封面
市場調查報告書
商品編碼
1619942

室內農業機器人市場 - 全球產業規模、佔有率、趨勢、機會和預測,按類型、自動化、應用、地區、競爭細分 2019-2029F

Indoor Farming Robots Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Automation, By Application, By Region, By Competition 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023年,全球室內農業機器人市場價值為2.31億美元,預計到2029年將達到6.2284億美元,預計在預測期內將出現強勁成長,到2029年複合年成長率為17.8%。正在經歷快速成長,受到對永續農業解決方案日益成長的需求以及應對糧食安全挑戰的需求的推動。室內農業機器人透過在受控環境中自動化各種任務(包括種植、收割和監測作物健康)正在徹底改變農業。該技術允許全年種植,不受天氣條件的影響,確保農作物產量穩定且優質。全球人口不斷成長、耕地面積不斷減少以及資源節約意識不斷增強,進一步推動了市場的擴張。室內農業機器人最佳化了空間利用率,減少了用水量,並最大限度地減少了農藥的使用,使其環境友好且具有成本效益。此外,人工智慧和機器學習的進步提高了機器人的精確度和效率,使其成為現代農業不可或缺的工具。隨著研發投資的增加,全球室內農業機器人市場有望持續成長,為農業產業面臨的不斷變化的挑戰提供永續的解決方案。

市場概況
預測期 2025-2029
2023 年市場規模 2.31億美元
2029 年市場規模 6.2284億美元
2024-2029 年複合年成長率 17.8%
成長最快的細分市場 除草
最大的市場 北美洲

主要市場促進因素

室內農業機器人技術的進步

數據驅動的農業和人工智慧驅動的見解

氣候變遷抵禦能力和糧食安全

協作機器人與人機交互

主要市場挑戰

互通性和標準化

安全漏洞和隱私問題

資料管理和分析複雜性

能源效率與永續發展

監管合規性和法律框架

主要市場趨勢

自動化徹底改變室內農業

精準農業的感測器和物聯網整合

垂直農業和空間最佳化

水耕法和人工智慧驅動的作物管理

機器人與人類的協作與技能增強

細分市場洞察

自動化見解

區域洞察

目錄

第 1 章:產品概述

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:COVID-19 對全球室內農業機器人市場的影響

第 5 章:客戶之聲

第 6 章:全球室內農業機器人市場概述

第 7 章:全球室內農業機器人市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型(機器人夾具、切割機器人、飼料機器人、除草機器人、物料搬運機器人、孵化器、監控無人機等)
    • 透過自動化(半自主、全自動)
    • 依應用(水果及蔬菜、花卉栽培)
    • 按地區(北美、歐洲、南美、中東和非洲、亞太地區)
  • 按公司分類 (2023)
  • 市場地圖

第 8 章:北美室內農業機器人市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 透過自動化
    • 按申請
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第 9 章:歐洲室內農業機器人市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 透過自動化
    • 按申請
    • 按國家/地區
  • 歐洲:國家分析
    • 德國
    • 法國
    • 英國
    • 義大利
    • 西班牙
    • 比利時

第 10 章:南美洲室內農業機器人市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 透過自動化
    • 按申請
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 哥倫比亞
    • 阿根廷
    • 智利
    • 秘魯

第 11 章:中東和非洲室內農業機器人市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 透過自動化
    • 按申請
    • 按國家/地區
  • 中東和非洲:國家分析
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 南非
    • 土耳其
    • 以色列

第 12 章:亞太地區室內農業機器人市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 透過自動化
    • 按申請
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲
    • 印尼
    • 越南

第 13 章:市場動態

  • 促進要素
  • 挑戰

第 14 章:市場趨勢與發展

第 15 章:公司簡介

  • FarmBot Inc.
  • AgFunder Inc.
  • Plenty Unlimited Inc.
  • Harvest Automation Inc.
  • IoT ONE Limited
  • Panasonic Corporation
  • New AeroFarms, Inc.
  • Green Automation Group Oy
  • AgEagle Aerial Systems Inc
  • Visser 's-Gravendeel Holding BV

