封面
市場調查報告書
商品編碼
1527184

汽車進氣歧管市場 - 全球產業規模、佔有率、趨勢、機會和預測,按車輛類型、產品類型、材料、地區和競爭細分,2019-2029F

Automotive Intake Manifold Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Vehicle Type, By Product Type, By Material, By Region & Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023 年全球汽車進氣歧管市場價值為309 億美元,預計在預測期內將強勁成長,到2029 年複合年成長率為5.90%。市場正在經歷大幅成長-高效、高性能的車輛。進氣歧管在內燃機中起著至關重要的作用,它將空氣燃料混合物均勻地分配到每個氣缸,從而最佳化引擎的性能和效率。汽車技術的進步以及對減少車輛排放的日益重視正在推動製造商開發更有效率、更輕的進氣歧管。可變進氣歧管等創新技術可以調節進氣道的長度,以提高不同速度下的引擎效率,這些創新正變得越來越普遍,從而促進了市場的整體成長。推動市場的另一個重要因素是渦輪增壓引擎的日益普及。渦輪增壓透過迫使更多空氣進入燃燒室來提高引擎的功率輸出和效率。進氣量的增加需要更複雜的進氣歧管設計,以有效管理更高的壓力和溫度水平。因此,對能夠承受渦輪增壓應用嚴酷條件的先進進氣歧管材料和設計的需求不斷增加。此外,在不犧牲性能的情況下縮小引擎尺寸的趨勢進一步增加了對高品質進氣歧管的需求,以支援更小、更有效率的引擎。向電動和混合動力汽車的過渡也影響汽車進氣歧管市場。雖然電動車 (EV) 不使用傳統的內燃機,因此不需要進氣歧管,但混合動力車則需要進氣歧管,並且日益普及維持了對該組件的需求。混合動力車將內燃機與電力推進系統結合,通常需要先進的進氣歧管設計,以最大限度地提高小型渦輪增壓引擎的效率和性能。此外,減少排放和提高燃油經濟性的監管壓力正促使汽車製造商不斷增強其引擎技術,包括開發更先進的進氣歧管,從而確保該細分市場的持續成長。

市場概況
預測期 2026-2030
2023 年市場規模 309億美元
2029 年市場規模 491.2億美元
2024-2029 年複合年成長率 5.90%
成長最快的細分市場 輕型商用車
最大的市場 歐洲及獨立國協國家

市場促進因素

輕質材料革命:提高效率與永續性

先進的設計技術:最佳化氣流以增強性能

車輛電氣化:採用電動車進氣歧管技術

嚴格的排放標準:創新和合規的催化劑

全球市場擴張與區域動態:挖掘成長機會

主要市場挑戰

材料限制:平衡性能和成本效率

先進的設計技術:最佳化氣流以增強性能

電氣化顛覆:適應不斷變化的動力總成動態

嚴格的排放標準:在不斷變化的監管環境中滿足合規性

全球市場動態與區域差異:駕馭多元化格局

主要市場趨勢

輕質材料革命:提高效率與性能

先進的設計技術:最佳化氣流以提高性能

車輛電氣化:採用電動車進氣歧管技術

嚴格的排放標準:推動合規創新

全球市場擴張與區域動態:駕馭多元化

細分市場洞察

車型分析

區域洞察

目錄

第 1 章:簡介

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:COVID-19 對全球汽車進氣歧管市場的影響

第 5 章:全球汽車進氣歧管市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按車型(輕型商用車、重型商用車、跑車)
    • 依產品類型(單平面歧管、雙平面歧管、EFI 歧管、HI-RAM 歧管、增壓器進氣歧管)
    • 依材質(鋁、塑膠、鎂和其他複合材料)
    • 按地區分類
    • 按公司分類(前 5 名公司、其他 - 按價值,2023 年)
  • 全球汽車進氣歧管市場地圖與機會評估
    • 按車型分類
    • 依產品類型
    • 按材質
    • 按地區分類

第 6 章:亞太地區汽車進氣歧管市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按車型分類
    • 依產品類型
    • 按材質
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 印尼
    • 泰國
    • 韓國
    • 澳洲

第 7 章:歐洲與獨立國協國家汽車進氣歧管市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按車型分類
    • 依產品類型
    • 按材質
    • 按國家/地區
  • 歐洲與獨立國協:國家分析
    • 德國
    • 西班牙
    • 法國
    • 俄羅斯
    • 義大利
    • 英國
    • 比利時

第 8 章:北美汽車進氣歧管市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按車型分類
    • 依產品類型
    • 按材質
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 9 章:南美洲汽車進氣歧管市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按車型分類
    • 依產品類型
    • 按材質
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 哥倫比亞
    • 阿根廷

第 10 章:中東和非洲汽車進氣歧管市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按車型分類
    • 依產品類型
    • 按材質
    • 按國家/地區
  • 中東和非洲:國家分析
    • 南非
    • 土耳其
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:SWOT 分析

  • 力量
  • 弱點
  • 機會
  • 威脅

第 12 章:市場動態

  • 市場促進因素
  • 市場挑戰

第 13 章:市場趨勢與發展

第14章:競爭格局

  • 公司簡介(最多10家主要公司)
    • Edelbrock Group
    • Marelli Holdings Co., Ltd.
    • Rochling SE & Co. KG
    • Holley Performance Products Inc.
    • Sogefi SpA
    • Hitachi Astemo, Ltd.
    • Aisin Corporation
    • MAHLE GmbH.
    • Donaldson Company, Inc.
    • Mikuni Corporation

第 15 章:策略建議

  • 重點關注領域
    • 目標地區
    • 目標車輛類型
    • 目標產品類型

第16章調查會社について,免責事項

簡介目錄
Product Code: 22017

Global Automotive Intake Manifold Market valued at USD 30.90 billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 5.90% through 2029. The global automotive intake manifold market is experiencing substantial growth, driven by the increasing demand for fuel-efficient and high-performance vehicles. The intake manifold plays a crucial role in an internal combustion engine by evenly distributing the air-fuel mixture to each cylinder, thereby optimizing the engine's performance and efficiency. Advances in automotive technology and the rising emphasis on reducing vehicle emissions are pushing manufacturers to develop more efficient and lightweight intake manifolds. Innovations such as variable intake manifolds, which adjust the length of the air intake tract to improve engine efficiency at different speeds, are becoming more common, contributing to the overall growth of the market. Another significant factor driving the market is the growing adoption of turbocharged engines. Turbocharging enhances the power output and efficiency of an engine by forcing more air into the combustion chamber. This increased air intake requires more sophisticated intake manifold designs to manage the higher pressure and temperature levels effectively. Consequently, the demand for advanced intake manifold materials and designs that can withstand the rigors of turbocharged applications is on the rise. Additionally, the trend towards downsizing engines without sacrificing performance is further boosting the need for high-quality intake manifolds that can support smaller, more efficient engines. The transition towards electric and hybrid vehicles also influences the automotive intake manifold market. While electric vehicles (EVs) do not use traditional internal combustion engines and therefore do not require intake manifolds, hybrid vehicles do, and their growing popularity maintains the demand for this component. Hybrid vehicles, which combine internal combustion engines with electric propulsion systems, often require advanced intake manifold designs to maximize the efficiency and performance of their smaller, often turbocharged engines. Furthermore, regulatory pressures to reduce emissions and improve fuel economy are prompting automakers to continuously enhance their engine technologies, including the development of more advanced intake manifolds, thus ensuring sustained growth in this market segment.

Market Overview
Forecast Period2026-2030
Market Size 2023USD 30.90 Billion
Market Size 2029USD 49.12 Billion
CAGR 2024-20295.90%
Fastest Growing SegmentLight Commercial Vehicle
Largest MarketEurope & CIS

Market Drivers

Lightweight Materials Revolution: Enhancing Efficiency and Sustainability

A fundamental driver steering the global automotive intake manifold market is the industry-wide shift towards lightweight materials. Traditionally, cast iron was the material of choice due to its durability and cost-effectiveness. However, the pursuit of greater fuel efficiency, reduced emissions, and enhanced vehicle performance has led to a transformative adoption of lightweight materials, particularly aluminum and composite plastics. The shift towards lightweight materials is motivated by the overarching goal of making vehicles more fuel-efficient and environmentally sustainable. Aluminum intake manifolds offer a substantial weight reduction compared to their cast iron counterparts, contributing to improved fuel efficiency and decreased emissions. Composite plastics, with their high strength-to-weight ratio, provide an additional avenue for weight reduction without compromising structural integrity. This section will delve into the material science behind these advancements, examining the manufacturing processes, structural benefits, and environmental implications associated with the lightweight materials revolution in the automotive intake manifold market.

Advanced Design Techniques: Optimizing Airflow for Enhanced Performance

Advancements in design technologies stand out as a key driver reshaping the landscape of the global automotive intake manifold market. Engineers and manufacturers are leveraging sophisticated design tools, including Computational Fluid Dynamics (CFD) simulations, rapid prototyping, and additive manufacturing, to optimize airflow within the intake manifold. This optimization is crucial for achieving superior engine performance, fuel efficiency, and reduced emissions. This section will provide a comprehensive analysis of the impact of advanced design techniques on the market. CFD simulations enable engineers to model and understand complex airflow patterns within the intake manifold, allowing for precision in design and optimization. Rapid prototyping facilitates quicker iterations of manifold designs, reducing development cycles and time-to-market. Additive manufacturing, including 3D printing, empowers manufacturers to create intricate and customized manifold designs that were previously challenging to produce using traditional methods. By exploring these design technologies, this section aims to provide insights into how they are revolutionizing the automotive intake manifold market and driving advancements in combustion efficiency and overall engine performance.

Electrification of Vehicles: Adapting Intake Manifold Technology for EVs

The rapid rise of electric vehicles (EVs) is a transformative force influencing the automotive industry, with profound implications for the traditional role of the intake manifold. While conventional internal combustion engines rely on the intake manifold to regulate the air and fuel mixture, electric vehicles require innovative adaptations of intake manifold technology to suit the unique requirements of electric powertrains. This section will delve into the impact of electrification on the automotive intake manifold market. As the automotive landscape shifts towards electric propulsion, intake manifolds must adapt to new roles related to thermal management or air circulation for battery cooling. The integration of electric components into the manifold structure poses challenges, requiring manufacturers to reimagine traditional configurations. The section will explore how manufacturers are navigating these challenges and leveraging intake manifold technology to contribute to the efficiency and performance of electric vehicles, thus shaping the future of the market.

