封面
市場調查報告書
商品編碼
1643264

飛機熱交換器市場 - 全球產業規模、佔有率、趨勢、機會和預測,按類型(板翅式、扁管式)、平台(固定翼、旋轉翼、無人機 (UAV))、地區分類與競賽,2020-2030F

Aircraft Heat Exchanger Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type (Plate-Fin, Flat Tube), By Platform (Fixed-Wing, Rotary Wing, Unmanned Aerial Vehicles (UAVs)), By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024年全球飛機熱交換器市值為18.0億美元,預計2030年將達30.7億美元,預測期間內複合年成長率為9.25%。由於現代飛機對燃油效率、性能最佳化和熱管理的日益重視,全球飛機熱交換器市場正在經歷顯著成長。這些系統在維持各種零件(包括引擎、航空電子設備和機艙系統)的最佳溫度水平方面發揮關鍵作用。隨著航太領域擴大採用具有先進系統的下一代飛機,對高效能、輕型熱交換器的需求不斷增加。鈦和鋁合金等高性能材料的整合提高了熱交換器效率,同時減輕了重量。客運量的成長和航空公司機隊的擴張也促進了生產力的提高,進一步推動市場向前發展。

市場概況
預測期 2026-2030
2024 年市場規模 18億美元
2030 年市場規模 30.7億美元
2025-2030 年複合年成長率 9.25%
成長最快的細分市場 板翅式
最大的市場 北美洲

市場的新興趨勢包括採用緊湊型熱交換器和 3D 列印等先進製造技術。緊湊型熱交換器旨在有限的空間內處理更高的熱負荷,使其成為現代空間有限的飛機的理想選擇。 3D 列印可以生產高度複雜的設計,從而提高傳熱效率並縮短製造交貨時間。此外,航太業越來越關注整合先進冷卻技術的熱交換器,例如液體冷卻和基於奈米技術的解決方案,以滿足下一代引擎和電子系統的高性能要求。這些進步正在推動更輕、更有效率、更可靠的熱交換器的開發,符合產業減少排放和營運成本的更廣泛目標。

然而,市場面臨嚴格的監管要求、高製造成本以及將先進熱交換器設計整合到飛機系統中的複雜性等挑戰。滿足性能、耐用性和安全性的監管標準需要細緻的工程和測試,這會增加生產時間和成本。此外,創新材料和技術的整合需要專門的專業知識和基礎設施,這可能會限制小型製造商的採用。平衡性能、成本和合規性的需求繼續給行業參與者帶來挑戰。儘管存在這些障礙,材料科學和製造技術的不斷進步預計將緩解這些挑戰,確保飛機熱交換器市場的穩定成長。

市場促進因素

對輕量化和高效能組件的需求不斷成長

飛機交付量增加和機隊擴張

增加對軍用航空的投資

主要市場挑戰

製造成本高

複雜的監管要求

老化機隊的採用有限

主要市場趨勢

專注於永續發展和綠色航空

航空旅行需求不斷上升

混合動力和渦輪電動飛機系統的擴展

細分市場洞察

平台洞察

地區洞察

目錄

第 1 章:簡介

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:全球飛機熱交換器市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依類型(板翅式、扁管式)
    • 按平台(固定翼、旋翼、無人機 (UAV))
    • 按地區分類
    • 按排名前 5 名的公司及其他 (2024 年)
  • 全球飛機熱交換器市場測繪與機會評估
    • 按類型
    • 按平台
    • 按地區分類

第 5 章:北美飛機熱交換器市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按平台
    • 按國家/地區

第 6 章:歐洲與獨立國協國家飛機熱交換器市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按平台
    • 按國家/地區

第 7 章:亞太地區飛機熱交換器市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按平台
    • 按國家/地區

第 8 章:中東和非洲飛機熱交換器市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按平台
    • 按國家/地區

第 9 章:南美洲飛機熱交換器市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按平台
    • 按國家/地區

第 10 章:市場動態

  • 促進要素
  • 挑戰

第 11 章:COVID-19 對全球飛機熱交換器市場的影響

第 12 章:市場趨勢與發展

第13章:競爭格局

  • 公司簡介
    • Safran SA
    • RTX Corporation
    • TAT Technologies Ltd.
    • Honeywell International Inc.
    • Parker Hannifin Corporation
    • Triumph Group
    • Wall Colmonoy Corporation
    • Boyd Corporation
    • IHI Corporation
    • AMETEK, Inc.

第 14 章:策略建議/行動計劃

  • 重點關注領域
    • 按類型分類的目標
    • 按平台分類的目標

第15章調查會社について,免責事項

簡介目錄
Product Code: 27265

The Global Aircraft Heat Exchanger Market was valued at USD 1.80 Billion in 2024 and is expected to reach USD 3.07 Billion by 2030 with a CAGR of 9.25% during the forecast period. The global aircraft heat exchanger market is experiencing significant growth due to the increasing emphasis on fuel efficiency, performance optimization, and thermal management in modern aircraft. These systems play a critical role in maintaining optimal temperature levels across various components, including engines, avionics, and cabin systems. As the aerospace sector increasingly adopts next-generation aircraft with advanced systems, the demand for efficient and lightweight heat exchangers is on the rise. The integration of high-performance materials, such as titanium and aluminum alloys, is enhancing heat exchanger efficiency while reducing weight. Growing passenger traffic and fleet expansion by airlines are also contributing to the rise in production rates, further propelling the market forward.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.80 Billion
Market Size 2030USD 3.07 Billion
CAGR 2025-20309.25%
Fastest Growing SegmentPlate-Fin
Largest MarketNorth America

Emerging trends in the market include the adoption of compact heat exchangers and advanced manufacturing technologies such as 3D printing. Compact heat exchangers are designed to handle higher heat loads in limited spaces, making them ideal for modern, space-constrained aircraft. 3D printing allows to produce highly intricate designs that improve heat transfer efficiency and reduce manufacturing lead times. Furthermore, the aerospace industry is increasingly focusing on heat exchangers that integrate advanced cooling techniques, such as liquid cooling and nanotechnology-based solutions, to address the high-performance requirements of next-generation engines and electronic systems. These advancements are driving the development of lighter, more efficient, and reliable heat exchangers, aligning with the industry's broader goals of reducing emissions and operational costs.

However, the market faces challenges such as stringent regulatory requirements, high manufacturing costs, and the complexities of integrating advanced heat exchanger designs into aircraft systems. Meeting regulatory standards for performance, durability, and safety demands meticulous engineering and testing, which adds to the production timeline and costs. Additionally, the integration of innovative materials and technologies requires specialized expertise and infrastructure, which can limit adoption among smaller manufacturers. The need to balance performance, cost, and compliance continues to pose challenges for industry players. Despite these hurdles, ongoing advancements in material science and manufacturing techniques are expected to mitigate these challenges, ensuring steady growth in the aircraft heat exchanger market.

Market Drivers

Growing Demand for Lightweight and High-Efficiency Components

Fuel efficiency is one of the most critical objectives in modern aviation. Aircraft manufacturers are focusing on reducing overall weight, which directly influences fuel consumption. Heat exchangers contribute significantly to this goal by optimizing the thermal management systems of engines, avionics, and other vital aircraft components. Materials like aluminum alloys and advanced composites are preferred due to their lightweight properties and resistance to high temperatures and corrosion. Additionally, efficient heat exchangers improve system reliability and reduce maintenance requirements. Their compact designs ensure they occupy minimal space, making them suitable for the evolving structural constraints of aircraft. Demand for lightweight systems is further fueled by stringent environmental regulations and the high cost of aviation fuel, driving consistent innovation in heat exchanger materials and manufacturing processes.

