封面
市場調查報告書
商品編碼
1496130

數位造船廠市場:現況分析與預測(2024-2032)

Digital Shipyard Market: Current Analysis and Forecast (2024-2032)

出版日期: | 出版商: UnivDatos Market Insights Pvt Ltd | 英文 138 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

由於先進製造技術在造船過程中的全球傳播,數位化造船廠市場預計將以約18.10%的複合年增長率成長。數位造船廠利用先進的軟體、數據分析和自動化來簡化從設計到建造的各種流程。此外,數位化造船廠採用先進的電腦輔助設計(CAD)和電腦輔助工程(CAE)工具來實現更有效率、更準確的船舶設計和建模。這些技術可以實現船舶性能模擬,減少對實體原型的需求並縮短開發時間。例如,American Bureau of Shipping (ABS) 進行的一項研究發現,與傳統方法相比,數位化造船廠可以減少高達 50% 的設計和工程時間。此外,數位化造船廠正在採用先進的感測器、物聯網 (IoT) 設備和虛擬實境 (VR) 技術來增強品質控制和檢驗流程。這些技術可以即時監控關鍵組件並及早發現潛在問題,從而降低昂貴的維修和延誤的風險。例如,國際海事組織的一項研究發現,使用數位品質控制方法可以減少 20-30% 的返工和缺陷。此外,數位化造船廠正在利用預測性維護和生命週期管理解決方案來優化船舶維護和保養。這包括使用感測器、數據分析和機器學習來預測和預防設備故障,減少停機時間和維護成本。例如,International Classification Society的一項研究表明,採用數位化維護解決方案可以降低維護成本10-20%,並提高資產可用性5-10%。這些因素正在改善環境並推動數位造船廠在全球造船業的採用。

根據造船廠類型,市場分為商業和軍事。軍用造船廠處於採用 3D 建模、模擬和自動化等尖端數位技術來簡化造船和維修流程的前沿。提高軍用船舶生產效率、精度和安全性的需求已成為推動這些造船廠數位轉型的關鍵因素。此外,軍艦需要遵守嚴格的品質和安全標準,需要使用先進的數位工具和流程。數位化船廠技術使軍用船廠能夠保持嚴格的品質控制,進行虛擬測試,並確保船舶的整體完整性。此外,航空母艦、潛艇和新型水面艦艇等高度專業化和技術先進的軍艦的建造正在推動對數位化造船廠解決方案的需求。這些複雜的船舶需要精確的規劃、協調和執行,並且可以使用數位技術更好地管理。最後,工業工業物聯網和人工智慧技術的整合正在提高商業造船廠的營運效率、減少停機時間並增強預測性維護。這些技術對於軍用造船廠的發展也至關重要。除此之外,這些進步極大地促進了軍事造船廠採用數位造船。

根據技術平台,市場分為 RPA、AM、AI/大數據分析、數位孿生、區塊鏈、IIoT 等。IIoT、3D 建模、掃瞄、列印、數位孿生、人工智慧和大數據分析在數位造船廠的保護下一起使用。推動這種採用的主要因素包括實現營運效率的需要。物聯網、數位孿生和人工智慧等技術可以簡化營運、減少體力勞動並提高生產力。此外,預測性維護等應用可以防止代價高昂的故障,而 3D 列印技術的使用可以減少材料浪費。此外,透過整合這些技術,造船廠可以透過自動化勞動密集型任務、最大限度地減少體力勞動的需求並提高資源利用率來降低營運成本。這些解決方案的成本效益使其成為尋求優化財務績效的造船廠營運商的有吸引力的選擇。這些因素是推動全球主要造船廠採用積層製造、人工智慧和大數據分析、數位孿生和工業物聯網的主要原因。

根據數位化水準,市場分為全數位化船廠、半數位化船廠和部分數位化船廠。半數位化造船廠成為行業參與者中的領先選擇。半數位化船廠平衡傳統運作方式與數位技術,逐步過渡到全數位化。這種分階段的方法允許造船廠利用數位工具,同時受益於現有的專業知識和基礎設施,使其成為許多營運商的可行選擇。此外,半數位化造船廠具有高度靈活性和適應性,可讓您根據特定的營運要求和課題客製化數位解決方案。此外,半數位化造船廠將透過為漸進式數位化擴展和創新奠定基礎,實現可擴展並面向未來。這種可擴展性使造船廠能夠根據市場動態、新興技術和不斷變化的客戶需求調整其數位足跡,確保長期相關性和競爭力。除其他因素外,這些因素促使半數位化造船廠越來越受歡迎,成為業界參與者中最可行的選擇。

為了更瞭解數位化造船廠的市場採用情況,市場包括北美(美國、加拿大、北美其他地區)、歐洲(德國、英國、法國、西班牙、義大利、歐洲其他地區)、亞太地區(中國、日本) ,根據印度、澳洲、世界其他地區(亞太地區)和世界其他地區的全球影響力進行分析。無論是在市場佔有率還是收入方面,北美都正在成為數位造船廠領域的領跑者。北美在創新和採用方面處於領先地位,在造船廠營運中利用 RPA、人工智慧、物聯網和大數據分析等先進數位工具。此外,該地區也是著名造船公司、行業專家和技術先驅的所在地,他們在數位創新和製定最佳實踐的行業標準方面處於領先地位。北美造船廠處於數位化造船廠發展的前沿,展示了數位孿生技術、智慧製造和海事營運網路安全等領域的專業知識。此外,該地區造船商、技術公司、研究機構和政府機構之間強大的夥伴關係和合作網絡正在推動數位造船廠生態系統的創新和知識交流。特別是,我們與北美領先的造船廠和技術巨頭的合作夥伴關係促進了針對海事行業需求的尖端數位解決方案的開發。這些因素結合起來,為北美數位造船業的蓬勃發展並在其他地區佔據領導地位創造了完美的環境。

在該市場運營的一些主要公司包括 IFS、Pemamek、Dassault Systemes、BAE Systems、Altair Engineering Inc.、AVEVA Group Limited、Wartsila、KUKA AG、Damen Shipyards Group 和 PROSTEP AG。

目錄

第1章 市場介紹

  • 市場定義
  • 主要目標
  • 利益相關者
  • 限制

第2章 研究方法或前提條件

  • 調查過程
  • 調查方法
  • 受訪者簡介

第3章 執行摘要

第4章 市場動態

  • 促進因素
  • 機會
  • 抑制因素
  • 趨勢
  • PESTEL 分析
  • 需求面分析
  • 供給側分析
    • 併購
    • 投資場景
    • 產業洞察:主要新創公司及其獨特策略

第5章 價格分析

  • 區域價格分析
  • 影響價格的因素

第6章 全球數位造船廠市場收入,2022-2032

第7章 市場分析:依船廠類型

  • 商業的
  • 軍隊

第8章 市場分析:依技術平台

  • RPA
  • AM
  • 人工智慧/大數據分析
  • 數位孿生
  • 區塊鏈
  • 物聯網
  • 其他(網路安全、雲端主資料管理)

第9章 市場分析:依數位化水準

  • 全數位化
  • 半數字
  • 部分數位化

第10章 市場分析:依地區

  • 北美
    • 美國
    • 加拿大
    • 其他北美
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 日本
    • 印度
    • 澳大利亞
    • 亞太其他地區
  • 世界其他地區

第11章 價值鏈分析

  • 邊際分析
  • 進入市場的企業名單

第12章 競爭格局

  • 比賽儀表板
  • 競爭市場定位分析
  • 波特五力分析

第13章 公司簡介

  • IFS
  • Pemamek
  • Dassault Systemes
  • BAE Systems
  • Altair Engineering Inc.
  • AVEVA Group Limited
  • Wartsila
  • KUKA AG
  • Damen Shipyards Group
  • PROSTEP AG

第14章 縮寫與先決條件

第15章 附錄

簡介目錄
Product Code: UMTI212768

The digital shipyard is an emerging paradigm that leverages advanced digital technologies to transform traditional shipbuilding and ship maintenance processes. At its core, the digital shipyard integrates a range of cutting-edge technologies, including 3D modeling, simulation, automation, and data analytics, to optimize every stage of the shipbuilding lifecycle. The use of 3D CAD models and virtual simulations enables shipbuilders to design, test, and validate ship designs before physical construction. This reduces design errors and accelerates the development cycle.

The Digital Shipyard Market is expected to grow at a strong CAGR of around 18.10% owing to the growing proliferation of advanced manufacturing technologies in the shipbuilding process globally. Digital shipyards leverage advanced software, data analytics, and automation to streamline various processes, from design to construction. Furthermore, Digital shipyards employ advanced computer-aided design (CAD) and computer-aided engineering (CAE) tools, enabling more efficient and accurate ship design and modeling. These technologies allow for the simulation of a vessel's performance, reducing the need for physical prototypes and cutting development time. For instance, a study done by the American Bureau of Shipping (ABS) found that digital shipyards can reduce design and engineering time by up to 50% compared to traditional methods. Additionally, digital shipyards employ advanced sensors, Internet of Things (IoT) devices, and virtual reality (VR) technologies to enhance quality control and inspection processes. These technologies enable real-time monitoring of critical components and the early detection of potential issues, reducing the risk of costly repairs or delays. For instance, A study by the International Maritime Organization found that the use of digital quality control methods can lead to a 20-30% reduction in rework and defects. Moreover, Digital shipyards leverage predictive maintenance and lifecycle management solutions to optimize the maintenance and upkeep of vessels. This includes the use of sensors, data analytics, and machine learning to predict and prevent equipment failures, reducing downtime and maintenance costs. For instance, a study by the International Association of Classification Societies found that the adoption of digital maintenance solutions can lead to a 10-20% reduction in maintenance costs and a 5-10% increase in asset availability. Factors such as these are fostering a conducive environment, driving the adoption of digital shipyards in the global shipbuilding industry.

Based on shipyard type, the market is segmented into commercial and military. Military shipyards have been at the forefront of adopting cutting-edge digital technologies, such as 3D modeling, simulation, and automation, to streamline their shipbuilding and repair processes. The need for enhanced efficiency, precision, and security in military vessel production has been a key factor driving the digital transformation of these shipyards. Furthermore, military vessels are subject to rigorous quality and safety standards, which has necessitated the use of advanced digital tools and processes. Digital shipyard technologies enable military shipyards to maintain strict quality control, conduct virtual testing, and ensure the overall integrity of their vessels. Additionally, the construction of highly specialized and technologically advanced military vessels, such as aircraft carriers, submarines, and advanced surface ships, has driven the demand for digital shipyard solutions. These complex vessels require precise planning, coordination, and execution, which can be better managed through the use of digital technologies. Lastly, the integration of Industrial Internet of Things (IIoT) and Artificial Intelligence (AI) technologies has improved operational efficiency, reduced downtime, and enhanced predictive maintenance in commercial shipyards. These technologies are critical for the development of military shipyards. These advances, among others, have contributed immensely to the adoption of digital shipyards within military shipyards.

Based on technology platforms, the market is segmented into robotics process automation, additive manufacturing, artificial intelligence & big data analytics, digital twin, blockchain, industrial internet of things, and others. The industrial internet of things, 3D modeling, scanning, & printing, digital twin, and AI & big data analytics are used in confluence within the digital shipyard umbrella. The key factors driving this adoption include the need to achieve operational efficiency. Technologies like IoT, digital twins, and AI streamline operations, reduce manual effort, and enhance productivity. Furthermore, applications such as predictive maintenance prevent costly breakdowns while utilizing 3D printing technologies reduces material waste. Additionally, the incorporation of these technologies helps shipyards reduce operational costs by automating labor-intensive tasks, minimizing the need for manual intervention, and improving resource utilization. The cost-effectiveness of these solutions makes them an attractive option for shipyard operators aiming to optimize their financial performance. Factors such as these are key reasons driving the adoption of additive manufacturing, artificial intelligence & big data analytics, digital twin, and industrial internet of things among major shipyards globally.

Based on the digitalization level, the market is segmented into fully digital shipyards, semi-digital shipyards, and partially digital shipyards. Semi-digital shipyards stand out as the prevailing choice among industry players. Semi-digital shipyards strike a balance between traditional operational methods and digital technologies, allowing for a gradual transition toward full digitalization. This incremental approach enables shipyards to leverage digital tools while benefiting from existing expertise and infrastructure, making it a pragmatic choice for many operators. Furthermore, Semi-digital shipyards offer a high degree of flexibility and adaptability, allowing them to tailor digital solutions to specific operational requirements and challenges. Additionally, Semi-digital shipyards exhibit scalability and future readiness by laying the foundation for gradual digital expansion and innovation. This scalability allows shipyards to adjust their digital footprint in response to market dynamics, emerging technologies, and evolving customer needs, ensuring long-term relevance and competitiveness. These factors, among others, are influencing the growing popularity of semi-digital shipyards as the most pragmatic choice among industry players.

For a better understanding of the market adoption of Digital Shipyard, the market is analyzed based on its worldwide presence in countries such as North America (The U.S., Canada, and the Rest of North America), Europe (Germany, The U.K., France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Australia, Rest of Asia-Pacific), Rest of World. North America emerges as a frontrunner in the digital shipyard sector, both in terms of market share and revenue generation. North America leads in technological innovation and adoption, leveraging advanced digital tools such as Robotics Process Automation (RPA), Artificial Intelligence (AI), Internet of Things (IoT), and Big Data Analytics in shipyard operations. Furthermore, the region is home to renowned shipbuilding companies, industry experts, and technology pioneers who spearhead digital innovation and set industry standards for best practices. North American shipyards are at the forefront of digital shipyard developments, showcasing expertise in areas such as digital twin technology, smart manufacturing, and cybersecurity in maritime operations. Additionally, the region's strong network of partnerships and collaborations between shipbuilders, technology firms, research institutions, and government agencies propels innovation and knowledge exchange in the digital shipyard ecosystem. Notably, partnerships between leading North American shipyards and tech giants have resulted in the development of cutting-edge digital solutions tailored to maritime industry needs. The confluence of factors such as these has fostered an environment favorable enough for the digital shipyard industry of North America to thrive and obtain a leadership position among other regions.

Some of the major players operating in the market include IFS; Pemamek; Dassault Systemes; BAE Systems; Altair Engineering Inc.; AVEVA Group Limited; Wartsila; KUKA AG; Damen Shipyards Group; and PROSTEP AG

TABLE OF CONTENTS

1.MARKET INTRODUCTION

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.RESEARCH METHODOLOGY OR ASSUMPTION

  • 2.1. Research Process of the Digital Shipyard Market
  • 2.2. Research Methodology of the Digital Shipyard Market
  • 2.3. Respondent Profile

3.EXECUTIVE SUMMARY

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
  • 3.3. Market Growth Intensity
  • 3.4. Regional Outlook

4.MARKET DYNAMICS

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. PESTEL Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Investment Scenario
    • 4.7.3. Industry Insights: Leading Startups and Their Unique Strategies

5.PRICING ANALYSIS

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.GLOBAL DIGITAL SHIPYARD MARKET REVENUE (USD BN), 2022-2032F

7.MARKET INSIGHTS BY SHIPYARD TYPE

  • 7.1. Commercial
  • 7.2. Military

8.MARKET INSIGHTS BY TECHNOLOGY PLATFORM

  • 8.1. Robotic Process Automation
  • 8.2. Additive Manufacturing
  • 8.3. Artificial Intelligence & Big Data Analytics
  • 8.4. Digital Twin
  • 8.5. Blockchain
  • 8.6. Industrial Internet of Things (IIoT)
  • 8.7. Others (Cyber Security and Cloud & Master Data Management)

9.MARKET INSIGHTS BY DIGITALIZATION LEVEL

  • 9.1. Fully Digital Shipyard
  • 9.2. Semi Digital Shipyard
  • 9.3. Partially Digital Shipyard

10.MARKET INSIGHTS BY REGION

  • 10.1. North America
    • 10.1.1. U.S.
    • 10.1.2. Canada
    • 10.1.3. Rest of North America
  • 10.2. Europe
    • 10.2.1. Germany
    • 10.2.2. U.K.
    • 10.2.3. France
    • 10.2.4. Italy
    • 10.2.5. Spain
    • 10.2.6. Rest of Europe
  • 10.3. Asia-Pacific
    • 10.3.1. China
    • 10.3.2. Japan
    • 10.3.3. India
    • 10.3.4. Australia
    • 10.3.5. Rest of Asia-Pacific
  • 10.4. Rest of World

11.VALUE CHAIN ANALYSIS

  • 11.1. Marginal Analysis
  • 11.2. List of Market Participants

12.COMPETITIVE LANDSCAPE

  • 12.1. Competition Dashboard
  • 12.2. Competitor Market Positioning Analysis
  • 12.3. Porter Five Forces Analysis

13.COMPANY PROFILED

  • 13.1. IFS
    • 13.1.1. Company Overview
    • 13.1.2. Key Financials
    • 13.1.3. SWOT Analysis
    • 13.1.4. Product Portfolio
    • 13.1.5. Recent Developments
  • 13.2. Pemamek
  • 13.3. Dassault Systemes
  • 13.4. BAE Systems
  • 13.5. Altair Engineering Inc.
  • 13.6. AVEVA Group Limited
  • 13.7. Wartsila
  • 13.8. KUKA AG
  • 13.9. Damen Shipyards Group
  • 13.10. PROSTEP AG

14.ACRONYMS & ASSUMPTION

15.ANNEXURE