封面
市場調查報告書
商品編碼
1703336

螢光原位雜合技術探針市場-全球產業規模、佔有率、趨勢、機會和預測,按技術、類型(DNA、RNA)、應用、最終用途、地區和競爭細分,2020-2030 年

Fluorescent In Situ Hybridization Probe Market - Global Industry Size, Share, Trends, Opportunity & Forecast, Segmented By Technology, By Type (DNA, RNA ), By Application, By End-Use, By Region, & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 186 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024 年全球螢光原位雜合技術探針市場價值為 9.815 億美元,預計在預測期內將實現令人印象深刻的成長,到 2030 年的複合年成長率為 6.45%。全球螢光原位雜合技術 (FISH) 探針市場正在快速擴張,這得益於腫瘤學、罕見疾病研究和細胞遺傳學對高精度基因組診斷日益成長的需求。該市場涵蓋 FISH 探針的開發、製造和商業化,FISH 探針是一種專門用於檢測和定位完整細胞或組織樣本內特定 DNA 或 RNA 序列的分子工具。

市場概覽
預測期 2026-2030
2024年市場規模 9.815億美元
2030年市場規模 14.3141億美元
2025-2030 年複合年成長率 6.45%
成長最快的領域 流魚
最大的市場 北美洲

這些探針對於識別染色體異常、基因擴增、缺失或易位至關重要,因此在臨床診斷和轉化研究中都不可或缺。在腫瘤學中,FISH 探針通常用於支持標靶治療決策,例如識別乳癌中的 HER2 基因擴增或肺癌中的 ALK 基因重排。它們在產前診斷、血液系統惡性腫瘤評估以及驗證下一代定序平台的結果方面發揮著同樣重要的作用。

市場成長也受到學術和製藥研發領域採用率提高的推動,特別是隨著精準醫療和基於生物標記的藥物開發獲得關注。此外,自動成像系統與人工智慧驅動解釋的結合正在加快吞吐量並縮短分析時間,從而增強基於 FISH 的檢測的臨床實用性和商業可行性。

關鍵市場促進因素

基因組研究的進展

主要市場挑戰

競爭市場動態

主要市場趨勢

擴大非侵入性產前檢測(NIPT)的應用

目錄

第 1 章:產品概述

第2章:研究方法

第3章:執行摘要

第4章:顧客之聲

第5章:全球螢光原位雜合技術探針市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 依技術分類(Q FISH、FLOW FISH、其他)
    • 按類型(DNA、RNA(mRNA、miRNA、其他))
    • 按應用(癌症研究、遺傳疾病、其他)
    • 依最終用途(研究、臨床、伴隨診斷)
    • 按地區
    • 按公司分類(2024)
  • 產品市場圖

第6章:北美螢光原位雜合技術探針市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第7章:歐洲螢光原位雜合技術探針市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙

第8章:亞太地區螢光原位雜合技術探針市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 中國
    • 日本
    • 印度
    • 澳洲
    • 韓國

第9章:南美洲螢光原位雜合技術探針市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第10章:中東與非洲螢光原位雜合技術探針市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 科威特

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

  • 近期發展
  • 併購
  • 產品發布

第 13 章:波特五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 顧客的力量
  • 替代產品的威脅

第 14 章:競爭格局

  • Thermo Fisher Scientific Inc.
  • PerkinElmer Health Sciences Inc
  • Biodot Inc
  • New Horizons Diagnostic Corp
  • Merck KGaA
  • Agilent Technologies, Inc.
  • Abnova Corp.
  • Genemed Biotechnologies Inc
  • F. Hoffmann-La Roche Ltd
  • Oxford Gene Technology Ltd

第 15 章:策略建議

第16章調查會社について,免責事項

簡介目錄
Product Code: 16616

Global Fluorescent In Situ Hybridization Probe Market was valued at USD 981.50 Million in 2024 and is anticipated to project impressive growth in the forecast period with a CAGR of 6.45% through 2030. The Global Fluorescent In Situ Hybridization (FISH) Probe Market is undergoing rapid expansion, fueled by the rising demand for high-precision genomic diagnostics across oncology, rare disease research, and cytogenetics. This market encompasses the development, manufacturing, and commercialization of FISH probes specialized molecular tools designed to detect and localize specific DNA or RNA sequences within intact cells or tissue samples.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 981.50 Million
Market Size 2030USD 1431.41 Million
CAGR 2025-20306.45%
Fastest Growing SegmentFLOW-FISH
Largest MarketNorth America

These probes are essential for identifying chromosomal abnormalities, gene amplifications, deletions, or translocations, making them indispensable in both clinical diagnostics and translational research. In oncology, FISH probes are routinely deployed to support targeted therapy decisions, such as identifying HER2 gene amplification in breast cancer or ALK gene rearrangements in lung cancer. Their role is equally critical in prenatal diagnostics, hematologic malignancy evaluation, and in validating results from next-generation sequencing platforms.

Market growth is also being driven by increased adoption in academic and pharmaceutical R&D, particularly as precision medicine and biomarker-based drug development gain traction. Further, the integration of automated imaging systems with AI-driven interpretation is accelerating throughput and reducing analysis time, enhancing the clinical utility and commercial viability of FISH-based assays.

Key Market Drivers

Advancements in Genomic Research

Advancements in genomic research have revolutionized our understanding of genetics, enabling breakthroughs in disease diagnosis, treatment, and prevention. One of the key technologies driving progress in this field is Fluorescent In Situ Hybridization (FISH), which allows researchers to visualize and locate specific DNA sequences within cells. As genomic research continues to evolve, so does the demand for FISH probes, making them a pivotal component of the Global FISH Probe Market. The sequencing of the human genome marked a monumental achievement in the field of genomics. It provided researchers with a comprehensive map of our genetic makeup, comprising over 20,000 protein-coding genes. However, understanding the functions and interactions of these genes requires tools like FISH probes to visualize their activity within cells. As genomics delves deeper into gene function, the demand for FISH probes increases. Genomic research has been instrumental in identifying genetic mutations that cause diseases. Whether it's rare genetic disorders or common ailments like cancer, researchers are increasingly using FISH probes to pinpoint specific mutations within the genome. This has significant implications for diagnosis, prognosis, and targeted therapies, driving the need for more advanced FISH probes. Advancements in genomics have ushered in the era of personalized medicine. By analyzing an individual's genetic profile, clinicians can tailor treatments to a patient's unique genetic makeup. FISH probes play a critical role in this process by helping identify specific genetic markers and abnormalities.

As personalized medicine gains traction, so does the demand for FISH probes that enable precise genetic analysis. Genomic research has revealed the genetic underpinnings of complex diseases like Alzheimer's, diabetes, and heart disease. Investigating these conditions often requires an in-depth understanding of genetic variations and gene expression patterns. FISH probes provide researchers with the tools to study these complexities at the cellular level, advancing our knowledge of disease mechanisms and potential therapeutic targets. The pharmaceutical industry heavily relies on genomic research to discover new drug targets and develop precision medicines. FISH probes are essential in validating potential drug targets by confirming the presence or absence of specific genetic markers in cellular models. This accelerates drug development and fuels the demand for FISH probes in research and development. Both academic research institutions and clinical laboratories benefit from advancements in genomics. Researchers in these settings use FISH probes for a wide range of applications, from studying basic biological processes to diagnosing genetic disorders. As research expands and diversifies, so does the market for FISH probes.

Key Market Challenges

Competitive Market Dynamics

Competition in the FISH Probe Market is fierce, with several major players and numerous smaller companies vying for market share. This competition can lead to price wars and pressure on profit margins. Differentiating products becomes crucial in this environment.

Key Market Trends

Expanding Applications in Non-Invasive Prenatal Testing (NIPT)

Non-invasive prenatal testing (NIPT) is revolutionizing prenatal care by allowing the detection of fetal chromosomal abnormalities through a simple blood test. FISH probes are becoming increasingly important in NIPT, enabling the identification of specific chromosomal disorders. The expansion of NIPT applications is expected to drive down the demand for FISH probes.

Key Market Players

  • Thermo Fisher Scientific Inc.
  • PerkinElmer Health Sciences Inc
  • Biodot Inc
  • New Horizons Diagnostic Corp
  • Merck KGaA
  • Agilent Technologies, Inc.
  • Abnova Corp.
  • Genemed Biotechnologies Inc
  • F. Hoffmann-La Roche Ltd
  • Oxford Gene Technology Ltd

Report Scope:

In this report, the Global Fluorescent In Situ Hybridization Probe Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Fluorescent In Situ Hybridization Probe Market, By Technology:

  • Q FISH
  • FLOW FISH
  • Others

Fluorescent In Situ Hybridization Probe Market, By Type:

  • DNA
  • RNA
    • mRNA
    • miRNA
    • Others

Fluorescent In Situ Hybridization Probe Market, By Application:

  • Cancer Research
  • Genetic Diseases
  • Others

Fluorescent In Situ Hybridization Probe Market, By End-Use:

  • Research
  • Clinical
  • Companion Diagnostics

Fluorescent In Situ Hybridization Probe Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • United Kingdom
    • France
    • Italy
    • Spain
  • Asia-Pacific
    • China
    • Japan
    • India
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Fluorescent In Situ Hybridization Probe Market.

Available Customizations:

Global Fluorescent In Situ Hybridization Probe market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Fluorescent In Situ Hybridization Probe Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Technology (Q FISH, FLOW FISH, Others)
    • 5.2.2. By Type (DNA, RNA (mRNA, miRNA, Others))
    • 5.2.3. By Application (Cancer Research, Genetic Diseases, Others)
    • 5.2.4. By End-Use (Research, Clinical, Companion Diagnostics)
    • 5.2.5. By Region
    • 5.2.6. By Company (2024)
  • 5.3. Product Market Map

6. North America Fluorescent In Situ Hybridization Probe Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Technology
    • 6.2.2. By Type
    • 6.2.3. By Application
    • 6.2.4. By End-Use
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Fluorescent In Situ Hybridization Probe Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Technology
        • 6.3.1.2.2. By Type
        • 6.3.1.2.3. By Application
        • 6.3.1.2.4. By End-Use
    • 6.3.2. Canada Fluorescent In Situ Hybridization Probe Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Technology
        • 6.3.2.2.2. By Type
        • 6.3.2.2.3. By Application
        • 6.3.2.2.4. By End-Use
    • 6.3.3. Mexico Fluorescent In Situ Hybridization Probe Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Technology
        • 6.3.3.2.2. By Type
        • 6.3.3.2.3. By Application
        • 6.3.3.2.4. By End-Use

7. Europe Fluorescent In Situ Hybridization Probe Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology
    • 7.2.2. By Type
    • 7.2.3. By Application
    • 7.2.4. By End-Use
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Fluorescent In Situ Hybridization Probe Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Technology
        • 7.3.1.2.2. By Type
        • 7.3.1.2.3. By Application
        • 7.3.1.2.4. By End-Use
    • 7.3.2. United Kingdom Fluorescent In Situ Hybridization Probe Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Technology
        • 7.3.2.2.2. By Type
        • 7.3.2.2.3. By Application
        • 7.3.2.2.4. By End-Use
    • 7.3.3. France Fluorescent In Situ Hybridization Probe Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Technology
        • 7.3.3.2.2. By Type
        • 7.3.3.2.3. By Application
        • 7.3.3.2.4. By End-Use
    • 7.3.4. Italy Fluorescent In Situ Hybridization Probe Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Technology
        • 7.3.4.2.2. By Type
        • 7.3.4.2.3. By Application
        • 7.3.4.2.4. By End-Use
    • 7.3.5. Spain Fluorescent In Situ Hybridization Probe Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Technology
        • 7.3.5.2.2. By Type
        • 7.3.5.2.3. By Application
        • 7.3.5.2.4. By End-Use

8. Asia-Pacific Fluorescent In Situ Hybridization Probe Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology
    • 8.2.2. By Type
    • 8.2.3. By Application
    • 8.2.4. By End-Use
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Fluorescent In Situ Hybridization Probe Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology
        • 8.3.1.2.2. By Type
        • 8.3.1.2.3. By Application
        • 8.3.1.2.4. By End-Use
    • 8.3.2. Japan Fluorescent In Situ Hybridization Probe Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology
        • 8.3.2.2.2. By Type
        • 8.3.2.2.3. By Application
        • 8.3.2.2.4. By End-Use
    • 8.3.3. India Fluorescent In Situ Hybridization Probe Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology
        • 8.3.3.2.2. By Type
        • 8.3.3.2.3. By Application
        • 8.3.3.2.4. By End-Use
    • 8.3.4. Australia Fluorescent In Situ Hybridization Probe Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Technology
        • 8.3.4.2.2. By Type
        • 8.3.4.2.3. By Application
        • 8.3.4.2.4. By End-Use
    • 8.3.5. South Korea Fluorescent In Situ Hybridization Probe Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Technology
        • 8.3.5.2.2. By Type
        • 8.3.5.2.3. By Application
        • 8.3.5.2.4. By End-Use

9. South America Fluorescent In Situ Hybridization Probe Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology
    • 9.2.2. By Type
    • 9.2.3. By Application
    • 9.2.4. By End-Use
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Fluorescent In Situ Hybridization Probe Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology
        • 9.3.1.2.2. By Type
        • 9.3.1.2.3. By Application
        • 9.3.1.2.4. By End-Use
    • 9.3.2. Argentina Fluorescent In Situ Hybridization Probe Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology
        • 9.3.2.2.2. By Type
        • 9.3.2.2.3. By Application
        • 9.3.2.2.4. By End-Use
    • 9.3.3. Colombia Fluorescent In Situ Hybridization Probe Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology
        • 9.3.3.2.2. By Type
        • 9.3.3.2.3. By Application
        • 9.3.3.2.4. By End-Use

10. Middle East and Africa Fluorescent In Situ Hybridization Probe Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Technology
    • 10.2.2. By Type
    • 10.2.3. By Application
    • 10.2.4. By End-Use
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Fluorescent In Situ Hybridization Probe Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology
        • 10.3.1.2.2. By Type
        • 10.3.1.2.3. By Application
        • 10.3.1.2.4. By End-Use
    • 10.3.2. Saudi Arabia Fluorescent In Situ Hybridization Probe Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology
        • 10.3.2.2.2. By Type
        • 10.3.2.2.3. By Application
        • 10.3.2.2.4. By End-Use
    • 10.3.3. UAE Fluorescent In Situ Hybridization Probe Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology
        • 10.3.3.2.2. By Type
        • 10.3.3.2.3. By Application
        • 10.3.3.2.4. By End-Use
    • 10.3.4. Kuwait Fluorescent In Situ Hybridization Probe Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Technology
        • 10.3.4.2.2. By Type
        • 10.3.4.2.3. By Application
        • 10.3.4.2.4. By End-Use

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Development
  • 12.2. Mergers & Acquisitions
  • 12.3. Product Launches

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Thermo Fisher Scientific Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Product & Service Offerings
    • 14.1.3. Recent Developments
    • 14.1.4. Financials (If Listed)
    • 14.1.5. Key Personnel
    • 14.1.6. SWOT Analysis
  • 14.2. PerkinElmer Health Sciences Inc
  • 14.3. Biodot Inc
  • 14.4. New Horizons Diagnostic Corp
  • 14.5. Merck KGaA
  • 14.6. Agilent Technologies, Inc.
  • 14.7. Abnova Corp.
  • 14.8. Genemed Biotechnologies Inc
  • 14.9. F. Hoffmann-La Roche Ltd
  • 14.10. Oxford Gene Technology Ltd

15. Strategic Recommendations

16. About Us & Disclaimer