封面
市場調查報告書
商品編碼
1527258

汽車電子膨脹閥市場 - 全球產業規模、佔有率、趨勢、機會和預測,按類型(電磁和電動)、車輛類型(商用車、乘用車)、地區和競爭細分,2019-2029F

Automotive Electronic Expansion Valve Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type (Electromagnetic and Electric), By Vehicle Type (Commercial Vehicles, Passenger Cars), By Region & Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023 年全球汽車電子膨脹閥市場價值為 5.923 億美元,預計在預測期內將強勁成長,到 2029 年複合年成長率為 6.67%。電子膨脹閥是汽車空調系統中的關鍵部件,可精確控制冷媒流量,以最佳化冷卻效率並保持駕駛室舒適度。隨著汽車產業轉向更複雜、更節能的氣候控制解決方案,EXV 的採用也越來越廣泛。這一轉變是由提高燃油經濟性、減少排放和提高乘客舒適度的需求所推動的,這些都是消費者和製造商的首要任務。

市場概況
預測期 2026-2030
2023 年市場規模 5.923億美元
2029 年市場規模 94154萬美元
2024-2029 年複合年成長率 6.67%
成長最快的細分市場 電的
最大的市場 亞太

電子膨脹閥的技術進步進一步推動了市場的發展。現代 EXV 結合了先進的感測器和微控制器,可以根據不同的操作條件即時監控和調整冷媒流量。這種精確的控制不僅提高了空調系統的效率,還降低了車輛的整體能耗。此外,EXV 與車輛管理系統的整合可以更好地協調熱管理功能,有助於提高性能和可靠性。隨著汽車製造商努力滿足嚴格的監管標準和消費者期望,對高性能 EXV 的需求持續成長。

電動和混合動力車的成長趨勢也是汽車 EXV 市場的重要推動力。電動車 (EV) 和混合動力車需要高效的熱管理系統來維持最佳的電池性能和使用壽命。 EXV 在這些系統中發揮至關重要的作用,可確保車內有效散熱並保持一致的溫度水平。此外,隨著自動駕駛和先進資訊娛樂系統等功能的現代化車輛日益複雜,需要更強大、更有效率的氣候控制解決方案。不斷擴大的電動車和混合動力市場,加上汽車技術的持續創新,預計將在未來幾年維持汽車 EXV 市場的成長。

市場促進因素

技術進步:熱管理領域開創性的精度和效率

嚴格的監管要求:能源效率和減排的催化劑

汽車電氣化:推動高效率熱管理的需求

汽車電氣化:推動高效率熱管理的需求

關注能源效率:解決消費者需求與環境問題

全球擴張與新興市場:利用汽車成長中心

主要市場挑戰

技術複雜性與整合挑戰:引領 EEV 技術的發展

監管不確定性與合規挑戰:應對不斷變化的格局

轉型為電氣化:讓 EEV 適應電動車時代

環境永續性和冷媒轉型:平衡性能和環保實踐

主要市場趨勢

技術進步:EEV 技術演進的核心

汽車電氣化:EEV 採用的驅動力

關注能源效率與環境永續性:暖通空調系統綠色化

整合到自動駕駛和連網汽車:為智慧熱管理鋪平道路

全球市場擴張與區域動態:應對市場挑戰與機遇

細分市場洞察

類型分析

區域洞察

目錄

第 1 章:簡介

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:COVID-19 對全球汽車電子膨脹閥市場的影響

第 5 章:全球汽車電子膨脹閥市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型(電磁和電氣)
    • 按車型(商用車、乘用車)
    • 按地區分類
    • 按公司分類(前 5 名公司、其他 - 按價值,2023 年)
  • 全球汽車電子膨脹閥市場地圖與機會評估
    • 按類型
    • 按車型分類
    • 按地區分類

第 6 章:亞太地區汽車電子膨脹閥市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按車型分類
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 印尼
    • 泰國
    • 韓國
    • 澳洲

第 7 章:歐洲與獨立國協汽車電子膨脹閥市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按車型分類
    • 按國家/地區
  • 歐洲與獨立國協:國家分析
    • 德國
    • 西班牙
    • 法國
    • 俄羅斯
    • 義大利
    • 英國
    • 比利時

第 8 章:北美汽車電子膨脹閥市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按車型分類
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 9 章:南美洲汽車電子膨脹閥市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按車型分類
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 哥倫比亞
    • 阿根廷

第 10 章:中東和非洲汽車電子膨脹閥市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按車型分類
    • 按國家/地區
  • 中東和非洲:國家分析
    • 南非
    • 土耳其
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國

第 11 章:SWOT 分析

  • 力量
  • 弱點
  • 機會
  • 威脅

第 12 章:市場動態

  • 市場促進因素
  • 市場挑戰

第 13 章:市場趨勢與發展

第14章:競爭格局

  • 公司簡介(最多10家主要公司)
    • FUJIKOKI CORPORATION
    • Sanhua Holding Group Co., Ltd.
    • RefPower Spa
    • SAGINOMIYA SEISAKUSHO, INC
    • Newell Brands Inc.
    • Emerson Electric Co.
    • Castel Srl
    • CAREL INDUSTRIES SpA
    • Semikron Danfoss Electronics Pvt. Ltd.
    • DunAn Electro-Mechanical Technology Co., Ltd.

