communication channels. Optical networking is crucial for interconnecting bank branches and ATMs, supporting real-time communication for transactions and ensuring that customer data is transmitted securely. The BFSI sector's digital transformation and the rise of fintech require advanced networking solutions.

Optical networks play a role in supporting the connectivity needs of digital banking platforms and fintech applications. Large financial institutions with global operations require robust international connectivity. Optical networking enables high-capacity, low-latency connections between geographically dispersed offices and data centers. The BFSI sector is known for making substantial investments in upgrading and maintaining its network infrastructure.

The BFSI sector places a premium on redundancy and disaster recovery capabilities. Optical networks provide the necessary redundancy to ensure continuous and uninterrupted services, even in the event of network failures.

The BFSI industry is gradually adopting cloud-based services for data storage, processing, and customer relationship management. Optical networking facilitates the connectivity between on-premises infrastructure and cloud environments in a secure and high-performance manner.

Regional Insights

Asia Pacific emerged as the dominating region in 2023, holding the largest market share. Many countries in the Asia-Pacific region have strategic initiatives and investments to enhance their communication infrastructure. Governments recognize the importance of advanced networking technologies for economic development and are actively investing in optical networking projects. Countries like China and South Korea are among the global leaders in the deployment of 5G networks. Optical networking technologies, including fiber optics and Wavelength Division Multiplexing (WDM), play a crucial role in supporting the high-speed and high-capacity requirements of 5G networks.

The rapid urbanization in many Asia-Pacific countries has led to increased demand for robust and high-capacity communication networks. Optical networking is a key enabler for expanding telecom infrastructure in urban and suburban areas. The Asia-Pacific region has witnessed the emergence of major data center hubs, driven by the growth of cloud services and digital transformation. Optical networking solutions are integral for connecting and interconnecting these data centers.

Several countries in the Asia-Pacific region are investing in Fiber to the Home (FTTH) initiatives to provide high-speed broadband connectivity to residential areas. This expansion is driving the demand for optical networking solutions. The Asia-Pacific region is a major player in international connectivity, and submarine cable systems are crucial for global data transmission. Optical networking technologies support high-capacity submarine cable networks connecting the region with other parts of the world.

Countries like Japan and South Korea are known for their contributions to technological innovation. Ongoing research and development efforts in these countries contribute to the advancement of optical networking technologies. Many cities in the Asia-Pacific region are undergoing smart city transformations. Optical networking is an essential component for integrating technologies such as IoT, surveillance, and intelligent transportation systems in smart city initiatives.

The rapid growth of e-commerce and the digital economy in countries like China and India create substantial demand for reliable and high-speed communication networks. Optical networking supports the backbone infrastructure for digital services. Regulatory environments vary across countries in the region. Understanding and navigating these regulations are crucial for companies operating in the optical networking sector.

Key Market Players

Ciena Corporation

Fujitsu Limited

Cisco Systems, Inc.

Nokia Corporation

Adtran, Inc.

Huawei Technologies Co., Ltd.

Infinera Corporation

ZTE Corporation

Coherent Corp.

Report Scope:

In this report, the Global Optical Networking and Communications Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Optical Networking and Communications Market, By Component:

    Optical Fiber Optical Transceivers Optical Amplifiers Optical Switches Optical Circulators Others

Optical Networking and Communications Market, By Technology:

    WDM SONET/SDH Fiber Channel Others

Optical Networking and Communications Market, By Vertical:

    IT & Telecom BFSI Government and Aerospace & Defense Healthcare Energy & Utilities Others

Optical Networking and Communications Market, By Region:

    North America
    • United States
    • Canada
    • Mexico
    Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
    • Netherlands
    • Belgium
    Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    • Thailand
    • Malaysia
    South America
    • Brazil
    • Argentina
    • Colombia
    • Chile
    Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Optical Networking and Communications Market.