Stringent Emission Standards: Catalyst for Innovation and Compliance

A pivotal driver influencing the global automotive intake manifold market is the increasingly stringent emission standards set by regulatory bodies worldwide. Governments and environmental agencies are pushing for stringent regulations to combat climate change and reduce air pollution. As a result, manufacturers are compelled to develop innovative solutions within the intake manifold to enhance combustion efficiency, reduce emissions, and ensure compliance with evolving regulatory requirements. This section will provide a comprehensive analysis of how stringent emission standards are influencing the market. The optimization of the air and fuel mixture within the intake manifold plays a crucial role in achieving cleaner combustion and reducing harmful emissions. Variable geometry intake manifolds, capable of adjusting the length of the intake runners, are emerging as a technology to enhance combustion efficiency under different driving conditions. The integration of Selective Catalytic Reduction (SCR) systems into the intake manifold provides a mechanism to reduce nitrogen oxide (NOx) emissions. As emission standards continue to evolve, this section will explore how manufacturers are innovating within the realm of intake manifold design to meet and exceed regulatory requirements, thereby driving compliance and sustainability in the automotive industry.

Global Market Expansion and Regional Dynamics: Tapping into Growth Opportunities

The global automotive intake manifold market is inherently diverse, shaped by regional variations in consumer preferences, regulatory frameworks, and economic conditions. As automotive markets expand globally, manufacturers must navigate the complexities of regional dynamics to establish a robust market presence. Emerging economies present growth opportunities, but they also pose challenges related to infrastructure, consumer awareness, and market maturity. This section will provide a thorough analysis of the global market expansion and regional dynamics influencing the automotive intake manifold market. The diverse regulatory environments across different regions impact product development and compliance considerations. Understanding and adapting to the unique preferences of consumers in different markets are essential for manufacturers seeking to establish a global footprint. Geopolitical factors and trade uncertainties can influence the supply chain and market access for intake manifold manufacturers, adding another layer of complexity to the global landscape.

Key Market Challenges

Material Constraints: Balancing Performance and Cost Efficiency

One of the primary challenges facing the global automotive intake manifold market is the constant struggle to balance performance requirements with cost efficiency. The transition from traditional materials, such as cast iron, to lightweight alternatives like aluminum or composite plastics introduces a set of material constraints that impact the overall performance and durability of the intake manifold. This section will provide an in-depth analysis of the material constraints challenge. While lightweight materials offer advantages in terms of fuel efficiency and emissions reduction, they often come with higher production costs and potential durability concerns. Aluminum, for instance, is lightweight but may not possess the same robustness as cast iron. Composite plastics, while offering a high strength-to-weight ratio, may pose challenges related to heat resistance and long-term reliability. Manufacturers must navigate these material constraints to strike a balance between performance, cost efficiency, and durability, ensuring that intake manifold solutions meet both regulatory and consumer expectations.

Advanced Design Techniques: Optimizing Airflow for Enhanced Performance

Advancements in design technologies stand out as a key driver reshaping the landscape of the global automotive intake manifold market. Engineers and manufacturers are leveraging sophisticated design tools, including Computational Fluid Dynamics (CFD) simulations, rapid prototyping, and additive manufacturing, to optimize airflow within the intake manifold. This optimization is crucial for achieving superior engine performance, fuel efficiency, and reduced emissions. This section will provide a comprehensive analysis of the impact of advanced design techniques on the market. CFD simulations enable engineers to model and understand complex airflow patterns within the intake manifold, allowing for precision in design and optimization. Rapid prototyping facilitates quicker iterations of manifold designs, reducing development cycles and time-to-market. Additive manufacturing, including 3D printing, empowers manufacturers to create intricate and customized manifold designs that were previously challenging to produce using traditional methods. By exploring these design technologies, this section aims to provide insights into how they are revolutionizing the automotive intake manifold market and driving advancements in combustion efficiency and overall engine performance.

For instance, in October 2023, Speedmaster unveiled the Chevy Gen V LT1 Downdraft EFI Intake Manifold System at the SEMA Show. This product was one of 30 new entries in the New Products Award competition. The manifold system combines the vintage Weber induction style with modern EFI precision, providing both aesthetic appeal and advanced performance. Designed to optimize airflow, it operates efficiently across a broad RPM range, enhancing engine capabilities and ensuring durability with its CNC machined, heat-treated aluminum construction. Additionally, the innovative linkage set offers precise throttle control and improved drivability, showcasing the latest advancements in design techniques.

Electrification Disruption: Adapting to Changing Powertrain Dynamics

The rise of electric vehicles (EVs) poses a significant challenge to the traditional role of the intake manifold within the automotive industry. Unlike internal combustion engines, electric powertrains do not require traditional air and fuel mixture regulation. As a result, manufacturers must adapt intake manifold technology to suit the unique requirements of EVs, presenting both challenges and opportunities.

This section will explore the impact of electrification on the automotive intake manifold market. The challenge lies in redefining the role of the intake manifold in electric powertrains, which may involve thermal management functions or air circulation for battery cooling. Manufacturers must navigate the shift in consumer preferences towards EVs and anticipate changes in market demand for traditional intake manifold solutions. The integration of electric components into the manifold structure introduces new complexities in terms of design, materials, and overall functionality. Successfully adapting to electrification disruption requires a forward-thinking approach, strategic investments, and a commitment to innovation within the evolving automotive landscape.

Stringent Emission Standards: Meeting Compliance in a Changing Regulatory Landscape

While stringent emission standards drive innovation, they also present a formidable challenge for the global automotive intake manifold market. Regulatory bodies worldwide are imposing increasingly strict emissions requirements to address climate change and reduce air pollution. Manufacturers must continuously innovate within the intake manifold design to meet these evolving standards, which can be both demanding and resource-intensive. This section will provide a comprehensive analysis of the challenge presented by stringent emission standards. Meeting and exceeding regulatory requirements involve ongoing research and development efforts to enhance combustion efficiency and reduce emissions. Variable geometry intake manifolds and the integration of Selective Catalytic Reduction (SCR) systems are among the technological solutions to address emissions challenges. However, compliance requires continuous adaptation to changing standards, which may vary across regions and markets. Navigating this complex regulatory landscape demands a proactive approach, ongoing investments in research and development, and the ability to swiftly implement technological advancements to meet the ever-changing emission standards.

Global Market Dynamics and Regional Variability: Navigating Diverse Landscapes

The global automotive intake manifold market operates within a diverse landscape shaped by regional variations in consumer preferences, regulatory frameworks, and economic conditions. While global expansion presents growth opportunities, it also introduces challenges related to understanding and adapting to the unique dynamics of different markets. Emerging economies, in particular, may pose challenges related to infrastructure, consumer awareness, and market maturity. This section will provide a comprehensive analysis of the challenges associated with global market dynamics and regional variability. Regulatory environments differ significantly across regions, influencing product development, compliance considerations, and market access. Understanding and adapting to the unique preferences of consumers in different markets is crucial for manufacturers seeking to establish a global footprint. Geopolitical factors, trade uncertainties, and economic conditions can influence the supply chain and market access for intake manifold manufacturers, adding another layer of complexity to the global landscape. Navigating these diverse landscapes requires a nuanced understanding of regional dynamics and the implementation of flexible strategies that can accommodate the unique challenges presented by each market.

Key Market Trends

Lightweight Materials Revolution: Enhancing Efficiency and Performance

A prominent trend in the global automotive intake manifold market is the pervasive shift towards lightweight materials. Traditionally, intake manifolds were predominantly manufactured using cast iron due to its durability and cost-effectiveness. However, the industry is experiencing a significant transition toward lightweight materials, such as aluminum and composite plastics. This shift is driven by the automotive sector's relentless pursuit of fuel efficiency, emissions reduction, and improved overall vehicle performance. This section will provide an in-depth analysis of the lightweight materials trend. The adoption of aluminum intake manifolds offers a substantial reduction in weight compared to cast iron, contributing to enhanced fuel efficiency and reduced vehicle emissions. Composite plastics, known for their strength-to-weight ratio, are gaining traction, further reducing the overall weight of the intake manifold. The use of lightweight materials aligns with the automotive industry's broader goals of achieving higher fuel efficiency and complying with stringent emission standards. Additionally, the trend towards lightweight materials is influenced by consumer demand for environmentally friendly and technologically advanced vehicles.

For instance, in December 2023, Engine Pro introduced new lightweight aluminum cylinder heads and intakes. At the PRI show, the company unveiled its latest small-block Chevrolet head, named Mayhem. This innovative 18-degree head was designed to be compatible with a 23-degree valvetrain and any GM 5-degree intake manifold. The use of lightweight materials aimed to boost both efficiency and performance. The new design drew significant attention for its advanced engineering. Engine Pro's enhancements were celebrated for their potential to improve vehicle dynamics.

Advanced Design Techniques: Optimizing Airflow for Improved Performance

In tandem with the shift to lightweight materials, the global automotive intake manifold market is experiencing a surge in advanced design techniques. Engineers and manufacturers are leveraging cutting-edge technologies to optimize the airflow within the intake manifold, thereby enhancing engine performance and efficiency. Computational Fluid Dynamics (CFD) simulations, rapid prototyping, and additive manufacturing are among the innovative design approaches transforming the traditional landscape of intake manifold production. This section will delve into the realm of advanced design techniques shaping the market. CFD simulations enable precise modeling of airflow patterns, allowing engineers to design intake manifolds with optimal shapes and dimensions for improved combustion efficiency. Rapid prototyping facilitates the quick iteration of designs, reducing development cycles and time-to-market. Additive manufacturing, including 3D printing, allows for intricate and customized manifold designs that were previously challenging to produce. The integration of these advanced design techniques not only enhances performance but also aligns with the industry's push toward more sustainable and efficient manufacturing processes.

For instance, in December 2023, Frankenstein Engine Dynamics introduced their innovative LS Single-Plane Intake at the Performance Racing Industry Show. The new intake manifold featured customizable top options and precise CNC porting, although it was initially released without an official name. It provided various flange options, including a modular 6500 flange for flexible carburetor configurations. This design aimed to enhance performance by offering adaptability and customization for different engine setups.

Electrification of Vehicles: Adapting Intake Manifold Technology for EVs

The rise of electric vehicles (EVs) is a transformative trend influencing the global automotive industry, and it is reshaping the role of the intake manifold. While traditional internal combustion engines rely on intake manifolds to regulate air and fuel mixture, electric vehicles necessitate a different approach. The evolving landscape of automotive propulsion systems is driving manufacturers to adapt intake manifold technology for electric powertrains, presenting both challenges and opportunities for the market. This section will explore the impact of electrification on the automotive intake manifold market. In electric vehicles, where combustion is absent, intake manifolds may take on new roles related to thermal management or air circulation for battery cooling. The integration of electric components into the manifold structure poses design challenges, requiring manufacturers to reimagine traditional intake manifold configurations. As the automotive industry embraces electrification, the adaptation of intake manifold technology for electric powertrains becomes a crucial aspect of innovation and futureproofing in the market.

Stringent Emission Standards: Driving Innovation for Compliance

Global efforts to combat climate change and reduce air pollution have led to the implementation of increasingly stringent emission standards for vehicles. This regulatory landscape is a significant driver shaping the global automotive intake manifold market. Manufacturers are compelled to develop innovative solutions that enhance combustion efficiency and reduce emissions, positioning the intake manifold as a focal point for achieving compliance with emission standards. This section will delve into the influence of stringent emission standards on the automotive intake manifold market. The optimization of air and fuel mixture within the intake manifold contributes to cleaner combustion, reducing harmful emissions. Variable geometry intake manifolds, capable of adjusting the length of the intake runners, are emerging as a technology to enhance combustion efficiency under different driving conditions. Selective catalytic reduction (SCR) systems integrated into the intake manifold provide a means of reducing nitrogen oxide (NOx) emissions. As emission standards evolve, the market trends will continue to center around innovation in intake manifold design to meet and exceed regulatory requirements.

Global Market Expansion and Regional Dynamics: Navigating Diversity

The global automotive intake manifold market is inherently diverse, influenced by regional variations in consumer preferences, regulatory landscapes, and economic conditions. As automotive markets continue to expand globally, manufacturers must navigate the complexities of regional dynamics to establish a strong market presence. Emerging economies present growth opportunities, but they also bring challenges related to infrastructure, consumer awareness, and market maturity. This section will provide a comprehensive analysis of the global market expansion and regional dynamics influencing the automotive intake manifold market. The diverse regulatory environments across different regions impact product development and compliance considerations. Understanding and adapting to the unique preferences of consumers in different markets is essential for manufacturers seeking to establish a global footprint. Additionally, geopolitical factors and trade uncertainties can influence the supply chain and market access for intake manifold manufacturers, adding another layer of complexity to the global landscape.

Segmental Insights

Vehicle Type Analysis

The global automotive intake manifold market, segmented by vehicle type, encompasses light commercial vehicles, heavy commercial vehicles, and sports cars, each with distinct requirements and technological advancements. In the global automotive intake manifold market, sports cars currently dominate among the segmented vehicle types. This dominance can be attributed to several key factors. Sports cars typically feature high-performance engines that demand efficient air intake systems to maximize power output. Intake manifolds play a crucial role in delivering optimized air-fuel mixture to the engine cylinders, enhancing combustion efficiency and overall engine performance. Manufacturers of sports cars prioritize lightweight and high-performance materials for intake manifolds to minimize weight while ensuring durability and reliability under high-speed and high-temperature conditions.

Additionally, sports car enthusiasts often seek aftermarket upgrades to enhance engine performance, including aftermarket intake manifolds designed for improved airflow and horsepower gains. This aftermarket demand further drives the growth of intake manifold solutions tailored for sports cars. Moreover, advancements in materials and manufacturing technologies have enabled the development of advanced intake manifold designs that offer superior thermal management and reduced air resistance, contributing to enhanced engine efficiency and performance in sports cars. As a result of these factors, the sports car segment continues to dominate the global automotive intake manifold market, supported by ongoing innovations and the performance-driven preferences of enthusiasts and manufacturers alike.

Regional Insights

The global automotive intake manifold market exhibits varied dynamics across different regions, influenced by regional automotive industries, regulatory environments, and technological advancements. Europe & CIS emerge as the dominant region in the global automotive intake manifold market for several compelling reasons. Europe is renowned for its strong automotive industry, encompassing both traditional automakers and luxury sports car manufacturers. This diversity in the automotive sector drives significant demand for intake manifold systems that cater to a wide range of vehicle types, from compact cars to high-performance sports vehicles. The region's stringent emissions regulations also push automakers to adopt advanced intake manifold technologies that enhance engine efficiency and reduce environmental impact.

Additionally, Europe's focus on vehicle electrification and hybridization has spurred innovations in intake manifold designs. Electric vehicles (EVs) and hybrid vehicles require efficient thermal management and airflow control, which are critical functions provided by modern intake manifold systems. Moreover, CIS countries contribute to this dominance by bolstering production capacities and technological advancements in automotive manufacturing. The region's strategic geographical location facilitates robust trade and collaboration with European automotive markets, further enhancing the intake manifold market's growth and development. Furthermore, Europe's commitment to sustainability and stringent safety standards drives continuous advancements in intake manifold materials and manufacturing processes. Lightweight materials such as composites and aluminum alloys are increasingly favored to improve fuel efficiency and vehicle performance. In conclusion, Europe & CIS lead the global automotive intake manifold market through a combination of technological innovation, regulatory compliance, diverse automotive production capabilities, and a strong commitment to enhancing vehicle performance and sustainability across the automotive sector.

Key Market Players

Edelbrock Group

Marelli Holdings Co., Ltd.

Rochling SE & Co. KG

Holley Performance Products Inc.

Sogefi S.p.A

Hitachi Astemo, Ltd.

Aisin Corporation

MAHLE GmbH

Donaldson Company, Inc.

Mikuni Corporation

Report Scope:

In this report, the Global Automotive Intake Manifold Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automotive Intake Manifold Market, By Vehicle Type:

    Light Commercial Vehicle Heavy Commercial Vehicles Sports Cars

Automotive Intake Manifold Market, By Product Type:

    Single Plane Manifolds Dual Plane Manifolds EFI Manifolds HI-RAM Manifolds Supercharger Intake Manifolds

Automotive Intake Manifold Market, By Material:

    Aluminum Plastic Magnesium Other Composites

Automotive Intake Manifold Market, By Region:

    Asia-Pacific

China

India

Japan

Indonesia

Thailand

South Korea

Australia

    Europe & CIS

Germany

Spain

France

Russia

Italy

United Kingdom

Belgium

    North America

United States

Canada

Mexico

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Turkey

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automotive Intake Manifold Market.

Available Customizations:

Global Automotive Intake Manifold market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Product Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Impact of COVID-19 on Global Automotive Intake Manifold Market

5. Global Automotive Intake Manifold Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Vehicle Type Market Share Analysis (Light Commercial Vehicles, Heavy Commercial Vehicles, and Sports Cars)
    • 5.2.2. By Product Type Market Share Analysis (Single Plane Manifolds, Dual Plane Manifolds, EFI Manifolds, HI-RAM Manifolds, Supercharger Intake Manifolds)
    • 5.2.3. By Material Market Share Analysis (Aluminium, Plastic, Magnesium, and Other Composites)
    • 5.2.4. By Regional Market Share Analysis
      • 5.2.4.1. Asia-Pacific Market Share Analysis
      • 5.2.4.2. Europe & CIS Market Share Analysis
      • 5.2.4.3. North America Market Share Analysis
      • 5.2.4.4. South America Market Share Analysis
      • 5.2.4.5. Middle East & Africa Market Share Analysis
    • 5.2.5. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2023)
  • 5.3. Global Automotive Intake Manifold Market Mapping & Opportunity Assessment
    • 5.3.1. By Vehicle Type Market Mapping & Opportunity Assessment
    • 5.3.2. By Product Type Market Mapping & Opportunity Assessment
    • 5.3.3. By Material Market Mapping & Opportunity Assessment
    • 5.3.4. By Regional Market Mapping & Opportunity Assessment

6. Asia-Pacific Automotive Intake Manifold Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Vehicle Type Market Share Analysis
    • 6.2.2. By Product Type Market Share Analysis
    • 6.2.3. By Material Market Share Analysis
    • 6.2.4. By Country Market Share Analysis
      • 6.2.4.1. China Market Share Analysis
      • 6.2.4.2. India Market Share Analysis
      • 6.2.4.3. Japan Market Share Analysis
      • 6.2.4.4. Indonesia Market Share Analysis
      • 6.2.4.5. Thailand Market Share Analysis
      • 6.2.4.6. South Korea Market Share Analysis
      • 6.2.4.7. Australia Market Share Analysis
      • 6.2.4.8. Rest of Asia-Pacific Market Share Analysis
  • 6.3. Asia-Pacific: Country Analysis
    • 6.3.1. China Automotive Intake Manifold Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Vehicle Type Market Share Analysis
        • 6.3.1.2.2. By Product Type Market Share Analysis
        • 6.3.1.2.3. By Material Market Share Analysis
    • 6.3.2. India Automotive Intake Manifold Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Vehicle Type Market Share Analysis
        • 6.3.2.2.2. By Product Type Market Share Analysis
        • 6.3.2.2.3. By Material Market Share Analysis
    • 6.3.3. Japan Automotive Intake Manifold Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Vehicle Type Market Share Analysis
        • 6.3.3.2.2. By Product Type Market Share Analysis
        • 6.3.3.2.3. By Material Market Share Analysis
    • 6.3.4. Indonesia Automotive Intake Manifold Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Vehicle Type Market Share Analysis
        • 6.3.4.2.2. By Product Type Market Share Analysis
        • 6.3.4.2.3. By Material Market Share Analysis
    • 6.3.5. Thailand Automotive Intake Manifold Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Vehicle Type Market Share Analysis
        • 6.3.5.2.2. By Product Type Market Share Analysis
        • 6.3.5.2.3. By Material Market Share Analysis
    • 6.3.6. South Korea Automotive Intake Manifold Market Outlook
      • 6.3.6.1. Market Size & Forecast
        • 6.3.6.1.1. By Value
      • 6.3.6.2. Market Share & Forecast
        • 6.3.6.2.1. By Vehicle Type Market Share Analysis
        • 6.3.6.2.2. By Product Type Market Share Analysis
        • 6.3.6.2.3. By Material Market Share Analysis
    • 6.3.7. Australia Automotive Intake Manifold Market Outlook
      • 6.3.7.1. Market Size & Forecast
        • 6.3.7.1.1. By Value
      • 6.3.7.2. Market Share & Forecast
        • 6.3.7.2.1. By Vehicle Type Market Share Analysis
        • 6.3.7.2.2. By Product Type Market Share Analysis
        • 6.3.7.2.3. By Material Market Share Analysis

7. Europe & CIS Automotive Intake Manifold Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Vehicle Type Market Share Analysis
    • 7.2.2. By Product Type Market Share Analysis
    • 7.2.3. By Material Market Share Analysis
    • 7.2.4. By Country Market Share Analysis
      • 7.2.4.1. Germany Market Share Analysis
      • 7.2.4.2. Spain Market Share Analysis
      • 7.2.4.3. France Market Share Analysis
      • 7.2.4.4. Russia Market Share Analysis
      • 7.2.4.5. Italy Market Share Analysis
      • 7.2.4.6. United Kingdom Market Share Analysis
      • 7.2.4.7. Belgium Market Share Analysis
      • 7.2.4.8. Rest of Europe & CIS Market Share Analysis
  • 7.3. Europe & CIS: Country Analysis
    • 7.3.1. Germany Automotive Intake Manifold Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Vehicle Type Market Share Analysis
        • 7.3.1.2.2. By Product Type Market Share Analysis
        • 7.3.1.2.3. By Material Market Share Analysis
    • 7.3.2. Spain Automotive Intake Manifold Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Vehicle Type Market Share Analysis
        • 7.3.2.2.2. By Product Type Market Share Analysis
        • 7.3.2.2.3. By Material Market Share Analysis
    • 7.3.3. France Automotive Intake Manifold Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Vehicle Type Market Share Analysis
        • 7.3.3.2.2. By Product Type Market Share Analysis
        • 7.3.3.2.3. By Material Market Share Analysis
    • 7.3.4. Russia Automotive Intake Manifold Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Vehicle Type Market Share Analysis
        • 7.3.4.2.2. By Product Type Market Share Analysis
        • 7.3.4.2.3. By Material Market Share Analysis
    • 7.3.5. Italy Automotive Intake Manifold Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Vehicle Type Market Share Analysis
        • 7.3.5.2.2. By Product Type Market Share Analysis
        • 7.3.5.2.3. By Material Market Share Analysis
    • 7.3.6. United Kingdom Automotive Intake Manifold Market Outlook
      • 7.3.6.1. Market Size & Forecast
        • 7.3.6.1.1. By Value
      • 7.3.6.2. Market Share & Forecast
        • 7.3.6.2.1. By Vehicle Type Market Share Analysis
        • 7.3.6.2.2. By Product Type Market Share Analysis
        • 7.3.6.2.3. By Material Market Share Analysis
    • 7.3.7. Belgium Automotive Intake Manifold Market Outlook
      • 7.3.7.1. Market Size & Forecast
        • 7.3.7.1.1. By Value
      • 7.3.7.2. Market Share & Forecast
        • 7.3.7.2.1. By Vehicle Type Market Share Analysis
        • 7.3.7.2.2. By Product Type Market Share Analysis
        • 7.3.7.2.3. By Material Market Share Analysis

8. North America Automotive Intake Manifold Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Vehicle Type Market Share Analysis
    • 8.2.2. By Product Type Market Share Analysis
    • 8.2.3. By Material Market Share Analysis
    • 8.2.4. By Country Market Share Analysis
      • 8.2.4.1. United States Market Share Analysis
      • 8.2.4.2. Mexico Market Share Analysis
      • 8.2.4.3. Canada Market Share Analysis
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Automotive Intake Manifold Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Vehicle Type Market Share Analysis
        • 8.3.1.2.2. By Product Type Market Share Analysis
        • 8.3.1.2.3. By Material Market Share Analysis
    • 8.3.2. Mexico Automotive Intake Manifold Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Vehicle Type Market Share Analysis
        • 8.3.2.2.2. By Product Type Market Share Analysis
        • 8.3.2.2.3. By Material Market Share Analysis
    • 8.3.3. Canada Automotive Intake Manifold Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Vehicle Type Market Share Analysis
        • 8.3.3.2.2. By Product Type Market Share Analysis
        • 8.3.3.2.3. By Material Market Share Analysis

9. South America Automotive Intake Manifold Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Vehicle Type Market Share Analysis
    • 9.2.2. By Product Type Market Share Analysis
    • 9.2.3. By Material Market Share Analysis
    • 9.2.4. By Country Market Share Analysis
      • 9.2.4.1. Brazil Market Share Analysis
      • 9.2.4.2. Argentina Market Share Analysis
      • 9.2.4.3. Colombia Market Share Analysis
      • 9.2.4.4. Rest of South America Market Share Analysis
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Automotive Intake Manifold Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Vehicle Type Market Share Analysis
        • 9.3.1.2.2. By Product Type Market Share Analysis
        • 9.3.1.2.3. By Material Market Share Analysis
    • 9.3.2. Colombia Automotive Intake Manifold Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Vehicle Type Market Share Analysis
        • 9.3.2.2.2. By Product Type Market Share Analysis
        • 9.3.2.2.3. By Material Market Share Analysis
    • 9.3.3. Argentina Automotive Intake Manifold Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Vehicle Type Market Share Analysis
        • 9.3.3.2.2. By Product Type Market Share Analysis
        • 9.3.3.2.3. By Material Market Share Analysis

10. Middle East & Africa Automotive Intake Manifold Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Vehicle Type Market Share Analysis
    • 10.2.2. By Product Type Market Share Analysis
    • 10.2.3. By Material Market Share Analysis
    • 10.2.4. By Country Market Share Analysis
      • 10.2.4.1. South Africa Market Share Analysis
      • 10.2.4.2. Turkey Market Share Analysis
      • 10.2.4.3. Saudi Arabia Market Share Analysis
      • 10.2.4.4. UAE Market Share Analysis
      • 10.2.4.5. Rest of Middle East & Africa Market Share Analysis
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. South Africa Automotive Intake Manifold Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Vehicle Type Market Share Analysis
        • 10.3.1.2.2. By Product Type Market Share Analysis
        • 10.3.1.2.3. By Material Market Share Analysis
    • 10.3.2. Turkey Automotive Intake Manifold Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Vehicle Type Market Share Analysis
        • 10.3.2.2.2. By Product Type Market Share Analysis
        • 10.3.2.2.3. By Material Market Share Analysis
    • 10.3.3. Saudi Arabia Automotive Intake Manifold Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Vehicle Type Market Share Analysis
        • 10.3.3.2.2. By Product Type Market Share Analysis
        • 10.3.3.2.3. By Material Market Share Analysis
    • 10.3.4. UAE Automotive Intake Manifold Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Vehicle Type Market Share Analysis
        • 10.3.4.2.2. By Product Type Market Share Analysis
        • 10.3.4.2.3. By Material Market Share Analysis

11. SWOT Analysis

  • 11.1. Strength
  • 11.2. Weakness
  • 11.3. Opportunities
  • 11.4. Threats

12. Market Dynamics

  • 12.1. Market Drivers
  • 12.2. Market Challenges

13. Market Trends and Developments

14. Competitive Landscape

  • 14.1. Company Profiles (Up to 10 Major Companies)
    • 14.1.1. Edelbrock Group
      • 14.1.1.1. Company Details
      • 14.1.1.2. Key Product Offered
      • 14.1.1.3. Financials (As Per Availability)
      • 14.1.1.4. Recent Developments
      • 14.1.1.5. Key Management Personnel
    • 14.1.2. Marelli Holdings Co., Ltd.
      • 14.1.2.1. Company Details
      • 14.1.2.2. Key Product Offered
      • 14.1.2.3. Financials (As Per Availability)
      • 14.1.2.4. Recent Developments
      • 14.1.2.5. Key Management Personnel
    • 14.1.3. Rochling SE & Co. KG
      • 14.1.3.1. Company Details
      • 14.1.3.2. Key Product Offered
      • 14.1.3.3. Financials (As Per Availability)
      • 14.1.3.4. Recent Developments
      • 14.1.3.5. Key Management Personnel
    • 14.1.4. Holley Performance Products Inc.
      • 14.1.4.1. Company Details
      • 14.1.4.2. Key Product Offered
      • 14.1.4.3. Financials (As Per Availability)
      • 14.1.4.4. Recent Developments
      • 14.1.4.5. Key Management Personnel
    • 14.1.5. Sogefi S.p.A
      • 14.1.5.1. Company Details
      • 14.1.5.2. Key Product Offered
      • 14.1.5.3. Financials (As Per Availability)
      • 14.1.5.4. Recent Developments
      • 14.1.5.5. Key Management Personnel
    • 14.1.6. Hitachi Astemo, Ltd.
      • 14.1.6.1. Company Details
      • 14.1.6.2. Key Product Offered
      • 14.1.6.3. Financials (As Per Availability)
      • 14.1.6.4. Recent Developments
      • 14.1.6.5. Key Management Personnel
    • 14.1.7. Aisin Corporation
      • 14.1.7.1. Company Details
      • 14.1.7.2. Key Product Offered
      • 14.1.7.3. Financials (As Per Availability)
      • 14.1.7.4. Recent Developments
      • 14.1.7.5. Key Management Personnel
    • 14.1.8. MAHLE GmbH.
      • 14.1.8.1. Company Details
      • 14.1.8.2. Key Product Offered
      • 14.1.8.3. Financials (As Per Availability)
      • 14.1.8.4. Recent Developments
      • 14.1.8.5. Key Management Personnel
    • 14.1.9. Donaldson Company, Inc.
      • 14.1.9.1. Company Details
      • 14.1.9.2. Key Product Offered
      • 14.1.9.3. Financials (As Per Availability)
      • 14.1.9.4. Recent Developments
      • 14.1.9.5. Key Management Personnel
    • 14.1.10. Mikuni Corporation
      • 14.1.10.1. Company Details
      • 14.1.10.2. Key Product Offered
      • 14.1.10.3. Financials (As Per Availability)
      • 14.1.10.4. Recent Developments
      • 14.1.10.5. Key Management Personnel

15. Strategic Recommendations

  • 15.1. Key Focus Areas
    • 15.1.1. Target Regions
    • 15.1.2. Target Vehicle Type
    • 15.1.3. Target Product Type

16. About Us & Disclaimer