Rise in Aircraft Deliveries and Fleet Expansion

The aviation sector is expanding rapidly due to increasing air travel demand in emerging economies and the recovery of global tourism. Airlines are investing heavily in fleet upgrades to accommodate more passengers, reduce operational costs, and comply with environmental regulations. Narrow-body and wide-body aircraft, which form the backbone of commercial aviation, rely on advanced thermal management systems for engine efficiency, cabin comfort, and system reliability. Heat exchangers play a critical role in these functions, ensuring consistent performance under various flight conditions. Fleet expansions also extend to cargo and private aviation, where tailored thermal management solutions are crucial. As the global aircraft fleet continues to grow, the heat exchanger market is set to benefit from sustained demand. For instance, in 2024, Airbus forecasts the delivery of over 42,000 new passenger aircraft by 2043, with significant demand for 15,000 single-aisle aircraft due to the growth in global air traffic. Additionally, the forecast highlights that the market will need to address environmental concerns, with the introduction of sustainable aviation technologies aimed at reducing emissions. This forecast reflects the continued expansion of the global airline industry, alongside advancements in fuel-efficient and environmentally friendly aircraft.

Increasing Investments in Military Aviation

Governments worldwide are prioritizing the modernization of their military fleets, focusing on advanced fighter jets, drones, and transport aircraft. These platforms operate in challenging environments, necessitating robust and efficient thermal management systems. Heat exchangers ensure the optimal functioning of critical systems, such as engines, avionics, and weapon systems, by dissipating excess heat. Military aircraft also require heat exchangers that can handle high thermal loads during extended missions or high-performance maneuvers. This demand has spurred innovation in heat exchanger materials and designs, ensuring durability and reliability. The growing use of unmanned aerial systems (UAS) and next-generation military aircraft is expected to further drive market growth.

Key Market Challenges

High Manufacturing Costs

The development of advanced heat exchangers involves substantial investments in research, materials, and manufacturing technologies. For example, additive manufacturing and specialized alloys, while offering superior performance, contribute significantly to production costs. These expenses can be a barrier for smaller manufacturers, limiting their ability to compete in the market. Furthermore, the high initial cost of advanced heat exchangers can deter adoption, particularly among budget-constrained operators. Reducing manufacturing costs while maintaining quality and performance remains a key challenge for the industry.

Complex Regulatory Requirements

Heat exchangers must comply with stringent safety and performance standards set by aviation authorities like the FAA and EASA. Achieving certification involves rigorous testing and documentation, which can be time-intensive and expensive. The challenge is compounded by the need to meet varying regulatory requirements across different regions. Non-compliance can result in costly delays, fines, or even product recalls. Manufacturers must invest heavily in quality assurance processes and regulatory expertise to navigate these challenges effectively.

Limited Adoption in Aging Aircraft Fleets

Retrofitting advanced heat exchangers into older aircraft is often impractical due to design limitations and high costs. These fleets typically rely on legacy systems that lack the infrastructure for modern thermal management solutions. Operators of aging fleets may prioritize cost-saving measures over performance upgrades, further hindering the adoption of advanced heat exchangers. This challenge underscores the need for cost-effective retrofit solutions that address the limitations of older aircraft.

Key Market Trends

Focus on Sustainability and Green Aviation

The global push for sustainability has led to significant advancements in heat exchanger technologies. Manufacturers are adopting eco-friendly practices, such as using recyclable materials and developing energy-efficient designs. These innovations align with the aviation industry's goals to reduce carbon emissions and improve fuel efficiency. As environmental regulations become more stringent, the demand for sustainable heat exchanger solutions is expected to grow.