第 15 章:策略建議

  • 重點關注領域
    • 按地區分類的目標
    • 按類型分類的目標
    • 按車輛類型分類的目標

第16章調查會社について,免責事項

簡介目錄
Product Code: 22003

Global Automotive Electronic Expansion Valve Market valued at USD 592.30 million in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 6.67% through 2029. The global automotive electronic expansion valve (EXV) market is experiencing significant growth due to the increasing demand for advanced air conditioning and thermal management systems in vehicles. Electronic expansion valves are critical components in automotive air conditioning systems, providing precise control over refrigerant flow to optimize cooling efficiency and maintain cabin comfort. As the automotive industry moves towards more sophisticated and energy-efficient climate control solutions, the adoption of EXVs is becoming more widespread. This shift is driven by the need for improved fuel economy, reduced emissions, and enhanced passenger comfort, which are key priorities for both consumers and manufacturers.

Market Overview
Forecast Period2026-2030
Market Size 2023USD 592.30 Million
Market Size 2029USD 941.54 Million
CAGR 2024-20296.67%
Fastest Growing SegmentElectric
Largest MarketAsia-Pacific

Technological advancements in electronic expansion valves are further propelling the market. Modern EXVs incorporate advanced sensors and microcontrollers that enable real-time monitoring and adjustment of refrigerant flow based on varying operating conditions. This precise control not only enhances the efficiency of air conditioning systems but also reduces the overall energy consumption of vehicles. Additionally, the integration of EXVs with vehicle management systems allows for better coordination of thermal management functions, contributing to improved performance and reliability. As automotive manufacturers strive to meet stringent regulatory standards and consumer expectations, the demand for high-performance EXVs continues to rise.

The growing trend towards electric and hybrid vehicles is also a significant driver for the automotive EXV market. Electric vehicles (EVs) and hybrids require efficient thermal management systems to maintain optimal battery performance and longevity. EXVs play a crucial role in these systems by ensuring effective heat dissipation and maintaining consistent temperature levels within the vehicle. Moreover, the increasing complexity of modern vehicles, with features such as autonomous driving and advanced infotainment systems, necessitates more robust and efficient climate control solutions. The expanding EV and hybrid market, combined with ongoing innovations in vehicle technologies, is expected to sustain the growth of the automotive EXV market in the coming years.

Market Drivers

Technological Advancements: Pioneering Precision and Efficiency in Thermal Management

At the heart of the global Automotive Electronic Expansion Valve market is a relentless drive for technological advancements. EEVs, responsible for regulating refrigerant flow in vehicle air conditioning and thermal management systems, are evolving to meet the demands of modern automotive design. Advancements in sensor technologies, control algorithms, and materials science are pivotal in enhancing the precision and efficiency of EEVs. This section will delve into the intricate technological trends propelling the market forward. Advanced sensors integrated into EEVs provide real-time data, allowing for precise control over refrigerant flow based on dynamic operating conditions. Control algorithms, including machine learning and adaptive technologies, are transforming EEVs into intelligent components that can anticipate and adapt to varying thermal management requirements. Furthermore, the use of innovative materials is contributing to the durability, reliability, and overall performance of EEVs. The integration of EEVs into smart and connected vehicle systems will also be explored, unraveling the potential for seamless integration with the broader automotive ecosystem.

Stringent Regulatory Mandates: Catalysts for Energy Efficiency and Emission Reduction

The global automotive industry operates within a complex regulatory landscape, with governments and international bodies setting stringent standards for vehicle efficiency and emissions. Regulatory mandates are serving as catalysts for the adoption of advanced technologies, including electronic expansion valves, to enhance energy efficiency and reduce the environmental impact of vehicle thermal management systems.

This section will provide an in-depth analysis of the regulatory landscape shaping the Automotive Electronic Expansion Valve market. We will explore how emissions standards and energy efficiency requirements are influencing the integration of EEVs into vehicle HVAC systems. The role of regional and global regulatory bodies, such as the Environmental Protection Agency (EPA) and the European Union's emission standards, will be examined. Understanding the regulatory environment is crucial for industry stakeholders seeking to align their strategies with evolving standards and maintain compliance in a rapidly changing automotive landscape.