第 16 章:策略建議

第17章調查會社について,免責事項

簡介目錄
Product Code: 20535

Global Indoor Farming Robots Market was valued at USD 231 Million in 2023 and is expected to reach USD 622.84 Million in 2029 and project robust growth in the forecast period with a CAGR of 17.8% through 2029. The Global Indoor Farming Robots Market is experiencing rapid growth, driven by the increasing demand for sustainable agricultural solutions and the need to address food security challenges. Indoor farming robots are revolutionizing agriculture by automating various tasks, including planting, harvesting, and monitoring crop health, within controlled environments. This technology allows for year-round cultivation, irrespective of weather conditions, ensuring consistent and high-quality crop yields. The market's expansion is further fueled by the rising global population, shrinking arable land, and the growing awareness about resource conservation. Indoor farming robots optimize space utilization, reduce water consumption, and minimize the use of pesticides, making them environmentally friendly and cost-effective. Additionally, advancements in artificial intelligence and machine learning have enhanced the robots' precision and efficiency, making them indispensable tools for modern agriculture. With increased investments in research and development, the Global Indoor Farming Robots Market is poised for continuous growth, offering sustainable solutions to the evolving challenges faced by the agriculture industry.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 231 Million
Market Size 2029USD 622.84 Million
CAGR 2024-202917.8%
Fastest Growing SegmentWeeding
Largest MarketNorth America

Key Market Drivers

Technological Advancements in Indoor Farming Robotics

The reforestation and ecosystem restoration company closed a $15.7 million Series B funding round, supported by Airbus Ventures, Zouk Capital, Helium-3 Ventures, Aramco Ventures, and Understorey Ventures. The Global Indoor Farming Robots Market is undergoing a transformative revolution driven by cutting-edge advancements in robotics technology. These innovations have ushered in a new era of precision agriculture, enhancing the efficiency and productivity of indoor farming. Robotics systems equipped with artificial intelligence and machine learning algorithms are capable of autonomous operations, enabling tasks such as planting, watering, monitoring, and harvesting to be carried out with unparalleled accuracy. These advancements have streamlined the farming process, optimizing resource utilization, reducing labor costs, and significantly increasing crop yields. The integration of robotics in indoor farming not only ensures consistent and high-quality produce but also addresses the challenges posed by labor shortages, climate change, and the need for sustainable agricultural practices.

Data-Driven Farming and AI-powered Insights

The convergence of data analytics and artificial intelligence is revolutionizing indoor farming. Indoor farming robots are equipped with sensors and cameras that collect vast amounts of data regarding plant growth, environmental conditions, and crop health. Advanced analytics and AI algorithms process this data to provide actionable insights to farmers. These insights enable predictive analysis, allowing farmers to anticipate plant diseases, optimize irrigation schedules, and maximize crop yields. Additionally, AI-powered robotics systems learn from historical data, adapting their farming techniques based on real-time conditions. This data-driven approach not only enhances productivity but also ensures the production of high-quality, disease-free crops, bolstering consumer confidence in indoor farming produce.

Climate Change Resilience and Food Security

Indoor farming robots are at the forefront of ensuring food security in the face of climate change challenges. Traditional agriculture is vulnerable to the erratic weather patterns and extreme climatic conditions induced by climate change. Indoor farming, coupled with robotics technology, provides a climate-controlled environment, shielding crops from adverse weather conditions. This resilience ensures a consistent supply of fresh produce throughout the year, mitigating the impact of climate change on food production. The ability to cultivate crops in a controlled indoor environment, free from external environmental threats, enhances food security by reducing dependency on weather-dependent traditional farming methods.