Available Customizations:

Global Optical Networking and Communications Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Service Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1.Markets Covered
    • 1.2.2.Years Considered for Study
    • 1.2.3.Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1.Secondary Research
    • 2.5.2.Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1.The Bottom-Up Approach
    • 2.6.2.The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1.Data Triangulation & Validation

3. Executive Summary

4. Impact of COVID-19 on Global Optical Networking and Communications Market

5. Voice of Customer

6. Global Optical Networking and Communications Market Overview

7. Global Optical Networking and Communications Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1.By Value
  • 7.2. Market Share & Forecast
    • 7.2.1.By Component (Optical Fiber, Optical Transceivers, Optical Amplifiers, Optical Switches, Optical Circulators and Others)
    • 7.2.2.By Technology (WDM, SONET/SDH, Fiber Channel and Others)
    • 7.2.3.By Vertical (IT & Telecom, BFSI, Government and Aerospace & Defense, Healthcare, Energy & Utilities and Others)
    • 7.2.4.By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 7.3. By Company (2023)
  • 7.4. Market Map

8. North America Optical Networking and Communications Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1.By Value
  • 8.2. Market Share & Forecast
    • 8.2.1.By Component
    • 8.2.2.By Technology
    • 8.2.3.By Vertical
    • 8.2.4.By Country
  • 8.3. North America: Country Analysis
    • 8.3.1.United States Optical Networking and Communications Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Vertical
    • 8.3.2.Canada Optical Networking and Communications Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Vertical
    • 8.3.3.Mexico Optical Networking and Communications Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Vertical

9. Europe Optical Networking and Communications Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1.By Value
  • 9.2. Market Share & Forecast
    • 9.2.1.By Component
    • 9.2.2.By Technology
    • 9.2.3.By Vertical
    • 9.2.4.By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1.Germany Optical Networking and Communications Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Vertical
    • 9.3.2.France Optical Networking and Communications Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Vertical
    • 9.3.3.United Kingdom Optical Networking and Communications Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By Vertical
    • 9.3.4.Italy Optical Networking and Communications Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Component
        • 9.3.4.2.2. By Technology
        • 9.3.4.2.3. By Vertical
    • 9.3.5.Spain Optical Networking and Communications Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Component
        • 9.3.5.2.2. By Technology
        • 9.3.5.2.3. By Vertical
    • 9.3.6.Netherlands Optical Networking and Communications Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Component
        • 9.3.6.2.2. By Technology
        • 9.3.6.2.3. By Vertical
    • 9.3.7.Belgium Optical Networking and Communications Market Outlook
      • 9.3.7.1. Market Size & Forecast
        • 9.3.7.1.1. By Value
      • 9.3.7.2. Market Share & Forecast
        • 9.3.7.2.1. By Component
        • 9.3.7.2.2. By Technology
        • 9.3.7.2.3. By Vertical

10. South America Optical Networking and Communications Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Technology
    • 10.2.3. By Vertical
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Optical Networking and Communications Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Vertical
    • 10.3.2. Colombia Optical Networking and Communications Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Vertical
    • 10.3.3. Argentina Optical Networking and Communications Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Vertical
    • 10.3.4. Chile Optical Networking and Communications Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Component
        • 10.3.4.2.2. By Technology
        • 10.3.4.2.3. By Vertical

11. Middle East & Africa Optical Networking and Communications Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Component
    • 11.2.2. By Technology
    • 11.2.3. By Vertical
    • 11.2.4. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Optical Networking and Communications Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Component
        • 11.3.1.2.2. By Technology
        • 11.3.1.2.3. By Vertical
    • 11.3.2. UAE Optical Networking and Communications Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Component
        • 11.3.2.2.2. By Technology
        • 11.3.2.2.3. By Vertical
    • 11.3.3. South Africa Optical Networking and Communications Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Component
        • 11.3.3.2.2. By Technology
        • 11.3.3.2.3. By Vertical
    • 11.3.4. Turkey Optical Networking and Communications Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Component
        • 11.3.4.2.2. By Technology
        • 11.3.4.2.3. By Vertical