Electrification of Vehicles: Driving Demand for Efficient Thermal Management

Electrification of Vehicles: Driving Demand for Efficient Thermal Management

The electrification of vehicles is a transformative trend reshaping the automotive industry. Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are becoming increasingly prevalent as the industry seeks to reduce reliance on traditional internal combustion engines. This shift towards electrification has a direct impact on the demand for efficient thermal management systems, where electronic expansion valves play a crucial role in maintaining optimal operating conditions for electric powertrains and battery systems.

This section will explore the symbiotic relationship between the electrification of vehicles and the demand for electronic expansion valves. The unique challenges posed by high-power electric systems and the specific requirements of electric vehicle air conditioning systems underscore the growing importance of EEVs in the electrified automotive landscape. The market dynamics influenced by the increasing adoption of EVs and HEVs will be thoroughly examined, providing insights into the expanding role of EEVs in the era of electric mobility.

For instance, in February 2024, researchers from Birmingham University introduced a new microwave-based thermochemical HVAC system for electric vehicles. The e-Thermal Bank system aimed to boost vehicle range by up to 70 percent by serving as an additional power source and reducing the battery's HVAC workload. This innovation targeted range losses caused by extreme temperatures, which can diminish range by up to 40 percent, as noted by the AAA. The advancement marked a significant leap in optimizing thermal management in electric vehicles.

Focus on Energy Efficiency: Addressing Consumer Demands and Environmental Concerns

Energy efficiency has become a focal point for both consumers and regulatory bodies. As fuel efficiency and reduced energy consumption become integral to the automotive industry's goals, electronic expansion valves play a crucial role in achieving optimal thermal management, contributing to overall vehicle efficiency.

This section will delve into the market trends driven by the industry's commitment to energy efficiency. EEVs, by providing precise control over refrigerant flow, contribute to optimizing the performance of HVAC systems, resulting in reduced energy consumption. The adoption of EEVs aligns with the broader industry trend of lightweighting and efficiency improvements across vehicle components. Additionally, the use of low-global-warming-potential (GWP) refrigerants in conjunction with EEVs is gaining traction, reflecting a commitment to environmentally responsible practices. Understanding how EEVs contribute to the overarching goal of energy efficiency is essential for stakeholders navigating the evolving landscape of the automotive industry.

For instance, in May 2023, Carrier Transicold introduced the Supra eCool truck refrigeration units, focusing on improving energy efficiency and environmental sustainability. The Supra e9 and e11 models, part of this new series, offered a cleaner alternative to diesel units while maintaining comparable refrigeration capabilities. Designed for trucks ranging from 14 to 28 feet in Class 5 to 7, these units eliminated the need for fuel, reduced emissions, and minimized noise. They featured maintenance-free components and used R-452A refrigerant, which has a lower global warming

Global Expansion and Emerging Markets: Capitalizing on Automotive Growth Centers

The automotive industry is not only influenced by technological advancements and regulatory mandates but also by global market dynamics. As emerging economies become significant contributors to automotive production and consumption, the demand for advanced components like electronic expansion valves is on the rise. Understanding global expansion trends and the dynamics of emerging markets is essential for industry stakeholders seeking to capitalize on growth opportunities.

This section will provide a detailed analysis of the global market trends influencing the Automotive Electronic Expansion Valve market. Emerging economies, characterized by increased automotive production and a growing middle class, are becoming key drivers of market growth. Regional preferences, regulatory variations, and competitive landscapes will be explored to unravel the complexities that define the global Automotive Electronic Expansion Valve market. The role of strategic partnerships, mergers, and acquisitions in navigating global market dynamics will also be examined, offering insights into the competitive strategies employed by key players in the industry.

Key Market Challenges

Technological Complexity and Integration Challenges: Navigating the Evolution of EEV Technology

The relentless pace of technological advancements, while a driver for the Automotive Electronic Expansion Valve market, also presents significant challenges. The increasing complexity of EEV technology, characterized by sophisticated sensors, adaptive control algorithms, and integration into connected vehicle systems, poses hurdles for manufacturers and automotive engineers. This section will delve into the technological challenges faced by the Automotive Electronic Expansion Valve market. As EEVs evolve to meet the demands of modern automotive design, manufacturers encounter integration challenges with existing vehicle systems. The need for seamless compatibility with diverse vehicle architectures and control systems complicates the design and implementation of EEVs. Moreover, the demand for miniaturization and lightweight designs introduces engineering challenges in maintaining optimal performance while adhering to space and weight constraints. The integration of EEVs into connected vehicle ecosystems also requires addressing cybersecurity concerns to ensure the resilience of these critical components against potential threats.

Regulatory Uncertainties and Compliance Challenges: Navigating a Shifting Landscape

The automotive industry operates within a web of regulatory frameworks, and the regulatory landscape for EEVs is subject to continuous evolution. Compliance with existing and emerging regulations presents challenges for manufacturers, particularly as environmental standards and emissions requirements undergo changes. This section will provide a detailed analysis of the regulatory challenges faced by the Automotive Electronic Expansion Valve market. Regulatory uncertainties, stemming from the diverse standards set by different regions and countries, can create a complex landscape for manufacturers seeking global market presence. Compliance with emissions standards, refrigerant regulations, and energy efficiency requirements necessitates continuous adaptation to evolving regulatory frameworks. Furthermore, the global nature of the automotive industry requires manufacturers to navigate a diverse range of standards, adding complexity to the design, testing, and certification processes.

Transition to Electrification: Adapting EEVs to the Era of Electric Vehicles

The global shift towards vehicle electrification, while a driver for EEV adoption, also presents unique challenges. The requirements for thermal management in electric vehicles (EVs) differ significantly from traditional internal combustion engine vehicles, requiring manufacturers to adapt EEV technology to suit the distinct characteristics of electric powertrains. This section will explore the challenges posed by the transition to electrification in the Automotive Electronic Expansion Valve market. EVs demand not only efficient air conditioning for occupant comfort but also precise thermal management for battery systems. The high-power electric systems in EVs introduce challenges in terms of EEV performance, durability, and compatibility with the unique thermal characteristics of electric powertrains. Moreover, the rapid pace of innovation in the electric vehicle sector necessitates agile responses from EEV manufacturers to keep pace with the evolving requirements of the electrified automotive landscape.

Environmental Sustainability and Refrigerant Transitions: Balancing Performance and Eco-Friendly Practices

The automotive industry's commitment to environmental sustainability, while commendable, introduces challenges for the Automotive Electronic Expansion Valve market. The shift towards eco-friendly refrigerants, driven by global initiatives to reduce greenhouse gas emissions and address climate change, requires EEV manufacturers to balance performance considerations with environmental responsibility. This section will delve into the challenges associated with the adoption of environmentally friendly refrigerants in the Automotive Electronic Expansion Valve market. The industry's transition away from high-global-warming-potential (GWP) refrigerants poses challenges in terms of compatibility, efficiency, and performance. EEV manufacturers must navigate the complexities of developing valves that not only comply with evolving refrigerant standards but also maintain the high standards of thermal management required for vehicle comfort and efficiency. Striking the right balance between environmental sustainability and performance remains a formidable challenge in the development and adoption of EEV technologies.

Key Market Trends

Technological Advancements: The Core of Evolution in EEV Technology

At the heart of the Automotive Electronic Expansion Valve market lies a continuous stream of technological advancements that redefine the landscape of refrigeration and air conditioning systems in vehicles. EEVs play a crucial role in regulating refrigerant flow, ensuring optimal cooling performance, and contributing to overall energy efficiency. The integration of advanced sensors, precise control algorithms, and adaptive technologies is transforming EEVs into sophisticated components that respond dynamically to varying operating conditions. This section will delve into the intricate technological trends shaping the Automotive Electronic Expansion Valve market. From the evolution of sensor technologies to the utilization of machine learning algorithms for predictive control, we will explore how these advancements enhance the efficiency and responsiveness of EEVs. Additionally, the integration of electronic expansion valves into smart and connected vehicle systems will be analyzed, unraveling the potential of these technologies to redefine the future of automotive thermal management.

Electrification of Vehicles: A Driving Force for EEV Adoption

The global automotive landscape is witnessing a sweeping wave of electrification, with electric vehicles (EVs) and hybrid electric vehicles (HEVs) gaining prominence. As the industry pivots towards greener and more sustainable transportation solutions, the role of the electronic expansion valve becomes increasingly critical. EEVs contribute to the efficient thermal management of electric powertrains and battery systems, ensuring optimal operating temperatures for enhanced performance and longevity. This section will explore the symbiotic relationship between the electrification of vehicles and the adoption of electronic expansion valves. From the challenges posed by high-power electric systems to the unique requirements of electric vehicle air conditioning, we will analyze how EEVs are evolving to meet the specific demands of electrified mobility. The impact of electrification on the growth trajectory of the Automotive Electronic Expansion Valve market will be thoroughly examined, providing insights into the expanding role of EEVs in the era of electric mobility.

Focus on Energy Efficiency and Environmental Sustainability: Greening the HVAC Systems

With a growing emphasis on environmental sustainability and stringent regulations targeting vehicle emissions, the automotive industry is increasingly prioritizing energy-efficient and eco-friendly solutions. Electronic expansion valves play a pivotal role in this shift, enabling precise control over refrigerant flow and optimizing the performance of heating, ventilation, and air conditioning (HVAC) systems. This section will delve into the market trends driven by the industry's commitment to energy efficiency and environmental sustainability. From the adoption of low-global-warming-potential (GWP) refrigerants to the optimization of HVAC systems for reduced energy consumption, we will explore how electronic expansion valves contribute to greening automotive thermal management. The influence of regulatory standards and global initiatives on the development and adoption of environmentally responsible EEV technologies will also be examined.

Integration into Autonomous and Connected Vehicles: Paving the Way for Smart Thermal Management

The automotive landscape is rapidly advancing towards the era of autonomous and connected vehicles. As vehicles become more intelligent and interconnected, the role of electronic expansion valves extends beyond traditional thermal management. EEVs are evolving to become integral components of advanced HVAC systems that contribute to occupant comfort, health, and overall vehicle efficiency. This section will explore the trends associated with the integration of electronic expansion valves into autonomous and connected vehicle platforms. From the use of artificial intelligence for predictive climate control to the communication between EEVs and vehicle-to-everything (V2X) systems, we will analyze how EEVs are becoming key contributors to the smart and connected driving experience. The challenges and opportunities presented by the intersection of EEV technologies with autonomous and connected vehicles will be thoroughly examined.

Global Market Expansion and Regional Dynamics: Navigating Market Challenges and Opportunities

The Automotive Electronic Expansion Valve market is not immune to the intricacies of global and regional market dynamics. The trends in market expansion, regional preferences, and the impact of geopolitical factors play a pivotal role in shaping the trajectory of the EEV market. Understanding these dynamics is essential for industry stakeholders seeking to navigate challenges and capitalize on emerging opportunities. This section will provide an in-depth analysis of the global market trends, exploring factors such as the influence of emerging economies, regional regulations, and the competitive landscape. From market penetration strategies to the challenges posed by diverse regulatory environments, we will unravel the complexities that define the global Automotive Electronic Expansion Valve market. The role of strategic partnerships, mergers, and acquisitions in shaping market dynamics will also be examined, offering insights into the competitive strategies employed by key players in the industry.

Segmental Insights

Type Analysis

The global automotive electronic expansion valve (EXV) market, segmented by type into electromagnetic and electric EXVs, reflects the diverse technological approaches to optimizing vehicle climate control systems. Electromagnetic EXVs operate using a solenoid mechanism to regulate refrigerant flow, providing precise control and quick response to changing air conditioning demands. These valves are favored for their reliability and ability to handle varying pressures and temperatures, making them suitable for a wide range of automotive applications. Their straightforward design and robustness ensure consistent performance, which is crucial for maintaining optimal cabin comfort and vehicle efficiency.

Electric EXVs, on the other hand, utilize stepper motors or similar electric actuators to control the valve's opening and closing. This type of EXV offers even greater precision in refrigerant flow regulation, as the stepper motor allows for fine-tuned adjustments in response to real-time data from the vehicle's climate control system. Electric EXVs are particularly beneficial in advanced air conditioning systems that require sophisticated control strategies to enhance energy efficiency and passenger comfort. These valves can be easily integrated with modern electronic control units (ECUs), enabling seamless communication and coordination within the vehicle's thermal management system.

Both types of electronic expansion valves contribute to the overall efficiency and effectiveness of automotive air conditioning systems, though they are chosen based on specific vehicle requirements and design considerations. Electromagnetic EXVs are often selected for their durability and quick responsiveness, making them ideal for conventional vehicles with less complex climate control needs. In contrast, electric EXVs are increasingly used in electric and hybrid vehicles, as well as high-end automotive models, where precision and advanced control are paramount. The ongoing advancements in automotive technology and the rising demand for energy-efficient and environmentally friendly vehicles continue to drive the development and adoption of both electromagnetic and electric EXVs in the global market.

Regional Insights

The global market for automotive electronic expansion valves (EXVs) exhibits varied growth patterns across different regions, each influenced by unique automotive industry dynamics and technological advancements. Asia Pacific stands out as the dominant region in the global market for automotive electronic expansion valves (EXVs) due to several key factors driving its prominence. Asia Pacific is home to some of the world's largest automotive manufacturing hubs, including China, Japan, South Korea, and India. These countries have robust automotive industries with extensive production capacities for passenger cars, commercial vehicles, and electric vehicles (EVs). The demand for EXVs in these vehicles is driven by the need for efficient air conditioning and refrigeration systems, which are essential for vehicle comfort and performance across diverse climates.

Moreover, Asia Pacific's rapid industrialization and urbanization have led to an increase in vehicle ownership and a growing middle-class population with disposable income. This demographic shift fuels the demand for vehicles equipped with advanced HVAC (Heating, Ventilation, and Air Conditioning) systems, where EXVs play a crucial role in optimizing refrigerant flow and temperature regulation. Furthermore, technological advancements and innovations in automotive electronics in Asia Pacific contribute to the adoption of EXVs. These valves help improve energy efficiency, reduce emissions, and enhance overall system performance in modern vehicles, aligning with stringent environmental regulations and sustainability goals in the region. Additionally, strategic initiatives by automotive OEMs and component manufacturers to expand their production capabilities and R&D investments in Asia Pacific further bolster the market for EXVs. Collaborations between international and local players also facilitate technology transfer and adoption, reinforcing Asia Pacific's leadership in the global automotive electronic expansion valves market. In conclusion, Asia Pacific's strong automotive manufacturing base, increasing vehicle ownership, technological advancements, and supportive regulatory environment collectively position the region as the dominant force in the global market for automotive electronic expansion valves (EXVs).

Key Market Players

FUJIKOKI CORPORATION

Sanhua Holding Group Co., Ltd.

RefPower S.p.a.

SAGINOMIYA SEISAKUSHO, INC

Newell Brands Inc.

Emerson Electric Co.

Castel S.r.l.

CAREL INDUSTRIES S.p.A.

Semikron Danfoss Electronics Pvt. Ltd.

DunAn Electro-Mechanical Technology Co., Ltd.

Report Scope:

In this report, the Global Automotive Electronic Expansion Valve Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automotive Electronic Expansion Valve Market, By Type:

    Electromagnetic Electric

Automotive Electronic Expansion Valve Market, By Vehicle Type:

    Commercial Vehicles Passenger Cars

Automotive Electronic Expansion Valve Market, By Region:

    Asia-Pacific
    • China
    • India
    • Japan
    • Indonesia
    • Thailand
    • South Korea
    • Australia
    Europe & CIS
    • Germany
    • Spain
    • France
    • Russia
    • Italy
    • United Kingdom
    • Belgium
    North America
    • United States
    • Canada
    • Mexico
    South America
    • Brazil
    • Argentina
    • Colombia
    Middle East & Africa
    • South Africa
    • Turkey
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automotive Electronic Expansion Valve Market.

Available Customizations:

Global Automotive Electronic Expansion Valve market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Product Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Impact of COVID-19 on Global Automotive Electronic Expansion Valve Market

5. Global Automotive Electronic Expansion Valve Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type Market Share Analysis (Electromagnetic and Electric)
    • 5.2.2. By Vehicle Type Market Share Analysis (Commercial Vehicles, Passenger Cars)
    • 5.2.3. By Regional Market Share Analysis
      • 5.2.3.1. Asia-Pacific Market Share Analysis
      • 5.2.3.2. Europe & CIS Market Share Analysis
      • 5.2.3.3. North America Market Share Analysis
      • 5.2.3.4. South America Market Share Analysis
      • 5.2.3.5. Middle East & Africa Market Share Analysis
    • 5.2.4. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2023)
  • 5.3. Global Automotive Electronic Expansion Valve Market Mapping & Opportunity Assessment
    • 5.3.1. By Type Market Mapping & Opportunity Assessment
    • 5.3.2. By Vehicle Type Market Mapping & Opportunity Assessment
    • 5.3.3. By Regional Market Mapping & Opportunity Assessment

6. Asia-Pacific Automotive Electronic Expansion Valve Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type Market Share Analysis
    • 6.2.2. By Vehicle Type Market Share Analysis
    • 6.2.3. By Country Market Share Analysis
      • 6.2.3.1. China Market Share Analysis
      • 6.2.3.2. India Market Share Analysis
      • 6.2.3.3. Japan Market Share Analysis
      • 6.2.3.4. Indonesia Market Share Analysis
      • 6.2.3.5. Thailand Market Share Analysis
      • 6.2.3.6. South Korea Market Share Analysis
      • 6.2.3.7. Australia Market Share Analysis
      • 6.2.3.8. Rest of Asia-Pacific Market Share Analysis
  • 6.3. Asia-Pacific: Country Analysis
    • 6.3.1. China Automotive Electronic Expansion Valve Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type Market Share Analysis
        • 6.3.1.2.2. By Vehicle Type Market Share Analysis
    • 6.3.2. India Automotive Electronic Expansion Valve Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type Market Share Analysis
        • 6.3.2.2.2. By Vehicle Type Market Share Analysis
    • 6.3.3. Japan Automotive Electronic Expansion Valve Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type Market Share Analysis
        • 6.3.3.2.2. By Vehicle Type Market Share Analysis
    • 6.3.4. Indonesia Automotive Electronic Expansion Valve Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Type Market Share Analysis
        • 6.3.4.2.2. By Vehicle Type Market Share Analysis
    • 6.3.5. Thailand Automotive Electronic Expansion Valve Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Type Market Share Analysis
        • 6.3.5.2.2. By Vehicle Type Market Share Analysis
    • 6.3.6. South Korea Automotive Electronic Expansion Valve Market Outlook
      • 6.3.6.1. Market Size & Forecast
        • 6.3.6.1.1. By Value
      • 6.3.6.2. Market Share & Forecast
        • 6.3.6.2.1. By Type Market Share Analysis
        • 6.3.6.2.2. By Vehicle Type Market Share Analysis
    • 6.3.7. Australia Automotive Electronic Expansion Valve Market Outlook
      • 6.3.7.1. Market Size & Forecast
        • 6.3.7.1.1. By Value
      • 6.3.7.2. Market Share & Forecast
        • 6.3.7.2.1. By Type Market Share Analysis
        • 6.3.7.2.2. By Vehicle Type Market Share Analysis

7. Europe & CIS Automotive Electronic Expansion Valve Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type Market Share Analysis
    • 7.2.2. By Vehicle Type Market Share Analysis
    • 7.2.3. By Country Market Share Analysis
      • 7.2.3.1. Germany Market Share Analysis
      • 7.2.3.2. Spain Market Share Analysis
      • 7.2.3.3. France Market Share Analysis
      • 7.2.3.4. Russia Market Share Analysis
      • 7.2.3.5. Italy Market Share Analysis
      • 7.2.3.6. United Kingdom Market Share Analysis
      • 7.2.3.7. Belgium Market Share Analysis
      • 7.2.3.8. Rest of Europe & CIS Market Share Analysis
  • 7.3. Europe & CIS: Country Analysis
    • 7.3.1. Germany Automotive Electronic Expansion Valve Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type Market Share Analysis
        • 7.3.1.2.2. By Vehicle Type Market Share Analysis
    • 7.3.2. Spain Automotive Electronic Expansion Valve Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type Market Share Analysis
        • 7.3.2.2.2. By Vehicle Type Market Share Analysis
    • 7.3.3. France Automotive Electronic Expansion Valve Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type Market Share Analysis
        • 7.3.3.2.2. By Vehicle Type Market Share Analysis
    • 7.3.4. Russia Automotive Electronic Expansion Valve Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type Market Share Analysis
        • 7.3.4.2.2. By Vehicle Type Market Share Analysis
    • 7.3.5. Italy Automotive Electronic Expansion Valve Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type Market Share Analysis
        • 7.3.5.2.2. By Vehicle Type Market Share Analysis
    • 7.3.6. United Kingdom Automotive Electronic Expansion Valve Market Outlook
      • 7.3.6.1. Market Size & Forecast
        • 7.3.6.1.1. By Value
      • 7.3.6.2. Market Share & Forecast
        • 7.3.6.2.1. By Type Market Share Analysis
        • 7.3.6.2.2. By Vehicle Type Market Share Analysis
    • 7.3.7. Belgium Automotive Electronic Expansion Valve Market Outlook
      • 7.3.7.1. Market Size & Forecast
        • 7.3.7.1.1. By Value
      • 7.3.7.2. Market Share & Forecast
        • 7.3.7.2.1. By Type Market Share Analysis
        • 7.3.7.2.2. By Vehicle Type Market Share Analysis

8. North America Automotive Electronic Expansion Valve Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type Market Share Analysis
    • 8.2.2. By Vehicle Type Market Share Analysis
    • 8.2.3. By Country Market Share Analysis
      • 8.2.3.1. United States Market Share Analysis
      • 8.2.3.2. Mexico Market Share Analysis
      • 8.2.3.3. Canada Market Share Analysis
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Automotive Electronic Expansion Valve Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type Market Share Analysis
        • 8.3.1.2.2. By Vehicle Type Market Share Analysis
    • 8.3.2. Mexico Automotive Electronic Expansion Valve Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type Market Share Analysis
        • 8.3.2.2.2. By Vehicle Type Market Share Analysis
    • 8.3.3. Canada Automotive Electronic Expansion Valve Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type Market Share Analysis
        • 8.3.3.2.2. By Vehicle Type Market Share Analysis

9. South America Automotive Electronic Expansion Valve Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type Market Share Analysis
    • 9.2.2. By Vehicle Type Market Share Analysis
    • 9.2.3. By Country Market Share Analysis
      • 9.2.3.1. Brazil Market Share Analysis
      • 9.2.3.2. Argentina Market Share Analysis
      • 9.2.3.3. Colombia Market Share Analysis
      • 9.2.3.4. Rest of South America Market Share Analysis
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Automotive Electronic Expansion Valve Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type Market Share Analysis
        • 9.3.1.2.2. By Vehicle Type Market Share Analysis
    • 9.3.2. Colombia Automotive Electronic Expansion Valve Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type Market Share Analysis
        • 9.3.2.2.2. By Vehicle Type Market Share Analysis
    • 9.3.3. Argentina Automotive Electronic Expansion Valve Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type Market Share Analysis
        • 9.3.3.2.2. By Vehicle Type Market Share Analysis

10. Middle East & Africa Automotive Electronic Expansion Valve Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type Market Share Analysis
    • 10.2.2. By Vehicle Type Market Share Analysis
    • 10.2.3. By Country Market Share Analysis
      • 10.2.3.1. South Africa Market Share Analysis
      • 10.2.3.2. Turkey Market Share Analysis
      • 10.2.3.3. Saudi Arabia Market Share Analysis
      • 10.2.3.4. UAE Market Share Analysis
      • 10.2.3.5. Rest of Middle East & Africa Market Share Analysis
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. South Africa Automotive Electronic Expansion Valve Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type Market Share Analysis
        • 10.3.1.2.2. By Vehicle Type Market Share Analysis
    • 10.3.2. Turkey Automotive Electronic Expansion Valve Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type Market Share Analysis
        • 10.3.2.2.2. By Vehicle Type Market Share Analysis
    • 10.3.3. Saudi Arabia Automotive Electronic Expansion Valve Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type Market Share Analysis
        • 10.3.3.2.2. By Vehicle Type Market Share Analysis
    • 10.3.4. UAE Automotive Electronic Expansion Valve Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type Market Share Analysis
        • 10.3.4.2.2. By Vehicle Type Market Share Analysis

11. SWOT Analysis

  • 11.1. Strength
  • 11.2. Weakness
  • 11.3. Opportunities
  • 11.4. Threats

12. Market Dynamics

  • 12.1. Market Drivers
  • 12.2. Market Challenges

13. Market Trends and Developments

14. Competitive Landscape

  • 14.1. Company Profiles (Up to 10 Major Companies)
    • 14.1.1. FUJIKOKI CORPORATION
      • 14.1.1.1. Company Details
      • 14.1.1.2. Key Product Offered
      • 14.1.1.3. Financials (As Per Availability)
      • 14.1.1.4. Recent Developments
      • 14.1.1.5. Key Management Personnel
    • 14.1.2. Sanhua Holding Group Co., Ltd.
      • 14.1.2.1. Company Details
      • 14.1.2.2. Key Product Offered
      • 14.1.2.3. Financials (As Per Availability)
      • 14.1.2.4. Recent Developments
      • 14.1.2.5. Key Management Personnel
    • 14.1.3. RefPower S.p.a.
      • 14.1.3.1. Company Details
      • 14.1.3.2. Key Product Offered
      • 14.1.3.3. Financials (As Per Availability)
      • 14.1.3.4. Recent Developments
      • 14.1.3.5. Key Management Personnel
    • 14.1.4. SAGINOMIYA SEISAKUSHO, INC
      • 14.1.4.1. Company Details
      • 14.1.4.2. Key Product Offered
      • 14.1.4.3. Financials (As Per Availability)
      • 14.1.4.4. Recent Developments
      • 14.1.4.5. Key Management Personnel
    • 14.1.5. Newell Brands Inc.
      • 14.1.5.1. Company Details
      • 14.1.5.2. Key Product Offered
      • 14.1.5.3. Financials (As Per Availability)
      • 14.1.5.4. Recent Developments
      • 14.1.5.5. Key Management Personnel
    • 14.1.6. Emerson Electric Co.
      • 14.1.6.1. Company Details
      • 14.1.6.2. Key Product Offered
      • 14.1.6.3. Financials (As Per Availability)
      • 14.1.6.4. Recent Developments
      • 14.1.6.5. Key Management Personnel
    • 14.1.7. Castel S.r.l.
      • 14.1.7.1. Company Details
      • 14.1.7.2. Key Product Offered
      • 14.1.7.3. Financials (As Per Availability)
      • 14.1.7.4. Recent Developments
      • 14.1.7.5. Key Management Personnel
    • 14.1.8. CAREL INDUSTRIES S.p.A.
      • 14.1.8.1. Company Details
      • 14.1.8.2. Key Product Offered
      • 14.1.8.3. Financials (As Per Availability)
      • 14.1.8.4. Recent Developments
      • 14.1.8.5. Key Management Personnel
    • 14.1.9. Semikron Danfoss Electronics Pvt. Ltd.
      • 14.1.9.1. Company Details
      • 14.1.9.2. Key Product Offered
      • 14.1.9.3. Financials (As Per Availability)
      • 14.1.9.4. Recent Developments
      • 14.1.9.5. Key Management Personnel
    • 14.1.10. DunAn Electro-Mechanical Technology Co., Ltd.
      • 14.1.10.1. Company Details
      • 14.1.10.2. Key Product Offered
      • 14.1.10.3. Financials (As Per Availability)
      • 14.1.10.4. Recent Developments
      • 14.1.10.5. Key Management Personnel

15. Strategic Recommendations

  • 15.1. Key Focus Areas
    • 15.1.1. Target By Regions
    • 15.1.2. Target By Type
    • 15.1.3. Target By Vehicle Type

16. About Us & Disclaimer