Rising Air Travel Demand

The global rise in air travel demand is a significant trend that is driving innovation and growth in the aerospace sector, including the heat exchanger market. As international and domestic travel continues to rebound and expand, airlines are increasingly investing in new aircraft to meet the growing passenger needs. This surge in air travel has led to greater competition among airlines to offer efficient, safe, and environmentally friendly services. Heat exchangers play a crucial role in enhancing the operational efficiency of aircraft systems, including engines, cabin air systems, and avionics, all of which are under increased load with more frequent flights. The increased frequency of flights puts more pressure on the aircraft's thermal management systems, requiring more reliable and effective heat exchangers to manage the heat generated by various systems. Moreover, with airlines striving to reduce their operational costs, there is a heightened focus on improving fuel efficiency and reducing maintenance costs, which heat exchangers contribute to. These systems ensure that engine and cabin temperatures are well regulated, thereby improving overall efficiency and reducing wear and tear on critical components. For instance, In October 2024, the International Air Transport Association (IATA) reported a 7.1% increase in global passenger demand compared to October 2023, with total capacity rising by 6.1%. The overall load factor reached 83.9%, up 0.8 percentage points year-on-year. International demand surged by 9.5%, with capacity increasing by 8.6% and a load factor of 83.5%. Domestic demand saw a 3.5% rise, with capacity up by 2.0% and a load factor of 84.5%. Regionally, Asia-Pacific airlines led with a 12.7% increase in demand, while European carriers reported an 8.7% rise. Latin America saw a notable 10.9% increase in demand, while North American carriers experienced a modest 3.2% growth despite a slight decline in the U.S. domestic market by 1.2%.

Expansion of Hybrid and Turboelectric Aircraft Systems

Hybrid and turboelectric propulsion systems represent a significant shift in aviation technology, aiming to reduce emissions and improve efficiency. These systems generate substantial thermal loads, necessitating advanced heat exchanger designs for effective thermal management. Innovations in these technologies are closely tied to advancements in heat exchangers, as they play a crucial role in optimizing system performance. The growing interest in hybrid and electric aircraft is likely to accelerate research and development in this area.

Segmental Insights

Platform Insights

In 2024, the dominant segment in the Global Aircraft Heat Exchanger market by platform is expected to be the Fixed-Wing Aircraft. Fixed-wing aircraft continue to be the backbone of the commercial aviation sector, accounting for the majority of global air traffic. As airlines and air cargo services expand to meet the rising demand for air travel, fixed-wing aircraft are expected to lead the market. These aircraft require efficient thermal management systems to maintain optimal engine and system performance during flights, making heat exchangers a crucial component. Given the increasing focus on fuel efficiency and reducing emissions, fixed-wing aircraft are designed with advanced heat exchanger systems to support the cooling of engine components, hydraulic systems, and avionics. The demand for such systems is further amplified by the global fleet expansion, especially in the narrow-body and wide-body categories.

The Rotary Wing aircraft segment, which includes helicopters and tiltrotor aircraft, is anticipated to be the second-largest segment in 2024. These platforms, primarily used for military, search and rescue, and emergency medical services, require specialized heat exchanger systems due to their operational environments. The cooling of high-performance engine systems, as well as thermal management in sensitive avionics, is critical for rotary-wing aircraft. However, the market for these platforms remains smaller in comparison to fixed-wing aircraft, as they are less prevalent in commercial air travel.

Region Insights

In 2024, North America is expected to remain the dominant region in the Global Aircraft Heat Exchanger market. The region's aerospace industry is well-established, with a large presence of both commercial and military aviation sectors. North America houses some of the world's largest aircraft manufacturers and a robust aviation infrastructure, which continues to drive the demand for advanced heat exchanger systems. The continuous growth in air travel and cargo services within the United States, coupled with the expansion of regional airlines, propels the need for efficient and reliable thermal management solutions in aircraft. Fixed-wing aircraft, which dominate the commercial aviation sector, heavily contribute to the demand for heat exchangers, ensuring the proper functioning of engine systems, avionics, and cabin cooling mechanisms.

The military sector in North America is also a key driver of heat exchanger demand. The United States, as a global leader in defense spending, continues to invest in modernizing its fleet of military aircraft, including fighter jets, transport planes, and unmanned aerial vehicles (UAVs). These platforms require advanced thermal management solutions to operate effectively in harsh environments, thus sustaining a strong demand for high-performance heat exchangers. North America's military needs are increasingly focused on enhancing operational efficiency while ensuring the cooling of critical aircraft systems in diverse combat situations, further boosting the regional demand for heat exchangers.

Furthermore, North America's aerospace sector is embracing technological innovations, including hybrid and electric propulsion systems, which require advanced thermal management solutions. The push toward more electric aircraft (MEA) and the development of sustainable aviation technologies has contributed to a growing need for lightweight, energy-efficient heat exchangers. The region's strong focus on research and development in aviation technology, including the integration of AI and IoT capabilities in aircraft systems, is expected to further drive market growth in 2024.

Key Market Players

  • Safran SA
  • RTX Corporation
  • TAT Technologies Ltd.
  • Honeywell International Inc.
  • Parker Hannifin Corporation
  • Triumph Group
  • Wall Colmonoy Corporation
  • Boyd Corporation
  • IHI Corporation
  • AMETEK, Inc.

Report Scope:

In this report, the Global Aircraft Heat Exchanger market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Aircraft Heat Exchanger Market, By Type:

  • Plate-Fin
  • Flat Tube

Aircraft Heat Exchanger Market, By Platform:

  • Fixed-Wing
  • Rotary Wing
  • Unmanned Aerial Vehicles (UAVs)

Aircraft Heat Exchanger Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe & CIS
    • France
    • Germany
    • Spain
    • Italy
    • United Kingdom
  • Asia-Pacific
    • China
    • Japan
    • India
    • Vietnam
    • South Korea
    • Thailand
    • Australia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Turkey
  • South America
    • Brazil
    • Argentina

Competitive Landscape

Company Profiles: Detailed analysis of the major Global Aircraft Heat Exchanger Market companies.

Available Customizations:

Global Aircraft Heat Exchanger Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Market Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Global Aircraft Heat Exchanger Market Outlook

  • 4.1. Market Size & Forecast
    • 4.1.1. By Value
  • 4.2. Market Share & Forecast
    • 4.2.1. By Type Market Share Analysis (Plate-Fin, Flat Tube)
    • 4.2.2. By Platform Market Share Analysis (Fixed-Wing, Rotary Wing, Unmanned Aerial Vehicles (UAVs))
    • 4.2.3. By Regional Market Share Analysis
      • 4.2.3.1. North America Market Share Analysis
      • 4.2.3.2. Europe & CIS Market Share Analysis
      • 4.2.3.3. Asia-Pacific Market Share Analysis
      • 4.2.3.4. Middle East & Africa Market Share Analysis
      • 4.2.3.5. South America Market Share Analysis
    • 4.2.4. By Top 5 Companies Market Share Analysis, Others (2024)
  • 4.3. Global Aircraft Heat Exchanger Market Mapping & Opportunity Assessment
    • 4.3.1. By Type Market Mapping & Opportunity Assessment
    • 4.3.2. By Platform Market Mapping & Opportunity Assessment
    • 4.3.3. By Regional Market Mapping & Opportunity Assessment

5. North America Aircraft Heat Exchanger Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type Market Share Analysis
    • 5.2.2. By Platform Market Share Analysis
    • 5.2.3. By Country Market Share Analysis
      • 5.2.3.1. United States Aircraft Heat Exchanger Market Outlook
        • 5.2.3.1.1. Market Size & Forecast
        • 5.2.3.1.1.1. By Value
        • 5.2.3.1.2. Market Share & Forecast
        • 5.2.3.1.2.1. By Type Market Share Analysis
        • 5.2.3.1.2.2. By Platform Market Share Analysis
      • 5.2.3.2. Canada Aircraft Heat Exchanger Market Outlook
        • 5.2.3.2.1. Market Size & Forecast
        • 5.2.3.2.1.1. By Value
        • 5.2.3.2.2. Market Share & Forecast
        • 5.2.3.2.2.1. By Type Market Share Analysis
        • 5.2.3.2.2.2. By Platform Market Share Analysis
      • 5.2.3.3. Mexico Aircraft Heat Exchanger Market Outlook
        • 5.2.3.3.1. Market Size & Forecast
        • 5.2.3.3.1.1. By Value
        • 5.2.3.3.2. Market Share & Forecast
        • 5.2.3.3.2.1. By Type Market Share Analysis
        • 5.2.3.3.2.2. By Platform Market Share Analysis

6. Europe & CIS Aircraft Heat Exchanger Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type Market Share Analysis
    • 6.2.2. By Platform Market Share Analysis
    • 6.2.3. By Country Market Share Analysis
      • 6.2.3.1. France Aircraft Heat Exchanger Market Outlook
        • 6.2.3.1.1. Market Size & Forecast
        • 6.2.3.1.1.1. By Value
        • 6.2.3.1.2. Market Share & Forecast
        • 6.2.3.1.2.1. By Type Market Share Analysis
        • 6.2.3.1.2.2. By Platform Market Share Analysis
      • 6.2.3.2. Germany Aircraft Heat Exchanger Market Outlook
        • 6.2.3.2.1. Market Size & Forecast
        • 6.2.3.2.1.1. By Value
        • 6.2.3.2.2. Market Share & Forecast
        • 6.2.3.2.2.1. By Type Market Share Analysis
        • 6.2.3.2.2.2. By Platform Market Share Analysis
      • 6.2.3.3. Spain Aircraft Heat Exchanger Market Outlook
        • 6.2.3.3.1. Market Size & Forecast
        • 6.2.3.3.1.1. By Value
        • 6.2.3.3.2. Market Share & Forecast
        • 6.2.3.3.2.1. By Type Market Share Analysis
        • 6.2.3.3.2.2. By Platform Market Share Analysis
      • 6.2.3.4. Italy Aircraft Heat Exchanger Market Outlook
        • 6.2.3.4.1. Market Size & Forecast
        • 6.2.3.4.1.1. By Value
        • 6.2.3.4.2. Market Share & Forecast
        • 6.2.3.4.2.1. By Type Market Share Analysis
        • 6.2.3.4.2.2. By Platform Market Share Analysis
      • 6.2.3.5. United Kingdom Aircraft Heat Exchanger Market Outlook
        • 6.2.3.5.1. Market Size & Forecast
        • 6.2.3.5.1.1. By Value
        • 6.2.3.5.2. Market Share & Forecast
        • 6.2.3.5.2.1. By Type Market Share Analysis
        • 6.2.3.5.2.2. By Platform Market Share Analysis

7. Asia-Pacific Aircraft Heat Exchanger Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type Market Share Analysis
    • 7.2.2. By Platform Market Share Analysis
    • 7.2.3. By Country Market Share Analysis
      • 7.2.3.1. China Aircraft Heat Exchanger Market Outlook
        • 7.2.3.1.1. Market Size & Forecast
        • 7.2.3.1.1.1. By Value
        • 7.2.3.1.2. Market Share & Forecast
        • 7.2.3.1.2.1. By Type Market Share Analysis
        • 7.2.3.1.2.2. By Platform Market Share Analysis
      • 7.2.3.2. Japan Aircraft Heat Exchanger Market Outlook
        • 7.2.3.2.1. Market Size & Forecast
        • 7.2.3.2.1.1. By Value
        • 7.2.3.2.2. Market Share & Forecast
        • 7.2.3.2.2.1. By Type Market Share Analysis
        • 7.2.3.2.2.2. By Platform Market Share Analysis
      • 7.2.3.3. India Aircraft Heat Exchanger Market Outlook
        • 7.2.3.3.1. Market Size & Forecast
        • 7.2.3.3.1.1. By Value
        • 7.2.3.3.2. Market Share & Forecast
        • 7.2.3.3.2.1. By Type Market Share Analysis
        • 7.2.3.3.2.2. By Platform Market Share Analysis
      • 7.2.3.4. Vietnam Aircraft Heat Exchanger Market Outlook
        • 7.2.3.4.1. Market Size & Forecast
        • 7.2.3.4.1.1. By Value
        • 7.2.3.4.2. Market Share & Forecast
        • 7.2.3.4.2.1. By Type Market Share Analysis
        • 7.2.3.4.2.2. By Platform Market Share Analysis
      • 7.2.3.5. South Korea Aircraft Heat Exchanger Market Outlook
        • 7.2.3.5.1. Market Size & Forecast
        • 7.2.3.5.1.1. By Value
        • 7.2.3.5.2. Market Share & Forecast
        • 7.2.3.5.2.1. By Type Market Share Analysis
        • 7.2.3.5.2.2. By Platform Market Share Analysis
      • 7.2.3.6. Australia Aircraft Heat Exchanger Market Outlook
        • 7.2.3.6.1. Market Size & Forecast
        • 7.2.3.6.1.1. By Value
        • 7.2.3.6.2. Market Share & Forecast
        • 7.2.3.6.2.1. By Type Market Share Analysis
        • 7.2.3.6.2.2. By Platform Market Share Analysis
      • 7.2.3.7. Thailand Aircraft Heat Exchanger Market Outlook
        • 7.2.3.7.1. Market Size & Forecast
        • 7.2.3.7.1.1. By Value
        • 7.2.3.7.2. Market Share & Forecast
        • 7.2.3.7.2.1. By Type Market Share Analysis
        • 7.2.3.7.2.2. By Platform Market Share Analysis

8. Middle East & Africa Aircraft Heat Exchanger Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type Market Share Analysis
    • 8.2.2. By Platform Market Share Analysis
    • 8.2.3. By Country Market Share Analysis
      • 8.2.3.1. South Africa Aircraft Heat Exchanger Market Outlook
        • 8.2.3.1.1. Market Size & Forecast
        • 8.2.3.1.1.1. By Value
        • 8.2.3.1.2. Market Share & Forecast
        • 8.2.3.1.2.1. By Type Market Share Analysis
        • 8.2.3.1.2.2. By Platform Market Share Analysis
      • 8.2.3.2. Saudi Arabia Aircraft Heat Exchanger Market Outlook
        • 8.2.3.2.1. Market Size & Forecast
        • 8.2.3.2.1.1. By Value
        • 8.2.3.2.2. Market Share & Forecast
        • 8.2.3.2.2.1. By Type Market Share Analysis
        • 8.2.3.2.2.2. By Platform Market Share Analysis
      • 8.2.3.3. UAE Aircraft Heat Exchanger Market Outlook
        • 8.2.3.3.1. Market Size & Forecast
        • 8.2.3.3.1.1. By Value
        • 8.2.3.3.2. Market Share & Forecast
        • 8.2.3.3.2.1. By Type Market Share Analysis
        • 8.2.3.3.2.2. By Platform Market Share Analysis
      • 8.2.3.4. Turkey Aircraft Heat Exchanger Market Outlook
        • 8.2.3.4.1. Market Size & Forecast
        • 8.2.3.4.1.1. By Value
        • 8.2.3.4.2. Market Share & Forecast
        • 8.2.3.4.2.1. By Type Market Share Analysis
        • 8.2.3.4.2.2. By Platform Market Share Analysis

9. South America Aircraft Heat Exchanger Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type Market Share Analysis
    • 9.2.2. By Platform Market Share Analysis
    • 9.2.3. By Country Market Share Analysis
      • 9.2.3.1. Brazil Aircraft Heat Exchanger Market Outlook
        • 9.2.3.1.1. Market Size & Forecast
        • 9.2.3.1.1.1. By Value
        • 9.2.3.1.2. Market Share & Forecast
        • 9.2.3.1.2.1. By Type Market Share Analysis
        • 9.2.3.1.2.2. By Platform Market Share Analysis
      • 9.2.3.2. Argentina Aircraft Heat Exchanger Market Outlook
        • 9.2.3.2.1. Market Size & Forecast
        • 9.2.3.2.1.1. By Value
        • 9.2.3.2.2. Market Share & Forecast
        • 9.2.3.2.2.1. By Type Market Share Analysis
        • 9.2.3.2.2.2. By Platform Market Share Analysis

10. Market Dynamics

  • 10.1. Drivers
  • 10.2. Challenges

11. Impact of COVID-19 on the Global Aircraft Heat Exchanger Market

12. Market Trends & Developments

13. Competitive Landscape

  • 13.1. Company Profiles
    • 13.1.1. Safran SA
      • 13.1.1.1. Company Details
      • 13.1.1.2. Products
      • 13.1.1.3. Financials (As Per Availability)
      • 13.1.1.4. Key Market Focus & Geographical Presence
      • 13.1.1.5. Recent Developments
      • 13.1.1.6. Key Management Personnel
    • 13.1.2. RTX Corporation
      • 13.1.2.1. Company Details
      • 13.1.2.2. Products
      • 13.1.2.3. Financials (As Per Availability)
      • 13.1.2.4. Key Market Focus & Geographical Presence
      • 13.1.2.5. Recent Developments
      • 13.1.2.6. Key Management Personnel
    • 13.1.3. TAT Technologies Ltd.
      • 13.1.3.1. Company Details
      • 13.1.3.2. Products
      • 13.1.3.3. Financials (As Per Availability)
      • 13.1.3.4. Key Market Focus & Geographical Presence
      • 13.1.3.5. Recent Developments
      • 13.1.3.6. Key Management Personnel
    • 13.1.4. Honeywell International Inc.
      • 13.1.4.1. Company Details
      • 13.1.4.2. Products
      • 13.1.4.3. Financials (As Per Availability)
      • 13.1.4.4. Key Market Focus & Geographical Presence
      • 13.1.4.5. Recent Developments
      • 13.1.4.6. Key Management Personnel
    • 13.1.5. Parker Hannifin Corporation
      • 13.1.5.1. Company Details
      • 13.1.5.2. Products
      • 13.1.5.3. Financials (As Per Availability)
      • 13.1.5.4. Key Market Focus & Geographical Presence
      • 13.1.5.5. Recent Developments
      • 13.1.5.6. Key Management Personnel
    • 13.1.6. Triumph Group
      • 13.1.6.1. Company Details
      • 13.1.6.2. Products
      • 13.1.6.3. Financials (As Per Availability)
      • 13.1.6.4. Key Market Focus & Geographical Presence
      • 13.1.6.5. Recent Developments
      • 13.1.6.6. Key Management Personnel
    • 13.1.7. Wall Colmonoy Corporation
      • 13.1.7.1. Company Details
      • 13.1.7.2. Products
      • 13.1.7.3. Financials (As Per Availability)
      • 13.1.7.4. Key Market Focus & Geographical Presence
      • 13.1.7.5. Recent Developments
      • 13.1.7.6. Key Management Personnel
    • 13.1.8. Boyd Corporation
      • 13.1.8.1. Company Details
      • 13.1.8.2. Products
      • 13.1.8.3. Financials (As Per Availability)
      • 13.1.8.4. Key Market Focus & Geographical Presence
      • 13.1.8.5. Recent Developments
      • 13.1.8.6. Key Management Personnel
    • 13.1.9. IHI Corporation
      • 13.1.9.1. Company Details
      • 13.1.9.2. Products
      • 13.1.9.3. Financials (As Per Availability)
      • 13.1.9.4. Key Market Focus & Geographical Presence
      • 13.1.9.5. Recent Developments
      • 13.1.9.6. Key Management Personnel
    • 13.1.10. AMETEK, Inc.
      • 13.1.10.1. Company Details
      • 13.1.10.2. Products
      • 13.1.10.3. Financials (As Per Availability)
      • 13.1.10.4. Key Market Focus & Geographical Presence
      • 13.1.10.5. Recent Developments
      • 13.1.10.6. Key Management Personnel

14. Strategic Recommendations/Action Plan

  • 14.1. Key Focus Areas
    • 14.1.1. Target By Type
    • 14.1.2. Target By Platform

15. About Us & Disclaimer