熱超材料:市場·技術 (2025-2045年)
市場調查報告書
商品編碼
1615495

熱超材料:市場·技術 (2025-2045年)

Thermal Metamaterials: Markets, Technology 2025-2045

出版日期: | 出版商: Zhar Research | 英文 279 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

熱超材料的市場規模預計將超過 130 億美元,應用範圍從軍事熱屏蔽和感官錯覺到改進的能量收集、冷卻和熱電設備、電力電子設備的熱管理等。

本報告提供熱超材料的市場及技術,與技術的概要與案例調查,彙整重要功能,製造技術材料,終端用戶產業與用途,研究開發趨勢,市場成長預測等資訊。

目錄

第1章 摘要整理·結論

  • 本報告的目的
  • 此分析的研究方法
  • 熱超材料
  • 主要結論:市場定位
  • 主要結論:關鍵配置、功能與製造技術
  • 132個最新熱超材料研究案例的受歡迎程度:依成分分類
  • 使用超材料進行靜態到動態的熱傳遞
  • 靜態輻射冷卻材料:超材料是眾多選擇之一
  • 被動日間輻射冷卻 PDRC:SWOT 評估
  • 熱超材料和冷卻路線圖:按市場和技術劃分
  • 市場預測
  • 背景預測

第2章 簡介

  • 摘要
  • 超材料熱管理材料的類型
  • 三個超材料系列重疊
  • 因各種原因對冷卻的需求增加
  • 冷卻技術將如何過渡到智慧材料
  • 冷卻是熱超材料的最大潛力
  • 超導熱超材料的可能性
  • 廣泛使用和提議的不良材料

第3章 與熱超材料的原理功能

  • 摘要
  • 物理學基礎
  • 新理論方法帶來新應用的範例
  • 目前商業化程度最高的超材料熱管理材料類型
  • 三個超材料系列如何重疊
  • 2024 年正在進行的熱超材料結構範例
  • 熱超材料與超表面:SWOT 評估
  • 具有重要商業意義的功能
  • 熱斗篷、偽裝、聚光燈、二極體、擴展器、旋轉超材料
  • 多功能熱超材料以及 2024 年 5 月的範例
  • 熱超材料選項:未來將繼續擴大

第4章 下個階段:主動、動態與可調諧熱超材料

  • 概要
  • 熱超材料的4D印刷和多聯軸器
  • 電化學的利用
  • 進展和對象用途範例
  • 熱機器超材料

第5章 熱超材料的製造技術和材料

  • 摘要
  • 積層製造的設計、製造、特性與應用
  • 熱元設備的 3D 列印
  • 紅外線光驅動的層狀熱超材料列印技術:2024 年範例

第6章 熱超材料的一些目標應用及其研究進展

  • 概述:從感測器到手術機器人再到太空船的應用
  • 緊湊型偏振光發射器
  • 從電腦到航空航天工程:傳熱
  • 溫室和窗戶
  • 工業熱量收集
  • Metalens- 熱
  • 微晶片冷卻
  • 太陽能冷卻
  • 衛星熱控制
  • 電子設備的熱包裝
  • 冷纖維
  • 採用熱超材料增強的熱電發電機和冷卻裝置
  • 恆溫器 節能恆溫器及負能量多溫維持容器
  • 車輛冷卻漆

第7章 使用超材料的被動日間輻射冷卻 (PDRC)

  • 摘要:SWOT 評估
  • 基於熱超材料的輻射冷卻與替代方案的比較
  • 使用半透明熱超材質的方法:圖案化 PDMS
  • 使用熱超材料的透明 PDRC,用於外牆、太陽能板和窗戶
  • 纖維素發電和其他輻射冷卻穿戴超織物:SWOT 評估
  • 超材料PDRC的冷面提高了熱電發電機的功率
  • 其他超材料輻射冷卻研究
  • 超材料方法的商業化
  • PDRC 超越超材料選項
簡介目錄

Summary

A new Zhar Research report reveals the large commercial opportunities arising from emerging thermal metamaterials. "Thermal Metamaterials: Markets, Technology 2025-2045" explains how they have a unique thermal performance based on physical structure and patterning, rather than chemical composition, but future forms will also leverage advanced materials. These artificial structures manipulate the direction and magnitude of heat flow often in a manner opposite to that typically encountered in nature. Headed to become a market of over $13 billion, applications include thermal cloaking and illusion for the military and improved energy harvesting, cooling, thermoelectric devices, and thermal management of power electronic devices for the rest of us.

Greenhouse magic

The report shows how incorporating smart materials can create a greenhouse that cools in a hot country but also one that is hotter in a cold country. Metamaterial apparel that strongly cools without power is already on sale: cooling paint for vehicles is under development. Planned powered metamaterials will be reconfigurable, even self-adjusting during use. Can they reduce the need for vapor compression cooling that heats our cities? It is all here in a 279 page commercially-oriented report with seven chapters and 27 forecast lines 2025-2045.

Commercial opportunities in detail

The Executive Summary and Conclusions is sufficient in itself, with 38 pages including 10 key conclusions, those forecasts as tables and graphs with explanations, easily absorbed comparisons, roadmaps 2025-2045 and new infograms.

The 37-page Introduction explains the technology, displays many examples. It then spells out global warming, hotter electronics and other challenges that will be addressed by thermal metamaterials. Cooling is identified as the most important target market.

Chapter 3. "Thermal metamaterial principles and functions" (42 pages) explains these from the commercial point of view. Important functions are shown to include thermally radiative metamaterials, advanced photonic cooling and prevention of heating, ultra-conductive thermal metamaterials, thermal convection in liquids enhanced by metamaterials, thermal cloak, camouflage, concentrator, diode, expander and rotator but with more to come. However, it is found that there is strong competition in many of these cases so the next phase will be important where thermal metamaterials will advance to performing functions largely impossible in any other way.

Chapter 4. covers these under the title, "The next stage: Active, dynamic and tunable thermal metamaterials" (18 pages). See examples of progress and target applications that include tunable liquid-solid hybrid, unified static and dynamic, sensing and responding to ambient temperatures, advanced thermal radiation devices: stealth with thermal management, active remote sensing and thermal camouflage, dynamic control of heat flux and heat flow direction possibly for electric vehicle batteries, adaptive radiative cooling, passive thermoregulation and thermal-mechanical metamaterials. This is all supported by detail on the latest research advances in 2024-5.

Chapter 5. Manufacturing technologies and materials for thermal metamaterials takes 21 pages to illustrate how 3D printing and later 4D printing are important for bulk meshes acting as thermal metamaterials but reel-to-reel manufacture will be important for laminar formats such as those manipulating infrared radiation. Plenty of latest examples and opportunities are revealed and quantified, including the next stage of functionally graded and metal with non-metal structures emerge.

The 53 pages of Chapter 6. "Some targetted applications of thermal metamaterials and their research advances 2024-5" brings it all alive with applications from sensors to surgical robots and spacecraft. Explore latest progress with compact polarised light emitters, smarter greenhouses, smart windows and satellite thermal control, harvesting industrial heat, thermal metalens, microchip and photovoltaics cooling, thermal packaging of electronics, textiles that cool and thermoelectric harvesters and coolers enhanced by thermal metamaterials. Add energy-free thermostats, negative-energy and multi-temperature maintenance containers and vehicle cooling paint.

The report closes with a long chapter on what may become the largest market for thermal metamaterials. Chapter 7. "Passive daytime radiative cooling (PDRC) using metamaterials" uses 59 pages to fully explain this technology and the likely place of thermal metamaterials in it, with SWOT appraisals and a detailed look at research breakthroughs and company initiatives 2024-5.

Essential reading

The Zhar Research report, "Thermal Metamaterials : Markets, Technology 2025-2045" is essential reading for those wishing to make or use these exciting new added-value materials. Those involved in the following materials will find many business opportunities.

CAPTION: Primary mentions of materials used in thermal metamaterials in latest research advances 2024-5. Source: "Thermal Metamaterials : Markets, Technology 2025-2045" Zhar Research.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report
    • 1.1.1. General
    • 1.1.2. Types of metamaterial thermal management materials by function
    • 1.1.3. Applications analysed from sensors to surgical robots and spacecraft
    • 1.1.4. Three families of metamaterials overlap
  • 1.2. Methodology of this analysis
  • 1.3. Thermal metamaterials
    • 1.3.1. Some of the drivers of commercialisation of thermal metamaterials
    • 1.3.2. Cooling toolkit, 7 metamaterial-enabled options in blue text, trend to multifunctionality
    • 1.3.3. Examples of thermal metamaterials in 2024 advances
  • 1.4. Primary conclusions; market positioning
  • 1.5. Primary conclusions: leading formulations, functionality and manufacturing technologies
  • 1.6. Popularity by formulation in 132 examples of latest thermal metamaterial research
  • 1.7. Static to dynamic heat transfer using metamaterials
  • 1.8. Static radiative cooling materials showing metamaterials as one of many options
  • 1.9. SWOT appraisal of Passive Daytime Radiative Cooling PDRC
  • 1.10. Thermal metamaterial and cooling roadmap by market and by technology 2025-2045
  • 1.11. Market forecasts 2025-2045
    • 1.11.1. Cooling module global market by seven technologies $ billion 2025-2045
    • 1.11.2. Thermal meta-device market $ billion 2025-2045 by application segment
    • 1.11.3. Electromagnetic meta-device market $ billion 2025-2045
    • 1.11.4. Electromagnetic meta-device market $ billion 2025-2045 by application segment
    • 1.11.5. Meta-device market electromagnetic vs thermal $ billion 2025-2045
    • 1.11.6. Terrestrial radiative cooling performance in commercial products W/sq. m 2025-2045
    • 1.11.7 Typical best reported temperature drop achieved by technology 2000-2045 extrapolated
  • 1.12. Background forecasts
    • 1.12.1. Air conditioner value market $ billion 2025-2045 and by region
    • 1.12.2. Global market for HVAC, refrigerators, freezers, other cooling $ billion 2025-2045
    • 1.12.3. Refrigerator and freezer value market $ billion 2025-2045
    • 1.12.4. Stationary battery market $ billion and cooling needs 2025-2045
    • 1.12.5. Market for 6G vs 5G in 2 categories base stations units millions yearly 2025-2045

2. Introduction

  • 2.1. Overview
  • 2.2. Types of metamaterial thermal management materials
  • 2.3. Three families of metamaterials overlap
  • 2.4. Cooling needs increase for many reasons 2025-2045
    • 2.4.1. Escalation of demand for air conditioning and forthcoming changes in requirement
    • 2.4.2. Problems of traditional vapor compression cooling and progress to solid state cooling
    • 2.4.3. Desire to eliminate liquid cooling for electric vehicles and other needs
    • 2.4.4. Severe new microchip cooling requirements arriving
    • 2.4.5. Much greater need for thermal materials in 6G Communications
    • 2.4.6. Other cooling problems and opportunities emerging in electronics and ICT
  • 2.5. How cooling technology will trend to smart materials 2025-2045
  • 2.6. Cooling is the largest potential for thermal metamaterials
  • 2.7. The potential for ultra-conductive thermal metamaterials
  • 2.8. Undesirable materials widely used and proposed: this is an opportunity for you

3. Thermal metamaterial principles and functions

  • 3.1. Overview
  • 3.2. Basis in physics
  • 3.3. Examples of new theoretical approaches in 2024-5 leading to new applications
  • 3.4. Types of metamaterial thermal management materials with the currently most commercialised sectors
  • 3.5. How three families of metamaterials overlap
  • 3.6. Examples of thermal metamaterial structures in 2024 advances
  • 3.7. SWOT assessment for thermal metamaterials and metasurfaces
  • 3.8. Commercially important functions
    • 3.8.1. Thermally radiative metamaterials, advanced photonic cooling and prevention of heating
    • 3.8.2. Ultra-conductive thermal metamaterials
    • 3.8.3. Thermal convective metamaterials
  • 3.9. Thermal cloak, camouflage, concentrator, diode, expander, rotator metamaterials
    • 3.9.1. Introduction
    • 3.9.2. Thermal cloaks and camouflage
    • 3.9.3. Thermal concentrators
    • 3.9.4. Thermal diodes
    • 3.9.5. Thermal expanders
    • 3.9.6. Thermal rotators
  • 3.10. Multifunctional thermal metamaterials with examples from 2024-5
  • 3.11. Far more options for thermal metamaterials ahead

4. The next stage: Active, dynamic and tunable thermal metamaterials

  • 4.1. Overview
  • 4.2 4D printing and multi-coupling of thermal metamaterials
  • 4.3. Use of electrochemistry
  • 4.4. Examples of progress and target applications
    • 4.4.1. Tunable liquid-solid hybrid thermal metamaterials
    • 4.4.2. Unified static and dynamic thermal metamaterials
    • 4.4.3. Sensing and responding to ambient temperatures
    • 4.4.4. Advanced thermal radiation devices: stealth with thermal management
    • 4.4.5. Active remote sensing and thermal camouflage
    • 4.4.6. Dynamic control of heat flux and heat flow direction possibly for electric vehicle batteries
    • 4.4.7. Adaptive radiative cooling and passive thermoregulation
  • 4.5. Thermal-mechanical metamaterials
    • 4.5.1. Overview
    • 4.5.2. Programmable mechanical-thermal metamaterials

5. Manufacturing technologies and materials for thermal metamaterials

  • 5.1. Overview
  • 5.2. Additive manufacturing design, fabrication, property and application
  • 5.3 3D printing of thermal meta-devices
    • 5.3.1. Metal 3D printing of thermal meta-devices
    • 5.3.2. Metal polymer and metal graphene 3D printing of thermal meta-devices
    • 5.3.3. Functionally graded materials in thermal meta-structures
    • 5.3.4. Other materials options
  • 5.4. Printing technologies for laminar thermal metamaterials manipulating infrared radiation with 2024 example

6. Some targeted applications of thermal metamaterials and their research advances 2024-5

  • 6.1. Overview: applications from sensors to surgical robots and spacecraft
  • 6.2. Compact polarised light emitters
  • 6.3. Computers to aerospace engineering: heat transfer
  • 6.4. Greenhouses and windows
  • 6.5. Harvesting industrial heat
  • 6.6. Metalens - thermal
  • 6.7. Microchip cooling
  • 6.8. Photovoltaics cooling
  • 6.9. Satellite thermal control
  • 6.10. Thermal packaging of electronics
  • 6.11. Textiles that cool
  • 6.12. Thermoelectric harvesters and coolers enhanced by thermal metamaterials
  • 6.13. Thermostats energy-free thermostat and negative-energy and multi-temperature maintenance container
  • 6.14. Vehicle cooling paint

7. Passive daytime radiative cooling (PDRC) using metamaterials

  • 7.1. Overview with SWOT appraisal
  • 7.2. Radiative cooling based on thermal metamaterials compared to alternatives
  • 7.3. Approach using translucent thermal metamaterials in 2024: patterned PDMS
  • 7.4. Transparent PDRC for facades, solar panels and windows using thermal metamaterials
  • 7.5. Cellulosic power generating and other radiative cooling wearable meta-fabrics with SWOT appraisal
  • 7.6. Metamaterial PDRC cold side boosting power of thermoelectric generators in 2024
  • 7.7. Other metamaterial radiative cooling research 2024 and 2023
  • 7.8. Commercialisation of the metamaterial approach
    • 7.8.1. Radi-Cool Japan, Malaysia
    • 7.8.2. SRI USA
  • 7.9. PDRC beyond the metamaterial options