12. Asia Pacific Optical Networking and Communications Market Outlook

  • 12.1. Market Size & Forecast
    • 12.1.1. By Value
  • 12.2. Market Share & Forecast
    • 12.2.1. By Component
    • 12.2.2. By Technology
    • 12.2.3. By Vertical
    • 12.2.4. By Country
  • 12.3. Asia-Pacific: Country Analysis
    • 12.3.1. China Optical Networking and Communications Market Outlook
      • 12.3.1.1. Market Size & Forecast
        • 12.3.1.1.1. By Value
      • 12.3.1.2. Market Share & Forecast
        • 12.3.1.2.1. By Component
        • 12.3.1.2.2. By Technology
        • 12.3.1.2.3. By Vertical
    • 12.3.2. India Optical Networking and Communications Market Outlook
      • 12.3.2.1. Market Size & Forecast
        • 12.3.2.1.1. By Value
      • 12.3.2.2. Market Share & Forecast
        • 12.3.2.2.1. By Component
        • 12.3.2.2.2. By Technology
        • 12.3.2.2.3. By Vertical
    • 12.3.3. Japan Optical Networking and Communications Market Outlook
      • 12.3.3.1. Market Size & Forecast
        • 12.3.3.1.1. By Value
      • 12.3.3.2. Market Share & Forecast
        • 12.3.3.2.1. By Component
        • 12.3.3.2.2. By Technology
        • 12.3.3.2.3. By Vertical
    • 12.3.4. South Korea Optical Networking and Communications Market Outlook
      • 12.3.4.1. Market Size & Forecast
        • 12.3.4.1.1. By Value
      • 12.3.4.2. Market Share & Forecast
        • 12.3.4.2.1. By Component
        • 12.3.4.2.2. By Technology
        • 12.3.4.2.3. By Vertical
    • 12.3.5. Australia Optical Networking and Communications Market Outlook
      • 12.3.5.1. Market Size & Forecast
        • 12.3.5.1.1. By Value
      • 12.3.5.2. Market Share & Forecast
        • 12.3.5.2.1. By Component
        • 12.3.5.2.2. By Technology
        • 12.3.5.2.3. By Vertical
    • 12.3.6. Thailand Optical Networking and Communications Market Outlook
      • 12.3.6.1. Market Size & Forecast
        • 12.3.6.1.1. By Value
      • 12.3.6.2. Market Share & Forecast
        • 12.3.6.2.1. By Component
        • 12.3.6.2.2. By Technology
        • 12.3.6.2.3. By Vertical
    • 12.3.7. Malaysia Optical Networking and Communications Market Outlook
      • 12.3.7.1. Market Size & Forecast
        • 12.3.7.1.1. By Value
      • 12.3.7.2. Market Share & Forecast
        • 12.3.7.2.1. By Component
        • 12.3.7.2.2. By Technology
        • 12.3.7.2.3. By Vertical

13. Market Dynamics

  • 13.1. Drivers
  • 13.2. Challenges

14. Market Trends and Developments

15. Company Profiles

  • 15.1. Ciena Corporation
    • 15.1.1. Business Overview
    • 15.1.2. Key Revenue and Financials
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel/Key Contact Person
    • 15.1.5. Key Product/Services Offered
  • 15.2. Fujitsu Limited
    • 15.2.1. Business Overview
    • 15.2.2. Key Revenue and Financials
    • 15.2.3. Recent Developments
    • 15.2.4. Key Personnel/Key Contact Person
    • 15.2.5. Key Product/Services Offered
  • 15.3. Cisco Systems, Inc.
    • 15.3.1. Business Overview
    • 15.3.2. Key Revenue and Financials
    • 15.3.3. Recent Developments
    • 15.3.4. Key Personnel/Key Contact Person
    • 15.3.5. Key Product/Services Offered
  • 15.4. Nokia Corporation
    • 15.4.1. Business Overview
    • 15.4.2. Key Revenue and Financials
    • 15.4.3. Recent Developments
    • 15.4.4. Key Personnel/Key Contact Person
    • 15.4.5. Key Product/Services Offered
  • 15.5. Adtran, Inc.
    • 15.5.1. Business Overview
    • 15.5.2. Key Revenue and Financials
    • 15.5.3. Recent Developments
    • 15.5.4. Key Personnel/Key Contact Person
    • 15.5.5. Key Product/Services Offered
  • 15.6. Huawei Technologies Co., Ltd.
    • 15.6.1. Business Overview
    • 15.6.2. Key Revenue and Financials
    • 15.6.3. Recent Developments
    • 15.6.4. Key Personnel/Key Contact Person
    • 15.6.5. Key Product/Services Offered
  • 15.7. Infinera Corporation
    • 15.7.1. Business Overview
    • 15.7.2. Key Revenue and Financials
    • 15.7.3. Recent Developments
    • 15.7.4. Key Personnel/Key Contact Person
    • 15.7.5. Key Product/Services Offered
  • 15.8. ZTE Corporation
    • 15.8.1. Business Overview
    • 15.8.2. Key Revenue and Financials
    • 15.8.3. Recent Developments
    • 15.8.4. Key Personnel/Key Contact Person
    • 15.8.5. Key Product/Services Offered
  • 15.9. Coherent Corp.
    • 15.9.1. Business Overview
    • 15.9.2. Key Revenue and Financials
    • 15.9.3. Recent Developments
    • 15.9.4. Key Personnel/Key Contact Person
    • 15.9.5. Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer