6G通訊:RIS (Reconfigurable Intelligent Surface) 及反射陣列材料和硬體設備的市場及技術 (2025-2045年)
市場調查報告書
商品編碼
1509814

6G通訊:RIS (Reconfigurable Intelligent Surface) 及反射陣列材料和硬體設備的市場及技術 (2025-2045年)

6G Communications: Reconfigurable Intelligent Surface RIS and Reflect-array Materials and Hardware Markets, Technology 2025-2045

出版日期: | 出版商: Zhar Research | 英文 457 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

6G通訊將於2030年到來。 RIS(可重構智慧表面)對於這一目的至關重要,它可以加強傳播路徑並增加覆蓋範圍和滲透力。該技術最初將解決亞太赫茲頻率,接下來可望增加太赫茲、近紅外線和光學頻率。基地台也將加強並安裝在穿越平流層的太陽能無人機上。 RIS的360度響應、隱形、長壽命、自適應、自發電等多功能智慧材料的開發正在迅速進展,其中包括感測、定位、無動力運行等我們正在創建商業案例客戶端設備。

本報告調查了RIS(可重構智慧表面)的市場和技術,反映了6G通訊所必需的陣列材料和硬件,包括RIS的定義和概述、材料和裝置、製造技術和研發趨勢,總結了成本分析、5G和6G RIS路線圖、市場規模趨勢和預測、各種應用的前景和課題以及參與公司的分析。

目錄

第1章 摘要整理·結論

  • 本報告的目的
  • 調查方法
  • 使用兩個資訊圖表定義、設計和部署 RIS
  • 主要結論:6G 通訊與 RIS 設計與部署
  • 主要結論:用於RIS調諧的材料和裝置
  • 主要結論:6G RIS和反射陣列製造技術
  • 主要結論:長遠視角
  • RIS 成本分析
  • 5G 和 6G 研究與企業發展的優先事項有差異
  • 6G RIS SWOT 評估
  • RIS 的演變
  • 5G 和 6G RIS 路線圖
  • 從盒裝 RIS 組件到智慧材質的趨勢
  • 市場預測
  • 預測6G RIS市場規模(數量、金額、價格)
  • 6G RIS年度銷售預測
  • 6G RIS 市場規模預測(金額):依類別
  • 預測安裝的 6G RIS 面板的累積數量
  • 6G全被動超材料反映陣列市場規模
  • 6G RIS 市場規模

第2章 定義·起源·重要性·主要的問題·必要的能力

  • 定義/分類
  • 術語
  • 從1G到6G的旅程
  • RIS 描述/用途
  • 波束成形與轉向趨勢: "波束" 是個委婉的說法
  • 缺乏對硬體的關注,最終性能目標的重要性
  • 從系統和安全角度看 RIS
  • 6G 全球架構提案、互補系統與範圍困境
  • 資訊圖表:基於最新研究的 6G 和使用 RIS 的補充系統
  • 資訊圖表:6G 硬體及相關製造商
  • RIS 與傳統方法的比較:混合方法
  • 可重構智慧超表面的多樣化功能與應用
  • 全球 6G RIS 計畫範例
    • ETSI ISG RIS
    • RISE 6G 歐洲
    • 英國與韓國的合作
    • 日本
    • 中國

第3章 最終的6G RIS硬體設備目標:不可見性·獨立性·普遍存在性·多功能性·持續性

  • 摘要
  • 超表面能量收集有望在 6G 中實現
  • RIS 成為零能耗設備,可供 ZED 用戶端設備使用
  • 通往自供電長壽命 RIS 之路
  • 6G ZED實現技術與材料
  • 6G ZED 基礎設施與客戶端設備的採集技術
  • 匹配 6G 主動 RIS 和 UM MIMO 基地台的功率需求和能量收集選項
  • 使用能量收集的 "永久" RIS
  • 使用壽命長:自我修復材料,戴上後就忘了
  • 多功能RIS:固態冷卻提高了RIS的可接受性和恢復率
  • 多功能RIS支援能量收集
  • 具有整合感測 ISAC 和定位功能的多功能 RIS
  • RIS保障系統安全:半被動RIS與主動RIS融合

第4章 透明被動式反射陣列和廣博STAR RIS

  • 摘要
  • 6G傳輸處理面透明度狀況
  • 6G 光束處理表面可選擇透明或不透明
  • 透明的 IRS 和 RIS 幾乎可以覆蓋任何地方
  • 透明被動智慧反射表面IRS:Meta Nanoweb-R Sekisui
  • 透明 RIS
  • 同時透射/反射型STAR RIS
  • 自 2024 年以來分析的其他研究論文
  • 自 2023 年以來分析的其他研究論文
  • 之前的研究 - 範例

第5章 基地台·UAV·廣域MIMO RIS

  • 基地台與航空RIS的定義及關係
  • 無人機和 RIS
  • 航空RIS基地台研究
  • 2024年無人機RIS相關研究:52個其他項目
  • RIS 作為小型蜂巢式基地台
  • 相容RIS的自主超大規模6G UM-MIMO基地台設計
  • 其他 MIMO 大面積 RIS 進步
  • 用於大規模 MIMO 基地台的 RIS:清華大學、艾默生
  • 下一步 ELAA 進度計劃

第6章 強化在輔助THz·THz的傳播途徑的6G RIS硬體設備及系統設計

  • 需求/主要障礙
  • 5G 和 6G 研究與企業發展的優先事項有差異
  • RIS 操作模式
  • 針對特定產業和變化的RIS設計:客製化設計和自適應RIS
  • RIS 調優硬體選項的比較
  • 具有有限 6G 0.1-0.3THz 功能的 5G RIS 調諧選項:HEMT、CMOS、PIN、肖特基
  • 用於 6G RIS 0.1-1THz 和近紅外線的有前途和不太有前途的調諧材料
  • 2024年太赫茲RIS以下其他研究論文分析
  • 2024年太赫茲RIS以下其他研究論文分析

第7章 強化在光電信業者:NIR及可見頻率的傳播途徑的6G ORIS硬體設備及系統設計

  • NIR 和可見光 ORIS 及相關設備設計概述
  • 研究與企業發展重點
  • 可見光通訊在6G中的重要性
  • FSO 與 VLC 解決的課題
  • 空氣中的衰減和從 0.1 THz 到可見光的互補性
  • ORIS 室內、室外和水下
  • 平流層及其他地區通訊的一部分
  • 6G RIS 和 LED 光通訊技術(包括 LiFi)
  • LED 以及潛在的 6G LiFi 和 6G 光學 RIS 材料
  • 針對室內和室外場景設想的支援 RIS 的 6G LiFi 應用
  • 通用 LED 通信
  • RIS支援的室內VLC系統的系統模型
  • 用於 6G 通訊和系統設計的超材料 ORIS
  • 用於 6G 通訊的 Metalens
  • 反射鏡陣列ORIS的設計
  • 可以結合光/太赫茲 6G 通訊來實現最佳的 QOS
  • 2024 年和 2023 年其他研究的評估
  • 之前的重要研究

第8章 主要實現硬體設備:超材料·metasurface

  • 摘要
  • 用於 6G 通訊和其他 OTA、TIRS 的電氣功能化透明玻璃
  • 元原子和圖案選項
  • 商業、營運、理論和結構方案的比較
  • 超材料圖案與材料
  • 通訊超材料的六種形式及其範例
  • 可調式超材料
  • 超表面底漆
  • 超材料整體的長期前景
  • GHz、THz、紅外線和光學超材料的新應用
  • 超材料和超表面的整體 SWOT 評估

第9章 6G RIS和反射陣列的製造·試驗·成本的明細·進入中小企業

  • 薄膜和透明電子領域的尖端技術
  • 從離散基板、層壓薄膜到完整智慧材料整合的趨勢
  • 靈活、層流、二維能量收集和感測的重要性
  • 6G RIS光、低太赫茲和高太赫茲製造技術的差異
  • 計劃的 6G RIS 設備和系統製造模式
  • 全金屬太赫茲超表面
  • 全電介質太赫茲超表面:2024 年新進展
  • 超高速雷射加工的離子超表面
  • 6G RIS測試
  • RIS 成本分析
  • 涉及6G製造技術的中小型非電信企業
    • Echodyne USA
    • Evolv Technology USA
    • Fractal Antenna Systems USA
    • Greenerwave France
    • iQLP USA
    • Kymeta Corp. USA
    • Meta Materials Canada
    • Metacept Systems USA
    • Metawave USA
    • Pivotal Commware USA
    • SensorMetrix USA
    • Teraview USA
簡介目錄

Summary

This major commercially-oriented report serves the needs of investors, materials and device suppliers, product and system integrators, but there is also much to interest academics, regulators and others in the emerging value chain.

New virtuosity

6G Communications arrives 2030. Its essential Reconfigurable Intelligent Surfaces will increase range and penetration, enhancing the propagation path. First, they will handle sub-terahertz then add terahertz, near infrared and optical frequencies. They will even enhance the base stations and appear in the stratosphere on loitering solar drones. There is rapid progress in making RIS 360-degrees all-round capable, invisible, long lasting, self-adaptive, self-powered and even multifunctional smart materials adding sensing, positioning, operating unpowered client devices and other business cases. Indeed, the flood of new research in 2024 makes earlier analysis misleading.

Two reports in one

The report is really two reports in one. Those seeking just the materials and device aspects can get them from about 200 pages, mainly of new infograms, forecasts, roadmaps, comparison tables and PhD level commentary. Those seeking all aspects including signal processing and system design will value the full text.

The report has 6 SWOT appraisals, 9 chapters, 21 forecast lines to 2045, 25 key conclusions, 31 new infograms, over 92 companies mentioned and hundreds of latest research papers analysed, particularly from 2024 and 2023, in 457 pages.

Questions answered include:

  • Cost analysis?
  • Gaps in the market?
  • Merits and issues of RIS alternatives?
  • Becoming multipurpose in what ways?
  • Major RIS milestones, when, where to 2045?
  • Countries, companies, researchers to watch?
  • 6G RIS vs 6G reflect-arrays - technologies, forecasts?
  • 6G THz, NearIR and visible frequencies, when and why?
  • Potential partners and acquisitions and their RIS progress?
  • 6G RIS panels, area, cost, & market value by year to 2045?
  • Which formulations, configurations, manufacturing win, why?
  • What metamaterials, metasurfaces, tuning materials and devices?
  • 20-year roadmaps of decision making, technical capability and adoption?

The 36-page Executive Summary and Conclusions takes 38 pages for those wanting the whole picture at speed including roadmaps 2025-2045. 11 pages then present those 21 forecast lines as tables and graphs with commentary. Chapter 2 (45 pages) then introduces the subject addressing definitions, origin, importance, key issues, required capabilities and some important regional initiatives but what is the ultimate objective? That is covered in Chapter 3 (39 pages) "Ultimate 6G RIS hardware objectives: invisible, independent, ubiquitous, multifunctional, everlasting". Here you will learn of the now-considerable body of work on such things as Transparent Amplifying Intelligent Surface TAIS providing Simultaneous Wireless and Information Transfer SWIPT with advanced backscatter and Simultaneous Terahertz Imaging with Information and Power Transfer STIIPT. See eight options that can be combined for energy independent long-life, 13 energy harvesting options potentially making RIS into Zero Energy Devices. Ambient backscatter communications AmBC and crowd detectable CD-ZED? RIS ensuring 6G system security: combined semi-passive and active RIS? Winning materials? It is here with analysis of many latest research papers and our own ideas.

Transparent versions attract

Transparent RIS is now a strong trend so Chapter 4 (38 pages) goes deeper with "Transparent passive reflect-arrays and all-round STAR RIS". In addition, there is much new work on how RIS technology will help to address the many problems of the large, power-hungry 6G base stations planned and Chapter 5, "Base station, UAV and large area MIMO RIS" covers these linked topics in 22 pages including the extremely large-scale antenna array (ELAA).

Heart of the subject

Chapter 6 concerns the heart of the subject - materials, devices and new principles for, "6G RIS hardware and system design enhancing the propagation path at sub-THz, THz". In 130 pages it makes sense of the tsunami of new research and initiatives, presenting many summaries, comparisons and predictions including winning materials. See indoor vs outdoor RIS and RIS customised to specific industries. However, the largest part is RIS tuning hardware options compared, making sense of many new research advances and initiatives, identifying winners and losers. Whereas some early 6G RIS will use 5G RIS tuning materials and devices, higher THz frequencies need disruptive new approaches including liquid crystal, graphene, vanadium dioxide and chalcogenide tuning particularly full integration into the metasurfaces. Goodbye to flip chipping discretes.

6G becomes largely optical

To succeed commercially, most 6G must offer widespread superlative performance so such things as defaulting to satcoms and WiFi at mere GHz risks the whole enterprise. Enter 6G near-infrared and visible light communication and the attendant need for RIS at these frequencies, all addressed in Chapter 7 "Optical carriers: 6G ORIS hardware and system design enhancing the propagation path at near infrared and visible frequencies". Its 42 pages lead you to your opportunities with these materials and devices. Learn the place of LiFi, Optical Wireless Communication and more.

Enabling metamaterials, manufacturing and small companies

For those needing the basics of required added value materials, the 28 pages of Chapter 8 cover, "Key enabling hardware: metamaterials, metasurfaces". Chapter 9 adds, "6G RIS and reflect-array manufacture, testing, cost breakdown, small companies involved". What resolution, feature size, printing technology? Cost breakdown for hardware through installation for indoor and outdoor RIS systems? 12 small to medium sized companies, with something to offer, are assessed - your potential partners or acquisitions. The newest activities of the giant telcos and others and hundreds of research institutions have already been covered throughout the text.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report
  • 1.2. Methodology of this analysis
  • 1.3. Reconfigurable intelligent surfaces definition, design, deployment with two infograms
    • 1.3.1. Definition and basics
    • 1.3.2. Infogram:6G RIS and other metamaterial in action: the dream
    • 1.3.3. Infogram: Ubiquitous 6G and complementary systems using RIS with references to recent research
    • 1.3.4. RIS-enabled, self-sufficient ultra-massive 6G UM-MIMO base station design
    • 1.3.5. Choosing complementary 6G frequencies all capable of better performance
    • 1.3.6. Infogram: The Terahertz Gap demands 6G tuning materials and devices different from 5G
  • 1.4. Key conclusions: 6G Communications and its RIS design and deployment 2025-2045
  • 1.5. Key conclusions: materials and devices for RIS tuning
  • 1.6. Key conclusions: Manufacturing technology for 6G RIS and reflect-arrays
    • 1.6.1. Manufacture overview
    • 1.6.2. Printing options for metamaterials and their tuning materials
    • 1.6.3. Near-infrared and visible light ORIS and allied device design and manufacture
  • 1.7. Key conclusions; the long view
    • 1.7.1. Summary
    • 1.7.2. SWIPT, STIIPT, AmBC, CD-ZED with 17 2024, 2023 research papers analysed
    • 1.7.3. STAR RIS SWOT appraisal
  • 1.8. RIS cost analysis
    • 1.8.1. Outdoor semi-passive and active RIS cost analysis at high areas of deployment
    • 1.8.2. Indoor semi-passive RIS cost analysis at volume
  • 1.9. The different prioritisation of research and company development for 5G and 6G
  • 1.10 6G RIS SWOT appraisal
  • 1.11. RIS evolution 2025-2045
  • 1.12 5G and 6G RIS roadmap 2025-2045
  • 1.13. Trend from RIS components-in-a-box to smart materials 2025-2045
  • 1.14. Market forecasts 2025-2045
  • 1.14.1 6G RIS market yearly area added bn. sq. m., price $ ex factory $/ square meter, semi-passive ,active and total market value table 2029-2045: table
  • 1.14.2 6G RIS Area sales yearly billion square meters 2029-2045: graph with explanation
    • 1.14.3. Average 6G RIS price expressed as $/ square m. ex-factory including electronics 2029-2045
    • 1.14.4. RIS value market $ billion by active and three semi-passive categories 2029-2045: table
  • 1.14.5 6G RIS value market $ billion by active and three semi-passive categories 2029-2045 graph with explanation
  • 1.14.6 6G reconfigurable intelligent surfaces cumulative panels number deployed billion by year end 2029-2045
  • 1.14.7 6G fully passive metamaterial reflect-array market $ billion 2029-2045
  • 1.14.8 6G RIS value market, base station part, other terahertz electronics market $ billion
    • 1.14.9. Percentage share of global RIS hardware value market by four regions 2029-2045
    • 1.14.10. Market for 6G vs 5G base stations units millions yearly 2029-2045

2. Definition, origin, importance, key issues, required capabilities

  • 2.1. Definitions and nomenclature
  • 2.2. Terminology thicket
  • 2.3 1G to 6G journey
  • 2.4. RIS explanation and purposes
    • 2.4.1. Explanation
    • 2.4.2. ITU proposals and 3GPP initiatives
    • 2.4.3. RIS assisted wireless communication landscape
    • 2.4.4. RIS patenting
  • 2.5. Trend to beam forming and steering but "beam" is a euphemism
  • 2.6. Inadequate attention to hardware, importance of ultimate performance targets
  • 2.7. RIS from the systems and security viewpoint
  • 2.8 6G global architecture proposals, complementary systems and the range dilemma
  • 2.9. Infogram of 6G and complementary systems using RIS with references to recent research
  • 2.10. Infogram of likely 6G hardware and allied manufacturers
  • 2.11. RIS compared to traditional approaches: mixed approaches
  • 2.12. Diverse functionalities and applications of reconfigurable and intelligent metasurfaces
  • 2.13. Examples of 6G RIS initiatives worldwide
    • 2.13.1. ETSI ISG RIS with 32 member organisations , other initiatives
    • 2.13.2. RISE 6G Europe
    • 2.13.3. UK-Korea collaboration
    • 2.13.4. Japan
    • 2.13.5. China

3. Ultimate 6G RIS hardware objectives: invisible, independent, ubiquitous, multifunctional, everlasting

  • 3.1. Overview
    • 3.1.1. The journey to vanishing cleverer longer-lasting RIS
    • 3.1.2. Eight options that can be combined for energy independent long-life 6G RIS etc.
  • 3.2. Metasurface energy harvesting likely for 6G
  • 3.3. RIS will become zero energy devices and they will enable ZED client devices
  • 3.4. Routes to self-powered, long life RIS
  • 3.4.1 6G ZED enabling technologies and materials
    • 3.4.2. Maturity of primary ZED enabling technologies in 2025
    • 3.4.3. Ranking of most popular 6G ZED compounds and carbon allotropes in research
    • 3.4.4. Context of ZED: overlapping and adjacent technologies and examples of long-life energy independence
    • 3.4.5. SWIPT, STIIPT, AmBC, CD-ZED, battery elimination, with 17 2024, 2023 research papers analysed
  • 3.4.6 13. harvesting technologies for 6G ZED infrastructure and client devices 2025-2045
  • 3.4.7 6G active RIS and UM MIMO base station power demands matched to energy harvesting options
  • 3.4.8 "Perpetual" RIS using energy harvesting
    • 3.4.9. Device battery-free storage: supercapacitors, LIC, massless energy
    • 3.4.10. SWOT appraisal of batteryless storage technologies for ZED RIS and more
    • 3.4.11. SWOT appraisal of circuits and infrastructure that eliminate storage
  • 3.5. Long life: self-healing materials for fit-and-forget
  • 3.6. Multifunctional RIS: solid-state cooling functionality can enhance RIS acceptability, payback
  • 3.7. Multifunctional RIS assists energy harvesting
  • 3.8. Multifunctional RIS with integral sensing ISAC and positioning
  • 3.9. RIS ensuring system security: combined semi-passive and active RIS

4. Transparent passive reflect-arrays and all-round STAR RIS

  • 4.1. Overview
  • 4.2. Situation with transparent 6G transmission-handling surfaces in 2024-5
  • 4.3. Options for 6G beam-handling surfaces that can be visually transparent or opaque
  • 4.4. Transparent IRS and RIS can go almost anywhere
  • 4.5. Transparent passive intelligent reflecting surface IRS: Meta Nanoweb-R Sekisui
  • 4.6. Transparent RIS
    • 4.6.1. Overview
    • 4.6.2. NTT DOCOMO transparent RIS
    • 4.6.3. Cornell University RIS prototype and later work elsewhere
  • 4.7. Simultaneous transmissive and reflective STAR RIS
    • 4.7.1. Overview
    • 4.7.2. STAR-RIS optimisation
    • 4.7.3. STAR-RIS-ISAC integrated sensing and communication system
    • 4.7.4. TAIS Transparent Amplifying Intelligent Surface and SWIPT active STAR-RIS
    • 4.7.5. STAR-RIS with energy harvesting and adaptive power
    • 4.7.6. Potential STAR-RIS applications including MIMO and security
    • 4.7.7. STAR RIS SWOT appraisal
  • 4.8. Other research papers analysed from 2024
  • 4.9. Other research papers analysed from 2023
  • 4.10. Earlier work - examples

5. Base station, UAV and large area MIMO RIS

  • 5.1. Definitions and the link between base station and aerial RIS
  • 5.2. UAV drones and RIS
    • 5.2.1. Small local and large stratospheric, RIS relay and base station
    • 5.2.2. Large stratospheric HAPS RIS
  • 5.3. Aerial RIS base station research
  • 5.4. Research in 2024 related to UAV RIS: 52 other papers
  • 5.5. RIS as small cell base station
  • 5.6. RIS-enabled, self-sufficient, ultra-massive 6G UM-MIMO base station design
  • 5.7. Other MIMO large area RIS advances
  • 5.8. RIS for massive MIMO base station: Tsinghua University, Emerson
  • 5.9. Next advances planned ELAA

6. 6G RIS hardware and system design enhancing the propagation path at sub-THz, THz

  • 6.1. Needs, primary impediments
  • 6.2. The different prioritisation of research and company development for 5G and 6G
  • 6.3. RIS operation modes
    • 6.3.1. Time and processing
    • 6.3.2. Direction and absorption
    • 6.3.3. Single- or multi- functional
    • 6.3.4. Frequency choices: 6G in the electromagnetic EM spectrum
    • 6.3.5. Alternative architectures reducing cost, complexity, and power consumption
  • 6.4. RIS design for specific industries and changes: custom designed and self-adaptive RIS
    • 6.4.1. Introduction and environment adaptive example
    • 6.4.2. Multi-user RIS
    • 6.4.3. Indoor RIS design
    • 6.4.4. Agricultural RIS design
    • 6.4.5. High speed rail RIS design
    • 6.4.6. Industry 5.0 RIS design
  • 6.5. RIS tuning hardware options compared
    • 6.5.1. Infogram: RIS specificity, tuning criteria, physical principles, activation options
    • 6.5.2. Examples of how electrical and optical RIS tuning control are preferred
    • 6.5.3. Infogram: The Terahertz Gap demands different tuning materials and devices
  • 6.5.4 5G RIS tuning options with limited 6G 0.1-0.3THz capability: HEMT, CMOS, PIN, Schottky - 7 pages
    • 6.5.5. Detailed comparison of various RIS controlling techniques and popular tuning material parameters
  • 6.6. Detail on some promising and less-promising tuning materials for 6G RIS 0.1-1THz and NearIR
    • 6.6.1. Winners on current evidence
    • 6.6.2. Why 5G RIS tuning is of limited relevance to 6G needs
    • 6.6.3. Why magnetics, mechanics, MEMS and microfluidics are weaker candidates for 6G RIS
    • 6.6.4. Vanadium dioxide tuning: major progress in 2024 - 16 pages
    • 6.6.5. Chalcogenide phase change materials notably GST and GeTe tuning - 8 pages
    • 6.6.6. Graphene tuning: graphene plasmonics and gated graphene; major progress in 2024 - 21 pages
    • 6.6.7. Other 2D material tuning - one page
    • 6.6.8. Liquid crystal tuning: major progress in 2024- 13 pages
  • 6.7. Analysis of other research papers in 2024 for THz RIS and below
  • 6.8. Analysis of other research papers in 2024 for THz RIS and below

7. Optical carriers: 6G ORIS hardware and system design enhancing the propagation path at near infrared and visible frequencies

  • 7.1. Overview of near-infrared and visible light ORIS and allied device design
  • 7.2. Prioritisation of research and company development are inappropriate; analysis
  • 7.3. Importance of visible light communication for 6G
  • 7.4. Challenges addressed by FSO and VLC
  • 7.5. How attenuation in air by frequency and type 0.1THz to visible is complementary
  • 7.6. ORIS indoor, outdoor and underwater
  • 7.7. Part of stratospheric communications and beyond
  • 7.8 6G RIS and LED optical communication technologies including LiFi
  • 7.9. LED and potentially 6G LiFi and 6G optical RIS materials
  • 7.10. Envisioned RIS-enabled 6G LiFi applications in indoor and outdoor scenarios.
  • 7.11. LED communication generally
  • 7.12. System model for a RIS-aided indoor VLC system
  • 7.13. Metamaterial ORIS for 6G Communication and system design
  • 7.14. Metalenses for 6G Communication
  • 7.15. Mirror array ORIS design
  • 7.16. Possible combined light/THz 6G Communications for best QOS
  • 7.17. Appraisal of other research in 2024 and 2023
  • 7.18. Significant earlier research

8. Key enabling hardware: metamaterials, metasurfaces

  • 8.1. Overview
  • 8.2. Electrically-functionalised transparent glass for 6G Communications and other OTA, TIRS
  • 8.3. The meta-atom and patterning options
  • 8.4. Commercial, operational, theoretical, structural options compared
  • 8.5. Metamaterial patterns and materials
  • 8.6. Six formats of communications metamaterial with examples
  • 8.7. Tunable metamaterials
  • 8.8. Metasurface primer
    • 8.8.1. Metasurface design, operation and RIS
    • 8.8.2. RIS and reflect-array construction and potential capability
    • 8.8.3. How metamaterial RIS hardware operates
    • 8.8.4. Categories of reconfigurable and programmable metasurfaces
    • 8.8.5. Metamaterial reflect arrays (also called intelligent reflective surfaces IRS or fully-passive RIS) for 6G
    • 8.8.6. Hypersurfaces and bifunctional metasurfaces
  • 8.9. The long-term picture of metamaterials overall
  • 8.10. Emerging applications of GHz, THz, infrared and optical metamaterials
  • 8.11. SWOT appraisal for metamaterials and metasurfaces generally

9. 6G RIS and reflect-array manufacture, testing, cost breakdown, small companies involved

  • 9.1. Thin film and transparent electronics state-of-the-art
  • 9.2. Trend from discrete boards, stacked films to full smart material integration
  • 9.3. Importance of flexible, laminar and 2D energy harvesting and sensing
  • 9.4. How manufacturing technologies differ for 6G RIS optical, low or high THz
  • 9.5. Formats for manufacturing planned 6G RIS devices and systems
  • 9.6. All-metal terahertz metasurfaces
  • 9.7. All-dielectric terahertz metasurfaces: new advances in 2024
  • 9.8. Ionic metasurfaces by ultra-fast laser tailoring
  • 9.9 6G RIS testing
  • 9.10. RIS cost analysis
    • 9.10.1. Outdoor semi-passive and active RIS cost analysis at high areas of deployment
    • 9.10.2. Indoor semi-passive RIS cost analysis at volume
  • 9.11. Small and medium non-telco companies involved in 6G manufacturing technologies
    • 9.11.1. Echodyne USA
    • 9.11.2. Evolv Technology USA
    • 9.11.3. Fractal Antenna Systems USA
    • 9.11.4. Greenerwave France
    • 9.11.5. iQLP USA
    • 9.11.6. Kymeta Corp. USA
    • 9.11.7. Meta Materials Canada
    • 9.11.8. Metacept Systems USA
    • 9.11.9. Metawave USA
    • 9.11.10. Pivotal Commware USA
    • 9.11.11. SensorMetrix USA
    • 9.11.12. Teraview USA