Collaborative Robotics and Human-Robot Interaction

Collaborative robotics, where humans and robots work together harmoniously, is a key trend shaping the Global Indoor Farming Robots Market. These robots are designed to collaborate with farmers, augmenting human labor rather than replacing it entirely. Collaborative robots handle repetitive and labor-intensive tasks, allowing human farmers to focus on more complex aspects of farming, such as strategic decision-making and crop management. Moreover, these robots are equipped with sensors and algorithms that ensure the safety of human workers, making them an integral part of the indoor farming workforce. The seamless interaction between humans and robots not only enhances efficiency but also promotes the widespread adoption of indoor farming technologies across diverse agricultural landscapes.

Key Market Challenges

Interoperability and Standardization

The Global Indoor Farming Robots Market faces significant challenges due to interoperability issues and the lack of standardized protocols. With a diverse range of robotic systems and technologies used in indoor farming, achieving seamless integration and communication among robots from different manufacturers becomes a substantial hurdle. The absence of universal standards often leads to compatibility problems, making it difficult for farmers to create cohesive and interconnected robotic farming systems. As a result, farmers may encounter frustration and operational limitations when their robots cannot communicate effectively with each other, hindering the market's potential for widespread adoption and growth.

Security Vulnerabilities and Privacy Concerns

Security vulnerabilities and privacy concerns pose significant challenges to the Global Indoor Farming Robots Market. Indoor farming robots, often equipped with sensors and cameras, collect sensitive data about crops and farming operations. These devices are susceptible to cyber-attacks and data breaches, compromising the privacy and integrity of the collected data. Hackers can exploit these vulnerabilities, leading to unauthorized access and misuse of critical agricultural information. Addressing these concerns requires robust security protocols, encryption methods, regular software updates, and farmer education on safe robot usage. The market's growth is contingent on building trust through enhanced security features, ensuring farmers feel confident in adopting robotic solutions without compromising their data security and privacy.

Data Management and Analytics Complexity

Managing vast amounts of data generated by indoor farming robots poses a significant challenge. These robots produce enormous volumes of data, including crop health metrics, environmental conditions, and operational parameters, requiring sophisticated analytics tools to derive meaningful insights. Farmers face challenges in effectively analyzing this data to make informed decisions about crop management and resource allocation. Moreover, ensuring data accuracy, reliability, and compliance with agricultural regulations add another layer of complexity. Streamlining data management processes and developing user-friendly analytics tools are crucial to harnessing the full potential of robotic-generated data, enabling farmers to optimize their indoor farming practices and maximize yields.

Energy Efficiency and Sustainability

Energy efficiency and sustainability are critical challenges in the Global Indoor Farming Robots Market. Many robotic systems operate on batteries or require energy-intensive components, directly impacting their environmental footprint. Farmers demand energy-efficient robots that minimize the need for frequent battery replacements and reduce overall energy consumption. Additionally, the production and disposal of robotic components contribute to electronic waste, posing environmental concerns. Implementing energy-efficient designs, promoting the use of renewable energy sources, and encouraging responsible disposal practices are essential to address these challenges. Striking a balance between functionality and energy efficiency is crucial for sustainable adoption, ensuring robots are environmentally friendly throughout their lifecycle.

Regulatory Compliance and Legal Frameworks

Navigating diverse regulatory frameworks and ensuring compliance with international agricultural laws is a significant challenge for the Global Indoor Farming Robots Market. Robots often operate across regions and countries, requiring manufacturers to adhere to varying regulations related to agricultural practices, safety standards, and environmental impact assessments. Keeping up with evolving legal requirements and standards necessitates continuous efforts from industry players. Non-compliance can lead to legal liabilities, hindering market growth. Establishing a harmonized global approach to agricultural robotics regulations and promoting industry self-regulation are vital to fostering a conducive environment for robotic innovation while ensuring farmer protection and legal compliance. Industry collaboration and proactive engagement with regulatory bodies are essential to overcoming these challenges and creating a favorable ecosystem for the Global Indoor Farming Robots Market to thrive.

Key Market Trends

Automation Revolutionizing Indoor Farming

The Global Indoor Farming Robots Market is experiencing a transformative wave, primarily fueled by the automation revolution in agriculture. Indoor farming robots have emerged as the cornerstone of this revolution, automating tasks that were traditionally labor-intensive and time-consuming. From planting seeds to harvesting crops, these robots handle various operations with precision and efficiency, reshaping the landscape of modern agriculture. The trend towards automation not only addresses labor shortages but also significantly enhances the productivity and scalability of indoor farming operations.

Sensors and IoT Integration for Precision Agriculture

In the Global Indoor Farming Robots Market, the integration of sensors and Internet of Things (IoT) technology is driving a paradigm shift towards precision agriculture. Indoor farming robots are equipped with an array of sensors that monitor plant health, environmental conditions, and nutrient levels in real-time. This data is then processed and analyzed through IoT platforms, providing farmers with valuable insights. By leveraging this information, farmers can make data-driven decisions, optimizing irrigation, lighting, and nutrient delivery. The precise control offered by IoT-enabled indoor farming robots ensures optimal growing conditions, leading to higher crop yields and superior quality produce.

Vertical Farming and Space Optimization

Vertical farming, enabled by advanced robotics technology, is becoming increasingly prevalent in the Global Indoor Farming Robots Market. With limited arable land and the growing demand for fresh produce, vertical farming offers a sustainable solution by stacking crops vertically in controlled environments. Indoor farming robots are designed to navigate and operate within these vertical structures, effectively utilizing available space. This trend not only maximizes the yield per square foot but also conserves resources such as water and energy. The ability of indoor farming robots to thrive in vertical farming setups is reshaping the future of agriculture, ensuring efficient land use and sustainable food production.

Hydroponics and AI-driven Crop Management

Hydroponic farming, coupled with artificial intelligence, is a significant trend in the Global Indoor Farming Robots Market. Hydroponic systems, which grow plants in nutrient-rich water without soil, are ideal for indoor farming environments. Indoor farming robots equipped with AI algorithms monitor the intricate balance of nutrients, pH levels, and water quality essential for hydroponic farming. Through AI-driven crop management, these robots adjust nutrient levels and environmental conditions in real-time, ensuring optimal plant growth. This precise and automated approach not only enhances crop quality but also conserves resources by minimizing wastage, making hydroponics a key trend in indoor farming technology.

Robot-Human Collaboration and Skill Enhancement

Collaboration between robots and human workers is a pivotal trend shaping the Global Indoor Farming Robots Market. Indoor farming robots are designed to collaborate seamlessly with human operators. While robots handle repetitive tasks, human workers focus on strategic aspects such as crop planning, data analysis, and system optimization. Moreover, indoor farming robots are equipped with intuitive interfaces and user-friendly controls, enabling workers with varying technical expertise to operate them effectively. This trend not only enhances productivity but also empowers a diverse workforce to participate in the indoor farming industry, ensuring skill enhancement and promoting the widespread adoption of indoor farming robots.

Segmental Insights

Automation Insights

The Fully Autonomous segment emerged as the dominant force in the Global Indoor Farming Robots Market and is poised to maintain its supremacy throughout the forecast period. The significant adoption of Fully Autonomous indoor farming robots is driven by their advanced capabilities to operate without human intervention, ensuring seamless and efficient agricultural processes. These robots are equipped with sophisticated sensors, artificial intelligence, and machine learning algorithms that enable them to independently perform tasks such as planting, monitoring, harvesting, and even decision-making based on real-time data analysis. The Fully Autonomous robots optimize resource usage, reduce labor costs, and enhance overall productivity, making them integral components of modern indoor farming operations. Their ability to work round the clock, adapt to varying crop needs, and operate in complex indoor environments positions them as vital assets for indoor farmers seeking high yields and sustainable practices. As the demand for precision agriculture grows and the emphasis on sustainable farming practices intensifies, the Fully Autonomous segment is expected to maintain its dominance. These robots not only ensure consistent crop quality and quantity but also contribute significantly to the evolution of indoor farming, making them indispensable tools for the future of agriculture.

Regional Insights

North America emerged as the dominant region in the Global Indoor Farming Robots Market and is anticipated to maintain its leadership throughout the forecast period. Several factors contribute to the region's dominance, including the widespread adoption of advanced agricultural technologies, high investments in research and development, and a strong focus on sustainable farming practices. North America has witnessed significant growth in vertical farming and controlled environment agriculture, driven by the need for year-round fresh produce, reduced dependence on weather patterns, and the desire for localized food production. Moreover, supportive government initiatives, availability of funding for ag-tech startups, and a robust infrastructure for indoor farming technologies have further propelled the market in this region. The presence of major indoor farming companies, technological advancements, and a growing awareness of food security and environmental sustainability also contribute to North America's market dominance. With a well-established indoor farming ecosystem, including research institutions, technology providers, and enthusiastic entrepreneurs, North America is poised to maintain its lead in the Global Indoor Farming Robots Market, continuing to drive innovation and shape the future of indoor agriculture.

Key Market Players

  • FarmBot Inc.
  • AgFunder Inc.
  • Plenty Unlimited Inc.
  • Harvest Automation Inc.
  • IoT ONE Limited
  • Panasonic Corporation
  • New AeroFarms, Inc.
  • Green Automation Group Oy
  • AgEagle Aerial Systems Inc
  • Visser 's-Gravendeel Holding B.V

Report Scope:

In this report, the Global Indoor Farming Robots Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Indoor Farming Robots Market, By Type:

  • Robot Gripper
  • Cutting Robot
  • Robotic Fodder
  • Weeding
  • Material Handling Robot
  • Incubators
  • Monitoring Drones
  • Others

Indoor Farming Robots Market, By Automation:

  • Semi-Autonomous
  • Fully Autonomous

Indoor Farming Robots Market, By Application:

  • Fruits & Vegetables
  • Floriculture

Indoor Farming Robots Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
    • Belgium
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    • Indonesia
    • Vietnam
  • South America
    • Brazil
    • Argentina
    • Colombia
    • Chile
    • Peru
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Turkey
    • Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Indoor Farming Robots Market.

Available Customizations:

Global Indoor Farming Robots market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Impact of COVID-19 on Global Indoor Farming Robots Market

5. Voice of Customer

6. Global Indoor Farming Robots Market Overview

7. Global Indoor Farming Robots Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type (Robot Gripper, Cutting Robot, Robotic Fodder, Weeding, Material Handling Robot, Incubators, Monitoring Drones, Others)
    • 7.2.2. By Automation (Semi-Autonomous, Fully Autonomous)
    • 7.2.3. By Application (Fruits & Vegetables, Floriculture)
    • 7.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 7.3. By Company (2023)
  • 7.4. Market Map

8. North America Indoor Farming Robots Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Automation
    • 8.2.3. By Application
    • 8.2.4. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Indoor Farming Robots Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Automation
        • 8.3.1.2.3. By Application
    • 8.3.2. Canada Indoor Farming Robots Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Automation
        • 8.3.2.2.3. By Application
    • 8.3.3. Mexico Indoor Farming Robots Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Automation
        • 8.3.3.2.3. By Application

9. Europe Indoor Farming Robots Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Automation
    • 9.2.3. By Application
    • 9.2.4. By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1. Germany Indoor Farming Robots Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Automation
        • 9.3.1.2.3. By Application
    • 9.3.2. France Indoor Farming Robots Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Automation
        • 9.3.2.2.3. By Application
    • 9.3.3. United Kingdom Indoor Farming Robots Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Automation
        • 9.3.3.2.3. By Application
    • 9.3.4. Italy Indoor Farming Robots Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Type
        • 9.3.4.2.2. By Automation
        • 9.3.4.2.3. By Application
    • 9.3.5. Spain Indoor Farming Robots Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Type
        • 9.3.5.2.2. By Automation
        • 9.3.5.2.3. By Application
    • 9.3.6. Belgium Indoor Farming Robots Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Type
        • 9.3.6.2.2. By Automation
        • 9.3.6.2.3. By Application

10. South America Indoor Farming Robots Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Automation
    • 10.2.3. By Application
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Indoor Farming Robots Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Automation
        • 10.3.1.2.3. By Application
    • 10.3.2. Colombia Indoor Farming Robots Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Automation
        • 10.3.2.2.3. By Application
    • 10.3.3. Argentina Indoor Farming Robots Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Automation
        • 10.3.3.2.3. By Application
    • 10.3.4. Chile Indoor Farming Robots Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Automation
        • 10.3.4.2.3. By Application
    • 10.3.5. Peru Indoor Farming Robots Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Automation
        • 10.3.5.2.3. By Application

11. Middle East & Africa Indoor Farming Robots Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Type
    • 11.2.2. By Automation
    • 11.2.3. By Application
    • 11.2.4. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Indoor Farming Robots Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Type
        • 11.3.1.2.2. By Automation
        • 11.3.1.2.3. By Application
    • 11.3.2. UAE Indoor Farming Robots Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Type
        • 11.3.2.2.2. By Automation
        • 11.3.2.2.3. By Application
    • 11.3.3. South Africa Indoor Farming Robots Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Type
        • 11.3.3.2.2. By Automation
        • 11.3.3.2.3. By Application
    • 11.3.4. Turkey Indoor Farming Robots Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Type
        • 11.3.4.2.2. By Automation
        • 11.3.4.2.3. By Application
    • 11.3.5. Israel Indoor Farming Robots Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Type
        • 11.3.5.2.2. By Automation
        • 11.3.5.2.3. By Application

12. Asia Pacific Indoor Farming Robots Market Outlook

  • 12.1. Market Size & Forecast
    • 12.1.1. By Value
  • 12.2. Market Share & Forecast
    • 12.2.1. By Type
    • 12.2.2. By Automation
    • 12.2.3. By Application
    • 12.2.4. By Country
  • 12.3. Asia-Pacific: Country Analysis
    • 12.3.1. China Indoor Farming Robots Market Outlook
      • 12.3.1.1. Market Size & Forecast
        • 12.3.1.1.1. By Value
      • 12.3.1.2. Market Share & Forecast
        • 12.3.1.2.1. By Type
        • 12.3.1.2.2. By Automation
        • 12.3.1.2.3. By Application
    • 12.3.2. India Indoor Farming Robots Market Outlook
      • 12.3.2.1. Market Size & Forecast
        • 12.3.2.1.1. By Value
      • 12.3.2.2. Market Share & Forecast
        • 12.3.2.2.1. By Type
        • 12.3.2.2.2. By Automation
        • 12.3.2.2.3. By Application
    • 12.3.3. Japan Indoor Farming Robots Market Outlook
      • 12.3.3.1. Market Size & Forecast
        • 12.3.3.1.1. By Value
      • 12.3.3.2. Market Share & Forecast
        • 12.3.3.2.1. By Type
        • 12.3.3.2.2. By Automation
        • 12.3.3.2.3. By Application
    • 12.3.4. South Korea Indoor Farming Robots Market Outlook
      • 12.3.4.1. Market Size & Forecast
        • 12.3.4.1.1. By Value
      • 12.3.4.2. Market Share & Forecast
        • 12.3.4.2.1. By Type
        • 12.3.4.2.2. By Automation
        • 12.3.4.2.3. By Application
    • 12.3.5. Australia Indoor Farming Robots Market Outlook
      • 12.3.5.1. Market Size & Forecast
        • 12.3.5.1.1. By Value
      • 12.3.5.2. Market Share & Forecast
        • 12.3.5.2.1. By Type
        • 12.3.5.2.2. By Automation
        • 12.3.5.2.3. By Application
    • 12.3.6. Indonesia Indoor Farming Robots Market Outlook
      • 12.3.6.1. Market Size & Forecast
        • 12.3.6.1.1. By Value
      • 12.3.6.2. Market Share & Forecast
        • 12.3.6.2.1. By Type
        • 12.3.6.2.2. By Automation
        • 12.3.6.2.3. By Application
    • 12.3.7. Vietnam Indoor Farming Robots Market Outlook
      • 12.3.7.1. Market Size & Forecast
        • 12.3.7.1.1. By Value
      • 12.3.7.2. Market Share & Forecast
        • 12.3.7.2.1. By Type
        • 12.3.7.2.2. By Automation
        • 12.3.7.2.3. By Application

13. Market Dynamics

  • 13.1. Drivers
  • 13.2. Challenges

14. Market Trends and Developments

15. Company Profiles

  • 15.1. FarmBot Inc.
    • 15.1.1. Business Overview
    • 15.1.2. Key Revenue and Financials
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel/Key Contact Person
    • 15.1.5. Key Product/Services Offered
  • 15.2. AgFunder Inc.
    • 15.2.1. Business Overview
    • 15.2.2. Key Revenue and Financials
    • 15.2.3. Recent Developments
    • 15.2.4. Key Personnel/Key Contact Person
    • 15.2.5. Key Product/Services Offered
  • 15.3. Plenty Unlimited Inc.
    • 15.3.1. Business Overview
    • 15.3.2. Key Revenue and Financials
    • 15.3.3. Recent Developments
    • 15.3.4. Key Personnel/Key Contact Person
    • 15.3.5. Key Product/Services Offered
  • 15.4. Harvest Automation Inc.
    • 15.4.1. Business Overview
    • 15.4.2. Key Revenue and Financials
    • 15.4.3. Recent Developments
    • 15.4.4. Key Personnel/Key Contact Person
    • 15.4.5. Key Product/Services Offered
  • 15.5. IoT ONE Limited
    • 15.5.1. Business Overview
    • 15.5.2. Key Revenue and Financials
    • 15.5.3. Recent Developments
    • 15.5.4. Key Personnel/Key Contact Person
    • 15.5.5. Key Product/Services Offered
  • 15.6. Panasonic Corporation
    • 15.6.1. Business Overview
    • 15.6.2. Key Revenue and Financials
    • 15.6.3. Recent Developments
    • 15.6.4. Key Personnel/Key Contact Person
    • 15.6.5. Key Product/Services Offered
  • 15.7. New AeroFarms, Inc.
    • 15.7.1. Business Overview
    • 15.7.2. Key Revenue and Financials
    • 15.7.3. Recent Developments
    • 15.7.4. Key Personnel/Key Contact Person
    • 15.7.5. Key Product/Services Offered
  • 15.8. Green Automation Group Oy
    • 15.8.1. Business Overview
    • 15.8.2. Key Revenue and Financials
    • 15.8.3. Recent Developments
    • 15.8.4. Key Personnel/Key Contact Person
    • 15.8.5. Key Product/Services Offered
  • 15.9. AgEagle Aerial Systems Inc
    • 15.9.1. Business Overview
    • 15.9.2. Key Revenue and Financials
    • 15.9.3. Recent Developments
    • 15.9.4. Key Personnel/Key Contact Person
    • 15.9.5. Key Product/Services Offered
  • 15.10. Visser 's-Gravendeel Holding B.V
    • 15.10.1. Business Overview
    • 15.10.2. Key Revenue and Financials
    • 15.10.3. Recent Developments
    • 15.10.4. Key Personnel/Key Contact Person
    • 15.10.5. Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer