The market for bio-based and sustainable materials is experiencing rapid growth and transformation, driven by increasing environmental awareness, regulatory pressures, and technological advancements. This sector encompasses a wide range of materials, including bioplastics, natural fiber composites, bio-based chemicals, sustainable construction materials, green packaging solutions, and eco-friendly textiles. Key application areas for these materials include packaging, where biodegradable films and compostable containers are gaining traction; the automotive industry, which is incorporating natural fiber composites in interior parts; construction, with a focus on insulation materials and bio-based concrete alternatives; and the textile industry, where recycled and bio-based fibers are becoming more prevalent.
Technological advancements are playing a crucial role in shaping the market. Advanced biorefinery processes, synthetic biology for creating novel biomaterials, and carbon capture and utilization in material production are some of the key trends driving innovation in this space. There's also a growing focus on circular economy approaches to material design and recycling, aiming to minimize waste and maximize resource efficiency. The market landscape is diverse, featuring large chemical and material companies diversifying into bio-based products and innovative start-ups focusing on novel biomaterials.
"The Global Market for Bio-based and Sustainable Materials 2024-2035" provides an in-depth analysis of market trends, technological advancements, and growth opportunities.
Report contents include:
- Analysis of biorefineries and various plant-based, waste-derived, and microbial sources for these materials.
- Analysis of key bio-based chemicals, including starch-derived products, cellulosic materials, lignin, and plant oils. Each chemical is examined in terms of its sources, production processes, applications, and market potential.
- Market for bio-based polymers and plastics including PLA, bio-PET, PHA, and cellulose-based materials, providing insights into their properties, production capacities, and market trends. Emerging materials such as mycelium-based products and algal biomaterials.
- Analysis of various types of natural fibers, their properties, and their applications in industries such as automotive, packaging, and construction. Comprehensive overview of the market dynamics, including drivers, challenges, and future prospects for natural fiber composites.
- Sustainable construction materials including hemp-based products, mycelium composites, and sustainable concrete alternatives. Analysis of technologies such as carbon capture and utilization in construction materials and the emerging field of green steel production.
- Bio-based and biodegradable packaging materials, including bio-PET, PLA, and cellulose-based packaging. Insights into market trends, regulatory landscapes, and technological innovations driving the adoption of sustainable packaging solutions.
- Sustainable textiles and apparel including bio-based fibers and innovative materials such as mycelium leather and algae-based textiles.
- Bio-based coatings and resins, adhesives and sealants, and their applications across various industries. Detailed analysis of market trends, key players, and growth projections.
- Various types of biofuels, including biodiesel, bioethanol, and advanced biofuels. Production processes, feedstock options, market dynamics, and regulatory landscapes across different regions.
- Sustainable electronics including innovative materials and manufacturing processes that aim to reduce the environmental impact of electronic devices. Bio-based printed circuit boards, sustainable semiconductors, and eco-friendly electronic components.
- Profiles of over 1,700 key players, from large chemicals and materials producers to innovative start-ups, offering insights into their strategies, product portfolios, and market positions. Companies profiled include Aduro Clean Technologies, Afyren, Again Bio, Agilyx, Alt.Leather, Alterra, Amsty, APK AG, Aquafil, Arcus, Arda Biomaterials, Avantium, Axens, BASF Chemcycling, Beyond Leather Materials ApS, BiologiQ,Biome Bioplastics, Boreal Bioproducts, Biophilica, Bpacks, Braskem, Bucha Bio, Byogy Renewables, Caphenia, Carbios, CJ CheilJedang, Clariant, DePoly, Dow, Earthodic, Eastman Chemical, Ecovative, Elemental Enzymes, Ensyn, EREMA Group GmbH, Evolved by Nature, Extracthive, ExxonMobil, FlexSea, Floreon, FORGE Hydrocarbons Corporation, Fych Technologies, Gaia Biomaterials, Garbo, Genecis Bioindustries, Ginkgo Bioworks, Global Bioenergies, Gozen Bioworks, gr3n SA, Hyundai Chemical, cytos, Ioniqa, Itero, Kelpi, Kvasir Technologies, Licella, Lignin Industries AB, LignoPure GmbH, MeduSoil, Modern Meadow, Mura Technology, MycoWorks, Natural Fiber Welding, Nium, Nordic Bioproducts Group, Notpla, Origin Materials, Pack2Earth, Paques Biomaterials, PersiSKIN, PlantSwitch, Plastic Energy, Plastogaz SA, Polybion, Polymateria, ProjectEx, PTT MCC Biochem, Pyrowave, Recyc'ELIT, RePEaT Co., Ltd., revalyu Resources GmbH, SA-Dynamics, Solugen, Sonichem, Stora Enso, Strong By Form, Sulapac, UPM Biochemicals, UBQ Materials, UNCAGED Innovations, Verde Bioresins and Xampla
- Comprehensive market size and forecast data, segmented by material type, application, and geography.
Key features of the report include:
- In-depth analysis of various bio-based and sustainable materials across multiple industries
- Detailed market size and forecast data from 2024 to 2035
- Examination of technological advancements and emerging trends in sustainable materials
- Analysis of regulatory landscapes and their impact on market dynamics
- Comprehensive profiles of key market players and their strategies
- Insights into challenges and opportunities in the sustainable materials market
This report is an essential resource for:
- Material scientists and researchers
- Product developers and innovation managers
- Investors and financial analysts
- Policy makers and regulators
- Business strategists and market analysts
- Environmental consultants
TABLE OF CONTENTS
1. RESEARCH METHODOLOGY
2. INTRODUCTION
- 2.1. Definition of Sustainable and Biobased Materials
- 2.2. Importance and Benefits of Biobased and Sustainable Materials
3. BIOBASED CHEMICALS AND INTERMEDIATES
- 3.1. BIOREFINERIES
- 3.2. BIO-BASED FEEDSTOCK AND LAND USE
- 3.3. PLANT-BASED
- 3.3.1. STARCH
- 3.3.1.1. Overview
- 3.3.1.2. Sources
- 3.3.1.3. Global production
- 3.3.1.4. Lysine
- 3.3.1.4.1. Source
- 3.3.1.4.2. Applications
- 3.3.1.4.3. Global production
- 3.3.1.5. Glucose
- 3.3.1.5.1. HMDA
- 3.3.1.5.1.1. Overview
- 3.3.1.5.1.2. Sources
- 3.3.1.5.1.3. Applications
- 3.3.1.5.1.4. Global production
- 3.3.1.5.2. 1,5-diaminopentane (DA5)
- 3.3.1.5.2.1. Overview
- 3.3.1.5.2.2. Sources
- 3.3.1.5.2.3. Applications
- 3.3.1.5.2.4. Global production
- 3.3.1.5.3. Sorbitol
- 3.3.1.5.3.1. Isosorbide
- 3.3.1.5.3.1.1. Overview
- 3.3.1.5.3.1.2. Sources
- 3.3.1.5.3.1.3. Applications
- 3.3.1.5.3.1.4. Global production
- 3.3.1.5.4. Lactic acid
- 3.3.1.5.4.1. Overview
- 3.3.1.5.4.2. D-lactic acid
- 3.3.1.5.4.3. L-lactic acid
- 3.3.1.5.4.4. Lactide
- 3.3.1.5.5. Itaconic acid
- 3.3.1.5.5.1. Overview
- 3.3.1.5.5.2. Sources
- 3.3.1.5.5.3. Applications
- 3.3.1.5.5.4. Global production
- 3.3.1.5.6. 3-HP
- 3.3.1.5.6.1. Overview
- 3.3.1.5.6.2. Sources
- 3.3.1.5.6.3. Applications
- 3.3.1.5.6.4. Global production
- 3.3.1.5.6.5. Acrylic acid
- 3.3.1.5.6.5.1. Overview
- 3.3.1.5.6.5.2. Applications
- 3.3.1.5.6.5.3. Global production
- 3.3.1.5.6.6. 1,3-Propanediol (1,3-PDO)
- 3.3.1.5.6.6.1. Overview
- 3.3.1.5.6.6.2. Applications
- 3.3.1.5.6.6.3. Global production
- 3.3.1.5.7. Succinic Acid
- 3.3.1.5.7.1. Overview
- 3.3.1.5.7.2. Sources
- 3.3.1.5.7.3. Applications
- 3.3.1.5.7.4. Global production
- 3.3.1.5.7.5. 1,4-Butanediol (1,4-BDO)
- 3.3.1.5.7.5.1. Overview
- 3.3.1.5.7.5.2. Applications
- 3.3.1.5.7.5.3. Global production
- 3.3.1.5.7.6. Tetrahydrofuran (THF)
- 3.3.1.5.7.6.1. Overview
- 3.3.1.5.7.6.2. Applications
- 3.3.1.5.7.6.3. Global production
- 3.3.1.5.8. Adipic acid
- 3.3.1.5.8.1. Overview
- 3.3.1.5.8.2. Applications
- 3.3.1.5.8.3. Caprolactame
- 3.3.1.5.8.3.1. Overview
- 3.3.1.5.8.3.2. Applications
- 3.3.1.5.8.3.3. Global production
- 3.3.1.5.9. Isobutanol
- 3.3.1.5.9.1. Overview
- 3.3.1.5.9.2. Sources
- 3.3.1.5.9.3. Applications
- 3.3.1.5.9.4. Global production
- 3.3.1.5.9.5. p-Xylene
- 3.3.1.5.9.5.1. Overview
- 3.3.1.5.9.5.2. Sources
- 3.3.1.5.9.5.3. Applications
- 3.3.1.5.9.5.4. Global production
- 3.3.1.5.9.5.5. Terephthalic acid
- 3.3.1.5.9.5.6. Overview
- 3.3.1.5.10 1,3. Proppanediol
- 3.3.1.5.10.1. Overview
- 3.3.1.5.10.2. Sources
- 3.3.1.5.10.3. Applications
- 3.3.1.5.10.4. Global production
- 3.3.1.5.11. Monoethylene glycol (MEG)
- 3.3.1.5.11.1. Overview
- 3.3.1.5.11.2. Sources
- 3.3.1.5.11.3. Applications
- 3.3.1.5.11.4. Global production
- 3.3.1.5.12. Ethanol
- 3.3.1.5.12.1. Overview
- 3.3.1.5.12.2. Sources
- 3.3.1.5.12.3. Applications
- 3.3.1.5.12.4. Global production
- 3.3.1.5.12.5. Ethylene
- 3.3.1.5.12.5.1. Overview
- 3.3.1.5.12.5.2. Applications
- 3.3.1.5.12.5.3. Global production
- 3.3.1.5.12.5.4. Propylene
- 3.3.1.5.12.5.5. Vinyl chloride
- 3.3.1.5.12.6. Methly methacrylate
- 3.3.2. SUGAR CROPS
- 3.3.2.1. Saccharose
- 3.3.2.1.1. Aniline
- 3.3.2.1.1.1. Overview
- 3.3.2.1.1.2. Applications
- 3.3.2.1.1.3. Global production
- 3.3.2.1.2. Fructose
- 3.3.2.1.2.1. Overview
- 3.3.2.1.2.2. Applications
- 3.3.2.1.2.3. Global production
- 3.3.2.1.2.4. 5-Hydroxymethylfurfural (5-HMF)
- 3.3.2.1.2.4.1. Overview
- 3.3.2.1.2.4.2. Applications
- 3.3.2.1.2.4.3. Global production
- 3.3.2.1.2.5. 5-Chloromethylfurfural (5-CMF)
- 3.3.2.1.2.5.1. Overview
- 3.3.2.1.2.5.2. Applications
- 3.3.2.1.2.5.3. Global production
- 3.3.2.1.2.6. Levulinic Acid
- 3.3.2.1.2.6.1. Overview
- 3.3.2.1.2.6.2. Applications
- 3.3.2.1.2.6.3. Global production
- 3.3.2.1.2.7. FDME
- 3.3.2.1.2.7.1. Overview
- 3.3.2.1.2.7.2. Applications
- 3.3.2.1.2.7.3. Global production
- 3.3.2.1.2.8. 2,5-FDCA
- 3.3.2.1.2.8.1. Overview
- 3.3.2.1.2.8.2. Applications
- 3.3.2.1.2.8.3. Global production
- 3.3.3. LIGNOCELLULOSIC BIOMASS
- 3.3.3.1. Levoglucosenone
- 3.3.3.1.1. Overview
- 3.3.3.1.2. Applications
- 3.3.3.1.3. Global production
- 3.3.3.2. Hemicellulose
- 3.3.3.2.1. Overview
- 3.3.3.2.2. Biochemicals from hemicellulose
- 3.3.3.2.3. Global production
- 3.3.3.2.4. Furfural
- 3.3.3.2.4.1. Overview
- 3.3.3.2.4.2. Applications
- 3.3.3.2.4.3. Global production
- 3.3.3.2.4.4. Furfuyl alcohol
- 3.3.3.2.4.4.1. Overview
- 3.3.3.2.4.4.2. Applications
- 3.3.3.2.4.4.3. Global production
- 3.3.3.3. Lignin
- 3.3.3.3.1. Overview
- 3.3.3.3.2. Sources
- 3.3.3.3.3. Applications
- 3.3.3.3.3.1. Aromatic compounds
- 3.3.3.3.3.1.1. Benzene, toluene and xylene
- 3.3.3.3.3.1.2. Phenol and phenolic resins
- 3.3.3.3.3.1.3. Vanillin
- 3.3.3.3.3.2. Polymers
- 3.3.3.3.4. Global production
- 3.3.4. PLANT OILS
- 3.3.4.1. Overview
- 3.3.4.2. Glycerol
- 3.3.4.2.1. Overview
- 3.3.4.2.2. Applications
- 3.3.4.2.3. Global production
- 3.3.4.2.4. MPG
- 3.3.4.2.4.1. Overview
- 3.3.4.2.4.2. Applications
- 3.3.4.2.4.3. Global production
- 3.3.4.2.5. ECH
- 3.3.4.2.5.1. Overview
- 3.3.4.2.5.2. Applications
- 3.3.4.2.5.3. Global production
- 3.3.4.3. Fatty acids
- 3.3.4.3.1. Overview
- 3.3.4.3.2. Applications
- 3.3.4.3.3. Global production
- 3.3.4.4. Castor oil
- 3.3.4.4.1. Overview
- 3.3.4.4.2. Sebacic acid
- 3.3.4.4.2.1. Overview
- 3.3.4.4.2.2. Applications
- 3.3.4.4.2.3. Global production
- 3.3.4.4.3. 11-Aminoundecanoic acid (11-AA)
- 3.3.4.4.3.1. Overview
- 3.3.4.4.3.2. Applications
- 3.3.4.4.3.3. Global production
- 3.3.4.5. Dodecanedioic acid (DDDA)
- 3.3.4.5.1. Overview
- 3.3.4.5.2. Applications
- 3.3.4.5.3. Global production
- 3.3.4.6. Pentamethylene diisocyanate
- 3.3.4.6.1. Overview
- 3.3.4.6.2. Applications
- 3.3.4.6.3. Global production
- 3.3.5. NON-EDIBIBLE MILK
- 3.3.5.1. Casein
- 3.3.5.1.1. Overview
- 3.3.5.1.2. Applications
- 3.3.5.1.3. Global production
- 3.4. WASTE
- 3.4.1. Food waste
- 3.4.1.1. Overview
- 3.4.1.2. Products and applications
- 3.4.1.2.1. Global production
- 3.4.2. Agricultural waste
- 3.4.2.1. Overview
- 3.4.2.2. Products and applications
- 3.4.2.3. Global production
- 3.4.3. Forestry waste
- 3.4.3.1. Overview
- 3.4.3.2. Products and applications
- 3.4.3.3. Global production
- 3.4.4. Aquaculture/fishing waste
- 3.4.4.1. Overview
- 3.4.4.2. Products and applications
- 3.4.4.3. Global production
- 3.4.5. Municipal solid waste
- 3.4.5.1. Overview
- 3.4.5.2. Products and applications
- 3.4.5.3. Global production
- 3.4.6. Industrial waste
- 3.4.7. Waste oils
- 3.4.7.1. Overview
- 3.4.7.2. Products and applications
- 3.4.7.3. Global production
- 3.5. MICROBIAL & MINERAL SOURCES
- 3.5.1. Microalgae
- 3.5.1.1. Overview
- 3.5.1.2. Products and applications
- 3.5.1.3. Global production
- 3.5.2. Macroalgae
- 3.5.2.1. Overview
- 3.5.2.2. Products and applications
- 3.5.2.3. Global production
- 3.5.3. Mineral sources
- 3.5.3.1. Overview
- 3.5.3.2. Products and applications
- 3.6. GASEOUS
- 3.6.1. Biogas
- 3.6.1.1. Overview
- 3.6.1.2. Products and applications
- 3.6.1.3. Global production
- 3.6.2. Syngas
- 3.6.2.1. Overview
- 3.6.2.2. Products and applications
- 3.6.2.3. Global production
- 3.6.3. Off gases - fermentation CO2, CO
- 3.6.3.1. Overview
- 3.6.3.2. Products and applications
- 3.7. COMPANY PROFILES 210 (126 company profiles)
4. BIOBASED POLYMERS AND PLASTICS
- 4.1. Overview
- 4.1.1. Drop-in bio-based plastics
- 4.1.2. Novel bio-based plastics
- 4.2. Biodegradable and compostable plastics
- 4.2.1. Biodegradability
- 4.2.2. Compostability
- 4.3. Types
- 4.4. Key market players
- 4.5. Synthetic biobased polymers
- 4.5.1. Polylactic acid (Bio-PLA)
- 4.5.1.1. Market analysis
- 4.5.1.2. Production
- 4.5.1.3. Producers and production capacities, current and planned
- 4.5.1.3.1. Lactic acid producers and production capacities
- 4.5.1.3.2. PLA producers and production capacities
- 4.5.1.3.3. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
- 4.5.2. Polyethylene terephthalate (Bio-PET)
- 4.5.2.1. Market analysis
- 4.5.2.2. Producers and production capacities
- 4.5.2.3. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
- 4.5.3. Polytrimethylene terephthalate (Bio-PTT)
- 4.5.3.1. Market analysis
- 4.5.3.2. Producers and production capacities
- 4.5.3.3. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
- 4.5.4. Polyethylene furanoate (Bio-PEF)
- 4.5.4.1. Market analysis
- 4.5.4.2. Comparative properties to PET
- 4.5.4.3. Producers and production capacities
- 4.5.4.3.1. FDCA and PEF producers and production capacities
- 4.5.4.3.2. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes)
- 4.5.5. Polyamides (Bio-PA)
- 4.5.5.1. Market analysis
- 4.5.5.2. Producers and production capacities
- 4.5.5.3. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
- 4.5.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
- 4.5.6.1. Market analysis
- 4.5.6.2. Producers and production capacities
- 4.5.6.3. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
- 4.5.7. Polybutylene succinate (PBS) and copolymers
- 4.5.7.1. Market analysis
- 4.5.7.2. Producers and production capacities
- 4.5.7.3. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
- 4.5.8. Polyethylene (Bio-PE)
- 4.5.8.1. Market analysis
- 4.5.8.2. Producers and production capacities
- 4.5.8.3. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes)
- 4.5.9. Polypropylene (Bio-PP)
- 4.5.9.1. Market analysis
- 4.5.9.2. Producers and production capacities
- 4.5.9.3. Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)
- 4.6. Natural biobased polymers
- 4.6.1. Polyhydroxyalkanoates (PHA)
- 4.6.1.1. Technology description
- 4.6.1.2. Types
- 4.6.1.2.1. PHB
- 4.6.1.2.2. PHBV
- 4.6.1.3. Synthesis and production processes
- 4.6.1.4. Market analysis
- 4.6.1.5. Commercially available PHAs
- 4.6.1.6. Markets for PHAs
- 4.6.1.6.1. Packaging
- 4.6.1.6.2. Cosmetics
- 4.6.1.6.2.1. PHA microspheres
- 4.6.1.6.3. Medical
- 4.6.1.6.3.1. Tissue engineering
- 4.6.1.6.3.2. Drug delivery
- 4.6.1.6.4. Agriculture
- 4.6.1.6.4.1. Mulch film
- 4.6.1.6.4.2. Grow bags
- 4.6.1.7. Producers and production capacities
- 4.6.2. Cellulose
- 4.6.2.1. Microfibrillated cellulose (MFC)
- 4.6.2.1.1. Market analysis
- 4.6.2.1.2. Producers and production capacities
- 4.6.2.2. Nanocellulose
- 4.6.2.2.1. Cellulose nanocrystals
- 4.6.2.2.1.1. Synthesis
- 4.6.2.2.1.2. Properties
- 4.6.2.2.1.3. Production
- 4.6.2.2.1.4. Applications
- 4.6.2.2.1.5. Market analysis
- 4.6.2.2.1.6. Producers and production capacities
- 4.6.2.2.2. Cellulose nanofibers
- 4.6.2.2.2.1. Applications
- 4.6.2.2.2.2. Market analysis
- 4.6.2.2.2.3. Producers and production capacities
- 4.6.2.2.3. Bacterial Nanocellulose (BNC)
- 4.6.2.2.3.1. Production
- 4.6.2.2.3.2. Applications
- 4.6.3. Protein-based bioplastics
- 4.6.3.1. Types, applications and producers
- 4.6.4. Algal and fungal
- 4.6.4.1. Algal
- 4.6.4.1.1. Advantages
- 4.6.4.1.2. Production
- 4.6.4.1.3. Producers
- 4.6.4.2. Mycelium
- 4.6.4.2.1. Properties
- 4.6.4.2.2. Applications
- 4.6.4.2.3. Commercialization
- 4.6.5. Chitosan
- 4.6.5.1. Technology description
- 4.7. Production by region
- 4.7.1. North America
- 4.7.2. Europe
- 4.7.3. Asia-Pacific
- 4.7.3.1. China
- 4.7.3.2. Japan
- 4.7.3.3. Thailand
- 4.7.3.4. Indonesia
- 4.7.4. Latin America
- 4.8. End use markets
- 4.8.1. Packaging
- 4.8.1.1. Processes for bioplastics in packaging
- 4.8.1.2. Applications
- 4.8.1.3. Flexible packaging
- 4.8.1.3.1. Production volumes 2019-2035
- 4.8.1.4. Rigid packaging
- 4.8.1.4.1. Production volumes 2019-2035
- 4.8.2. Consumer products
- 4.8.2.1. Applications
- 4.8.2.2. Production volumes 2019-2035
- 4.8.3. Automotive
- 4.8.3.1. Applications
- 4.8.3.2. Production volumes 2019-2035
- 4.8.4. Construction
- 4.8.4.1. Applications
- 4.8.4.2. Production volumes 2019-2035
- 4.8.5. Textiles
- 4.8.5.1. Apparel
- 4.8.5.2. Footwear
- 4.8.5.3. Medical textiles
- 4.8.5.4. Production volumes 2019-2035
- 4.8.6. Electronics
- 4.8.6.1. Applications
- 4.8.6.2. Production volumes 2019-2035
- 4.8.7. Agriculture and horticulture
- 4.8.7.1. Production volumes 2019-2035
- 4.9. Lignin
- 4.9.1. Introduction
- 4.9.1.1. What is lignin?
- 4.9.1.1.1. Lignin structure
- 4.9.1.2. Types of lignin
- 4.9.1.2.1. Sulfur containing lignin
- 4.9.1.2.2. Sulfur-free lignin from biorefinery process
- 4.9.1.3. Properties
- 4.9.1.4. The lignocellulose biorefinery
- 4.9.1.5. Markets and applications
- 4.9.1.6. Challenges for using lignin
- 4.9.2. Lignin production processes
- 4.9.2.1. Lignosulphonates
- 4.9.2.2. Kraft Lignin
- 4.9.2.2.1. LignoBoost process
- 4.9.2.2.2. LignoForce method
- 4.9.2.2.3. Sequential Liquid Lignin Recovery and Purification
- 4.9.2.2.4. A-Recovery+
- 4.9.2.3. Soda lignin
- 4.9.2.4. Biorefinery lignin
- 4.9.2.4.1. Commercial and pre-commercial biorefinery lignin production facilities and processes
- 4.9.2.5. Organosolv lignins
- 4.9.2.6. Hydrolytic lignin
- 4.9.3. Markets for lignin
- 4.9.3.1. Market drivers and trends for lignin
- 4.9.3.2. Production capacities
- 4.9.3.2.1. Technical lignin availability (dry ton/y)
- 4.9.3.2.2. Biomass conversion (Biorefinery)
- 4.9.3.3. Global consumption of lignin
- 4.9.3.3.1. By type
- 4.9.3.3.2. By market
- 4.9.3.4. Prices
- 4.9.3.5. Heat and power energy
- 4.9.3.6. Pyrolysis and syngas
- 4.9.3.7. Aromatic compounds
- 4.9.3.7.1. Benzene, toluene and xylene
- 4.9.3.7.2. Phenol and phenolic resins
- 4.9.3.7.3. Vanillin
- 4.9.3.8. Plastics and polymers
- 4.10. COMPANY PROFILES 405 (522 company profiles)
5. NATURAL FIBER PLASTICS AND COMPOSITES
- 5.1. Introduction
- 5.1.1. What are natural fiber materials?
- 5.1.2. Benefits of natural fibers over synthetic
- 5.1.3. Markets and applications for natural fibers
- 5.1.4. Commercially available natural fiber products
- 5.1.5. Market drivers for natural fibers
- 5.1.6. Market challenges
- 5.1.7. Wood flour as a plastic filler
- 5.2. Types of natural fibers in plastic composites
- 5.2.1. Plants
- 5.2.1.1. Seed fibers
- 5.2.1.1.1. Kapok
- 5.2.1.1.2. Luffa
- 5.2.1.2. Bast fibers
- 5.2.1.2.1. Jute
- 5.2.1.2.2. Hemp
- 5.2.1.2.3. Flax
- 5.2.1.2.4. Ramie
- 5.2.1.2.5. Kenaf
- 5.2.1.3. Leaf fibers
- 5.2.1.3.1. Sisal
- 5.2.1.3.2. Abaca
- 5.2.1.4. Fruit fibers
- 5.2.1.4.1. Coir
- 5.2.1.4.2. Banana
- 5.2.1.4.3. Pineapple
- 5.2.1.5. Stalk fibers from agricultural residues
- 5.2.1.5.1. Rice fiber
- 5.2.1.5.2. Corn
- 5.2.1.6. Cane, grasses and reed
- 5.2.1.6.1. Switchgrass
- 5.2.1.6.2. Sugarcane (agricultural residues)
- 5.2.1.6.3. Bamboo
- 5.2.1.6.4. Fresh grass (green biorefinery)
- 5.2.1.7. Modified natural polymers
- 5.2.1.7.1. Mycelium
- 5.2.1.7.2. Chitosan
- 5.2.1.7.3. Alginate
- 5.2.2. Animal (fibrous protein)
- 5.2.3. Wood-based natural fibers
- 5.2.3.1. Cellulose fibers
- 5.2.3.1.1. Market overview
- 5.2.3.1.2. Producers
- 5.2.3.2. Microfibrillated cellulose (MFC)
- 5.2.3.2.1. Market overview
- 5.2.3.2.2. Producers
- 5.2.3.3. Cellulose nanocrystals
- 5.2.3.3.1. Market overview
- 5.2.3.3.2. Producers
- 5.2.3.4. Cellulose nanofibers
- 5.2.3.4.1. Market overview
- 5.2.3.4.2. Producers
- 5.3. Processing and Treatment of Natural Fibers
- 5.4. Interface and Compatibility of Natural Fibers with Plastic Matrices
- 5.4.1. Adhesion and Bonding
- 5.4.2. Moisture Absorption and Dimensional Stability
- 5.4.3. Thermal Expansion and Compatibility
- 5.4.4. Dispersion and Distribution
- 5.4.5. Matrix Selection
- 5.4.6. Fiber Content and Alignment
- 5.4.7. Manufacturing Techniques
- 5.5. Manufacturing processes
- 5.5.1. Injection molding
- 5.5.2. Compression moulding
- 5.5.3. Extrusion
- 5.5.4. Thermoforming
- 5.5.5. Thermoplastic pultrusion
- 5.5.6. Additive manufacturing (3D printing)
- 5.6. Global market for natural fibers
- 5.6.1. Automotive
- 5.6.1.1. Applications
- 5.6.1.2. Commercial production
- 5.6.1.3. SWOT analysis
- 5.6.2. Packaging
- 5.6.2.1. Applications
- 5.6.2.2. SWOT analysis
- 5.6.3. Construction
- 5.6.3.1. Applications
- 5.6.3.2. SWOT analysis
- 5.6.4. Appliances
- 5.6.4.1. Applications
- 5.6.4.2. SWOT analysis
- 5.6.5. Consumer electronics
- 5.6.5.1. Applications
- 5.6.5.2. SWOT analysis
- 5.6.6. Furniture
- 5.6.6.1. Applications
- 5.6.6.2. SWOT analysis
- 5.7. Competitive landscape
- 5.8. Future outlook
- 5.9. Revenues
- 5.9.1. By end use market
- 5.9.2. By Material Type
- 5.9.3. By Plastic Type
- 5.9.4. By region
- 5.10. Company profiles 850 (67 company profiles)
6. SUSTAINABLE CONSTRUCTION MATERIALS
- 6.1. Market overview
- 6.1.1. Benefits of Sustainable Construction
- 6.1.2. Global Trends and Drivers
- 6.2. Global revenues
- 6.2.1. By materials type
- 6.2.2. By market
- 6.3. Types of sustainable construction materials
- 6.3.1. Established bio-based construction materials
- 6.3.2. Hemp-based Materials
- 6.3.2.1. Hemp Concrete (Hempcrete)
- 6.3.2.2. Hemp Fiberboard
- 6.3.2.3. Hemp Insulation
- 6.3.3. Mycelium-based Materials
- 6.3.3.1. Insulation
- 6.3.3.2. Structural Elements
- 6.3.3.3. Acoustic Panels
- 6.3.3.4. Decorative Elements
- 6.3.4. Sustainable Concrete and Cement Alternatives
- 6.3.4.1. Geopolymer Concrete
- 6.3.4.2. Recycled Aggregate Concrete
- 6.3.4.3. Lime-Based Materials
- 6.3.4.4. Self-healing concrete
- 6.3.4.4.1. Bioconcrete
- 6.3.4.4.2. Fiber concrete
- 6.3.4.5. Microalgae biocement
- 6.3.4.6. Carbon-negative concrete
- 6.3.4.7. Biomineral binders
- 6.3.5. Natural Fiber Composites
- 6.3.5.1. Types of Natural Fibers
- 6.3.5.2. Properties
- 6.3.5.3. Applications in Construction
- 6.3.6. Cellulose nanofibers
- 6.3.6.1. Sandwich composites
- 6.3.6.2. Cement additives
- 6.3.6.3. Pump primers
- 6.3.6.4. Insulation materials
- 6.3.6.5. Coatings and paints
- 6.3.6.6 3D printing materials
- 6.3.7. Sustainable Insulation Materials
- 6.3.7.1. Types of sustainable insulation materials
- 6.3.7.2. Aerogel Insulation
- 6.3.7.2.1. Silica aerogels
- 6.3.7.2.1.1. Properties
- 6.3.7.2.1.2. Thermal conductivity
- 6.3.7.2.1.3. Mechanical
- 6.3.7.2.1.4. Silica aerogel precursors
- 6.3.7.2.1.5. Products
- 6.3.7.2.1.5.1. Monoliths
- 6.3.7.2.1.5.2. Powder
- 6.3.7.2.1.5.3. Granules
- 6.3.7.2.1.5.4. Blankets
- 6.3.7.2.1.5.5. Aerogel boards
- 6.3.7.2.1.5.6. Aerogel renders
- 6.3.7.2.1.6. 3D printing of aerogels
- 6.3.7.2.1.7. Silica aerogel from sustainable feedstocks
- 6.3.7.2.1.8. Silica composite aerogels
- 6.3.7.2.1.8.1. Organic crosslinkers
- 6.3.7.2.1.9. Cost of silica aerogels
- 6.3.7.2.1.10. Main players
- 6.3.7.2.2. Aerogel-like foam materials
- 6.3.7.2.2.1. Properties
- 6.3.7.2.2.2. Applications
- 6.3.7.2.3. Metal oxide aerogels
- 6.3.7.2.4. Organic aerogels
- 6.3.7.2.4.1. Polymer aerogels
- 6.3.7.2.5. Biobased and sustainable aerogels (bio-aerogels)
- 6.3.7.2.5.1. Cellulose aerogels
- 6.3.7.2.5.1.1. Cellulose nanofiber (CNF) aerogels
- 6.3.7.2.5.1.2. Cellulose nanocrystal aerogels
- 6.3.7.2.5.1.3. Bacterial nanocellulose aerogels
- 6.3.7.2.5.2. Lignin aerogels
- 6.3.7.2.5.3. Alginate aerogels
- 6.3.7.2.5.4. Starch aerogels
- 6.3.7.2.5.5. Chitosan aerogels
- 6.3.7.2.6. Carbon aerogels
- 6.3.7.2.6.1. Carbon nanotube aerogels
- 6.3.7.2.6.2. Graphene and graphite aerogels
- 6.3.7.2.7. Additive manufacturing (3D printing)
- 6.3.7.2.7.1. Carbon nitride
- 6.3.7.2.7.2. Gold
- 6.3.7.2.7.3. Cellulose
- 6.3.7.2.7.4. Graphene oxide
- 6.3.7.2.8. Hybrid aerogels
- 6.4. Carbon capture and utilization
- 6.4.1. Overview
- 6.4.2. Market structure
- 6.4.3. CCUS technologies in the cement industry
- 6.4.4. Products
- 6.4.4.1. Carbonated aggregates
- 6.4.4.2. Additives during mixing
- 6.4.4.3. Carbonates from natural minerals
- 6.4.4.4. Carbonates from waste
- 6.4.5. Concrete curing
- 6.4.6. Costs
- 6.4.7. Challenges
- 6.5. Green steel
- 6.5.1. Current Steelmaking processes
- 6.5.1.1.1. Capturing then sequestering or utilizing carbon emissions from conventional steel mills
- 6.5.2. Decarbonization target and policies
- 6.5.2.1. EU Carbon Border Adjustment Mechanism (CBAM)
- 6.5.3. Advances in clean production technologies
- 6.5.4. Production technologies
- 6.5.4.1. The role of hydrogen
- 6.5.4.2. Comparative analysis
- 6.5.4.3. Hydrogen Direct Reduced Iron (DRI)
- 6.5.4.4. Electrolysis
- 6.5.4.5. Carbon Capture, Utilization and Storage (CCUS)
- 6.5.4.6. Biochar replacing coke
- 6.5.4.7. Hydrogen Blast Furnace
- 6.5.4.8. Renewable energy powered processes
- 6.5.4.9. Flash ironmaking
- 6.5.4.10. Hydrogen Plasma Iron Ore Reduction
- 6.5.4.11. Ferrous Bioprocessing
- 6.5.4.12. Microwave Processing
- 6.5.4.13. Additive Manufacturing
- 6.5.4.14. Technology readiness level (TRL)
- 6.5.5. Properties
- 6.6. Markets and applications
- 6.6.1. Residential Buildings
- 6.6.2. Commercial and Office Buildings
- 6.6.3. Infrastructure
- 6.7. Company profiles 1011 (144 company profiles)
7. BIOBASED PACKAGING MATERIALS
- 7.1. Market overview
- 7.1.1. Current global packaging market and materials
- 7.1.2. Market trends
- 7.1.3. Drivers for recent growth in bioplastics in packaging
- 7.1.4. Challenges for bio-based and sustainable packaging
- 7.2. Materials
- 7.2.1. Materials innovation
- 7.2.2. Active packaging
- 7.2.3. Monomaterial packaging
- 7.2.4. Conventional polymer materials used in packaging
- 7.2.4.1. Polyolefins: Polypropylene and polyethylene
- 7.2.4.2. PET and other polyester polymers
- 7.2.4.3. Renewable and bio-based polymers for packaging
- 7.2.4.4. Comparison of synthetic fossil-based and bio-based polymers
- 7.2.4.5. Processes for bioplastics in packaging
- 7.2.4.6. End-of-life treatment of bio-based and sustainable packaging
- 7.3. Synthetic bio-based packaging materials
- 7.3.1. Polylactic acid (Bio-PLA)
- 7.3.1.1. Properties
- 7.3.1.2. Applicaitons
- 7.3.2. Polyethylene terephthalate (Bio-PET)
- 7.3.2.1. Properties
- 7.3.2.2. Applications
- 7.3.2.3. Advantages of Bio-PET in Packaging
- 7.3.2.4. Challenges and Limitations
- 7.3.3. Polytrimethylene terephthalate (Bio-PTT)
- 7.3.3.1. Production Process
- 7.3.3.2. Properties
- 7.3.3.3. Applications
- 7.3.3.4. Advantages of Bio-PTT in Packaging
- 7.3.3.5. Challenges and Limitations
- 7.3.4. Polyethylene furanoate (Bio-PEF)
- 7.3.4.1. Properties
- 7.3.4.2. Applications
- 7.3.4.3. Advantages of Bio-PEF in Packaging
- 7.3.4.4. Challenges and Limitations
- 7.3.5. Bio-PA
- 7.3.5.1. Properties
- 7.3.5.2. Applications in Packaging
- 7.3.5.3. Advantages of Bio-PA in Packaging
- 7.3.5.4. Challenges and Limitations
- 7.3.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
- 7.3.6.1. Properties
- 7.3.6.2. Applications in Packaging
- 7.3.6.3. Advantages of Bio-PBAT in Packaging
- 7.3.6.4. Challenges and Limitations
- 7.3.7. Polybutylene succinate (PBS) and copolymers
- 7.3.7.1. Properties
- 7.3.7.2. Applications in Packaging
- 7.3.7.3. Advantages of Bio-PBS and Co-polymers in Packaging
- 7.3.7.4. Challenges and Limitations
- 7.3.8. Polypropylene (Bio-PP)
- 7.3.8.1. Properties
- 7.3.8.2. Applications in Packaging
- 7.3.8.3. Advantages of Bio-PP in Packaging
- 7.3.8.4. Challenges and Limitations
- 7.4. Natural bio-based packaging materials
- 7.4.1. Polyhydroxyalkanoates (PHA)
- 7.4.1.1. Properties
- 7.4.1.2. Applications in Packaging
- 7.4.1.3. Advantages of PHA in Packaging
- 7.4.1.4. Challenges and Limitations
- 7.4.2. Starch-based blends
- 7.4.2.1. Properties
- 7.4.2.2. Applications in Packaging
- 7.4.2.3. Advantages of Starch-Based Blends in Packaging
- 7.4.2.4. Challenges and Limitations
- 7.4.3. Cellulose
- 7.4.3.1. Feedstocks
- 7.4.3.1.1. Wood
- 7.4.3.1.2. Plant
- 7.4.3.1.3. Tunicate
- 7.4.3.1.4. Algae
- 7.4.3.1.5. Bacteria
- 7.4.3.2. Microfibrillated cellulose (MFC)
- 7.4.3.3. Nanocellulose
- 7.4.3.3.1. Cellulose nanocrystals
- 7.4.3.3.1.1. Applications in packaging
- 7.4.3.3.2. Cellulose nanofibers
- 7.4.3.3.2.1. Applications in packaging
- 7.4.3.3.2.1.1. Reinforcement and barrier
- 7.4.3.3.2.1.2. Biodegradable food packaging foil and films
- 7.4.3.3.2.1.3. Paperboard coatings
- 7.4.3.3.3. Bacterial Nanocellulose (BNC)
- 7.4.3.3.3.1. Applications in packaging
- 7.4.4. Protein-based bioplastics in packaging
- 7.4.5. Lipids and waxes for packaging
- 7.4.6. Seaweed-based packaging
- 7.4.6.1. Production
- 7.4.6.2. Applications in packaging
- 7.4.6.3. Producers
- 7.4.7. Mycelium
- 7.4.7.1. Applications in packaging
- 7.4.8. Chitosan
- 7.4.8.1. Applications in packaging
- 7.4.9. Bio-naphtha
- 7.4.9.1. Overview
- 7.4.9.2. Markets and applications
- 7.5. Applications
- 7.5.1. Paper and board packaging
- 7.5.2. Food packaging
- 7.5.2.1. Bio-Based films and trays
- 7.5.2.2. Bio-Based pouches and bags
- 7.5.2.3. Bio-Based textiles and nets
- 7.5.2.4. Bioadhesives
- 7.5.2.4.1. Starch
- 7.5.2.4.2. Cellulose
- 7.5.2.4.3. Protein-Based
- 7.5.2.5. Barrier coatings and films
- 7.5.2.5.1. Polysaccharides
- 7.5.2.5.1.1. Chitin
- 7.5.2.5.1.2. Chitosan
- 7.5.2.5.1.3. Starch
- 7.5.2.5.2. Poly(lactic acid) (PLA)
- 7.5.2.5.3. Poly(butylene Succinate)
- 7.5.2.5.4. Functional Lipid and Proteins Based Coatings
- 7.5.2.6. Active and Smart Food Packaging
- 7.5.2.6.1. Active Materials and Packaging Systems
- 7.5.2.6.2. Intelligent and Smart Food Packaging
- 7.5.2.7. Antimicrobial films and agents
- 7.5.2.7.1. Natural
- 7.5.2.7.2. Inorganic nanoparticles
- 7.5.2.7.3. Biopolymers
- 7.5.2.8. Bio-based Inks and Dyes
- 7.5.2.9. Edible films and coatings
- 7.6. Biobased films and coatings in packaging
- 7.6.1. Challenges using bio-based paints and coatings
- 7.6.2. Types of bio-based coatings and films in packaging
- 7.6.2.1. Polyurethane coatings
- 7.6.2.1.1. Properties
- 7.6.2.1.2. Bio-based polyurethane coatings
- 7.6.2.1.3. Products
- 7.6.2.2. Acrylate resins
- 7.6.2.2.1. Properties
- 7.6.2.2.2. Bio-based acrylates
- 7.6.2.2.3. Products
- 7.6.2.3. Polylactic acid (Bio-PLA)
- 7.6.2.3.1. Properties
- 7.6.2.3.2. Bio-PLA coatings and films
- 7.6.2.4. Polyhydroxyalkanoates (PHA) coatings
- 7.6.2.5. Cellulose coatings and films
- 7.6.2.5.1. Microfibrillated cellulose (MFC)
- 7.6.2.5.2. Cellulose nanofibers
- 7.6.2.5.2.1. Properties
- 7.6.2.5.2.2. Product developers
- 7.6.2.6. Lignin coatings
- 7.6.2.7. Protein-based biomaterials for coatings
- 7.6.2.7.1. Plant derived proteins
- 7.6.2.7.2. Animal origin proteins
- 7.7. Carbon capture derived materials for packaging
- 7.7.1. Benefits of carbon utilization for plastics feedstocks
- 7.7.2. CO2-derived polymers and plastics
- 7.7.3. CO2 utilization products
- 7.8. Global biobased packaging markets
- 7.8.1. Flexible packaging
- 7.8.2. Rigid packaging
- 7.8.3. Coatings and films
- 7.9. Company profiles 1228 (207 company profiles)
8. SUSTAINABLE TEXTILES AND APPAREL
- 8.1. Types of bio-based fibres
- 8.1.1. Natural fibres
- 8.1.2. Main-made bio-based fibres
- 8.2. Bio-based synthetics
- 8.3. Recyclability of bio-based fibres
- 8.4. Lyocell
- 8.5. Bacterial cellulose
- 8.6. Algae textiles
- 8.7. Bio-based leather
- 8.7.1. Properties of bio-based leathers
- 8.7.1.1. Tear strength.
- 8.7.1.2. Tensile strength
- 8.7.1.3. Bally flexing
- 8.7.2. Comparison with conventional leathers
- 8.7.3. Comparative analysis of bio-based leathers
- 8.7.4. Plant-based leather
- 8.7.4.1. Overview
- 8.7.4.2. Production processes
- 8.7.4.2.1. Feedstocks
- 8.7.4.2.1.1. Agriculture Residues
- 8.7.4.2.1.2. Food Processing Waste
- 8.7.4.2.1.3. Invasive Plants
- 8.7.4.2.1.4. Culture-Grown Inputs
- 8.7.4.2.2. Textile-Based
- 8.7.4.2.3. Bio-Composite
- 8.7.4.3. Products
- 8.7.4.4. Market players
- 8.7.5. Mycelium leather
- 8.7.5.1. Overview
- 8.7.5.2. Production process
- 8.7.5.2.1. Growth conditions
- 8.7.5.2.2. Tanning Mycelium Leather
- 8.7.5.2.3. Dyeing Mycelium Leather
- 8.7.5.3. Products
- 8.7.5.4. Market players
- 8.7.6. Microbial leather
- 8.7.6.1. Overview
- 8.7.6.2. Production process
- 8.7.6.3. Fermentation conditions
- 8.7.6.4. Harvesting
- 8.7.6.5. Products
- 8.7.6.6. Market players
- 8.7.7. Lab grown leather
- 8.7.7.1. Overview
- 8.7.7.2. Production process
- 8.7.7.3. Products
- 8.7.7.4. Market players
- 8.7.8. Protein-based leather
- 8.7.8.1. Overview
- 8.7.8.2. Production process
- 8.7.8.3. Commercial activity
- 8.7.9. Sustainable textiles coatings and dyes
- 8.7.9.1. Overview
- 8.7.9.1.1. Coatings
- 8.7.9.1.2. Dyes
- 8.7.9.2. Commercial activity
- 8.8. Markets
- 8.8.1. Footwear
- 8.8.2. Fashion & Accessories
- 8.8.3. Automotive & Transport
- 8.8.4. Furniture
- 8.9. Global market revenues
- 8.9.1. By region
- 8.9.2. By end use market
- 8.10. Company profiles 1444 (67 company profiles)
9. BIOBASED COATINGS AND RESINS
- 9.1. Drop-in replacements
- 9.2. Bio-based resins
- 9.3. Reducing carbon footprint in industrial and protective coatings
- 9.4. Market drivers
- 9.5. Challenges using bio-based coatings
- 9.6. Types
- 9.6.1. Eco-friendly coatings technologies
- 9.6.1.1. UV-cure
- 9.6.1.2. Waterborne coatings
- 9.6.1.3. Treatments with less or no solvents
- 9.6.1.4. Hyperbranched polymers for coatings
- 9.6.1.5. Powder coatings
- 9.6.1.6. High solid (HS) coatings
- 9.6.1.7. Use of bio-based materials in coatings
- 9.6.1.7.1. Biopolymers
- 9.6.1.7.2. Coatings based on agricultural waste
- 9.6.1.7.3. Vegetable oils and fatty acids
- 9.6.1.7.4. Proteins
- 9.6.1.7.5. Cellulose
- 9.6.1.7.6. Plant-Based wax coatings
- 9.6.2. Barrier coatings
- 9.6.2.1. Polysaccharides
- 9.6.2.1.1. Chitin
- 9.6.2.1.2. Chitosan
- 9.6.2.1.3. Starch
- 9.6.2.2. Poly(lactic acid) (PLA)
- 9.6.2.3. Poly(butylene Succinate
- 9.6.2.4. Functional Lipid and Proteins Based Coatings
- 9.6.3. Alkyd coatings
- 9.6.3.1. Alkyd resin properties
- 9.6.3.2. Bio-based alkyd coatings
- 9.6.3.3. Products
- 9.6.4. Polyurethane coatings
- 9.6.4.1. Properties
- 9.6.4.2. Bio-based polyurethane coatings
- 9.6.4.2.1. Bio-based polyols
- 9.6.4.2.2. Non-isocyanate polyurethane (NIPU)
- 9.6.4.3. Products
- 9.6.5. Epoxy coatings
- 9.6.5.1. Properties
- 9.6.5.2. Bio-based epoxy coatings
- 9.6.5.3. Prod
- 9.6.5.4. Products
- 9.6.6. Acrylate resins
- 9.6.6.1. Properties
- 9.6.6.2. Bio-based acrylates
- 9.6.6.3. Products
- 9.6.7. Polylactic acid (Bio-PLA)
- 9.6.7.1. Properties
- 9.6.7.2. Bio-PLA coatings and films
- 9.6.8. Polyhydroxyalkanoates (PHA)
- 9.6.8.1. Properties
- 9.6.8.2. PHA coatings
- 9.6.8.3. Commercially available PHAs
- 9.6.9. Cellulose
- 9.6.9.1. Microfibrillated cellulose (MFC)
- 9.6.9.1.1. Properties
- 9.6.9.1.2. Applications in coatings
- 9.6.9.2. Cellulose nanofibers
- 9.6.9.2.1. Properties
- 9.6.9.2.2. Applications in coatings
- 9.6.9.3. Cellulose nanocrystals
- 9.6.9.4. Bacterial Nanocellulose (BNC)
- 9.6.10. Rosins
- 9.6.11. Bio-based carbon black
- 9.6.11.1. Lignin-based
- 9.6.11.2. Algae-based
- 9.6.12. Lignin coatings
- 9.6.13. Edible films and coatings
- 9.6.14. Antimicrobial films and agents
- 9.6.14.1. Natural
- 9.6.14.2. Inorganic nanoparticles
- 9.6.14.3. Biopolymers
- 9.6.15. Nanocoatings
- 9.6.16. Protein-based biomaterials for coatings
- 9.6.16.1. Plant derived proteins
- 9.6.16.2. Animal origin proteins
- 9.6.17. Algal coatings
- 9.6.18. Polypeptides
- 9.6.19. Global market revenues
- 9.7. Company profiles 1562 (168 company profiles)
10. BIOFUELS
- 10.1. Comparison to fossil fuels
- 10.2. Role in the circular economy
- 10.3. Market drivers
- 10.4. Market challenges
- 10.5. Liquid biofuels market
- 10.5.1. Liquid biofuel production and consumption (in thousands of m3), 2000-2022
- 10.5.2. Liquid biofuels market 2020-2035, by type and production.
- 10.6. The global biofuels market
- 10.6.1. Diesel substitutes and alternatives
- 10.6.2. Gasoline substitutes and alternatives
- 10.7. SWOT analysis: Biofuels market
- 10.8. Comparison of biofuel costs 2023, by type
- 10.9. Types
- 10.9.1. Solid Biofuels
- 10.9.2. Liquid Biofuels
- 10.9.3. Gaseous Biofuels
- 10.9.4. Conventional Biofuels
- 10.9.5. Advanced Biofuels
- 10.10. Feedstocks
- 10.10.1. First-generation (1-G)
- 10.10.2. Second-generation (2-G)
- 10.10.2.1. Lignocellulosic wastes and residues
- 10.10.2.2. Biorefinery lignin
- 10.10.3. Third-generation (3-G)
- 10.10.3.1. Algal biofuels
- 10.10.3.1.1. Properties
- 10.10.3.1.2. Advantages
- 10.10.4. Fourth-generation (4-G)
- 10.10.5. Advantages and disadvantages, by generation
- 10.10.6. Energy crops
- 10.10.6.1. Feedstocks
- 10.10.6.2. SWOT analysis
- 10.10.7. Agricultural residues
- 10.10.7.1. Feedstocks
- 10.10.7.2. SWOT analysis
- 10.10.8. Manure, sewage sludge and organic waste
- 10.10.8.1. Processing pathways
- 10.10.8.2. SWOT analysis
- 10.10.9. Forestry and wood waste
- 10.10.9.1. Feedstocks
- 10.10.9.2. SWOT analysis
- 10.10.10. Feedstock costs
- 10.11. Hydrocarbon biofuels
- 10.11.1. Biodiesel
- 10.11.1.1. Biodiesel by generation
- 10.11.1.2. SWOT analysis
- 10.11.1.3. Production of biodiesel and other biofuels
- 10.11.1.3.1. Pyrolysis of biomass
- 10.11.1.3.2. Vegetable oil transesterification
- 10.11.1.3.3. Vegetable oil hydrogenation (HVO)
- 10.11.1.3.3.1. Production process
- 10.11.1.3.4. Biodiesel from tall oil
- 10.11.1.3.5. Fischer-Tropsch BioDiesel
- 10.11.1.3.6. Hydrothermal liquefaction of biomass
- 10.11.1.3.7. CO2 capture and Fischer-Tropsch (FT)
- 10.11.1.3.8. Dymethyl ether (DME)
- 10.11.1.4. Prices
- 10.11.1.5. Global production and consumption
- 10.11.2. Renewable diesel
- 10.11.2.1. Production
- 10.11.2.2. SWOT analysis
- 10.11.2.3. Global consumption
- 10.11.2.4. Prices
- 10.11.3. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
- 10.11.3.1. Description
- 10.11.3.2. SWOT analysis
- 10.11.3.3. Global production and consumption
- 10.11.3.4. Production pathways
- 10.11.3.5. Prices
- 10.11.3.6. Bio-aviation fuel production capacities
- 10.11.3.7. Market challenges
- 10.11.3.8. Global consumption
- 10.11.4. Bio-naphtha
- 10.11.4.1. Overview
- 10.11.4.2. SWOT analysis
- 10.11.4.3. Markets and applications
- 10.11.4.4. Prices
- 10.11.4.5. Production capacities, by producer, current and planned
- 10.11.4.6. Production capacities, total (tonnes), historical, current and planned
- 10.12. Alcohol fuels
- 10.12.1. Biomethanol
- 10.12.1.1. SWOT analysis
- 10.12.1.2. Methanol-to gasoline technology
- 10.12.1.2.1. Production processes
- 10.12.1.2.1.1. Anaerobic digestion
- 10.12.1.2.1.2. Biomass gasification
- 10.12.1.2.1.3. Power to Methane
- 10.12.2. Ethanol
- 10.12.2.1. Technology description
- 10.12.2.2. 1G Bio-Ethanol
- 10.12.2.3. SWOT analysis
- 10.12.2.4. Ethanol to jet fuel technology
- 10.12.2.5. Methanol from pulp & paper production
- 10.12.2.6. Sulfite spent liquor fermentation
- 10.12.2.7. Gasification
- 10.12.2.7.1. Biomass gasification and syngas fermentation
- 10.12.2.7.2. Biomass gasification and syngas thermochemical conversion
- 10.12.2.8. CO2 capture and alcohol synthesis
- 10.12.2.9. Biomass hydrolysis and fermentation
- 10.12.2.9.1. Separate hydrolysis and fermentation
- 10.12.2.9.2. Simultaneous saccharification and fermentation (SSF)
- 10.12.2.9.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
- 10.12.2.9.4. Simultaneous saccharification and co-fermentation (SSCF)
- 10.12.2.9.5. Direct conversion (consolidated bioprocessing) (CBP)
- 10.12.2.10. Global ethanol consumption
- 10.12.3. Biobutanol
- 10.12.3.1. Production
- 10.12.3.2. Prices
- 10.13. Biomass-based Gas
- 10.13.1. Feedstocks
- 10.13.1.1. Biomethane
- 10.13.1.2. Production pathways
- 10.13.1.2.1. Landfill gas recovery
- 10.13.1.2.2. Anaerobic digestion
- 10.13.1.2.3. Thermal gasification
- 10.13.1.3. SWOT analysis
- 10.13.1.4. Global production
- 10.13.1.5. Prices
- 10.13.1.5.1. Raw Biogas
- 10.13.1.5.2. Upgraded Biomethane
- 10.13.1.6. Bio-LNG
- 10.13.1.6.1. Markets
- 10.13.1.6.1.1. Trucks
- 10.13.1.6.1.2. Marine
- 10.13.1.6.2. Production
- 10.13.1.6.3. Plants
- 10.13.1.7. bio-CNG (compressed natural gas derived from biogas)
- 10.13.1.8. Carbon capture from biogas
- 10.13.2. Biosyngas
- 10.13.2.1. Production
- 10.13.2.2. Prices
- 10.13.3. Biohydrogen
- 10.13.3.1. Description
- 10.13.3.2. SWOT analysis
- 10.13.3.3. Production of biohydrogen from biomass
- 10.13.3.3.1. Biological Conversion Routes
- 10.13.3.3.1.1. Bio-photochemical Reaction
- 10.13.3.3.1.2. Fermentation and Anaerobic Digestion
- 10.13.3.3.2. Thermochemical conversion routes
- 10.13.3.3.2.1. Biomass Gasification
- 10.13.3.3.2.2. Biomass Pyrolysis
- 10.13.3.3.2.3. Biomethane Reforming
- 10.13.3.4. Applications
- 10.13.3.5. Prices
- 10.13.4. Biochar in biogas production
- 10.13.5. Bio-DME
- 10.14. Chemical recycling for biofuels
- 10.14.1. Plastic pyrolysis
- 10.14.2. Used tires pyrolysis
- 10.14.2.1. Conversion to biofuel
- 10.14.3. Co-pyrolysis of biomass and plastic wastes
- 10.14.4. Gasification
- 10.14.4.1. Syngas conversion to methanol
- 10.14.4.2. Biomass gasification and syngas fermentation
- 10.14.4.3. Biomass gasification and syngas thermochemical conversion
- 10.14.5. Hydrothermal cracking
- 10.14.6. SWOT analysis
- 10.15. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
- 10.15.1. Introduction
- 10.15.2. Benefits of e-fuels
- 10.15.3. Feedstocks
- 10.15.3.1. Hydrogen electrolysis
- 10.15.3.2. CO2 capture
- 10.15.4. SWOT analysis
- 10.15.5. Production
- 10.15.5.1. eFuel production facilities, current and planned
- 10.15.6. Electrolysers
- 10.15.6.1. Commercial alkaline electrolyser cells (AECs)
- 10.15.6.2. PEM electrolysers (PEMEC)
- 10.15.6.3. High-temperature solid oxide electrolyser cells (SOECs)
- 10.15.7. Prices
- 10.15.8. Market challenges
- 10.15.9. Companies
- 10.16. Algae-derived biofuels
- 10.16.1. Technology description
- 10.16.2. Conversion pathways
- 10.16.3. SWOT analysis
- 10.16.4. Production
- 10.16.5. Market challenges
- 10.16.6. Prices
- 10.16.7. Producers
- 10.17. Green Ammonia
- 10.17.1. Production
- 10.17.1.1. Decarbonisation of ammonia production
- 10.17.1.2. Green ammonia projects
- 10.17.2. Green ammonia synthesis methods
- 10.17.2.1. Haber-Bosch process
- 10.17.2.2. Biological nitrogen fixation
- 10.17.2.3. Electrochemical production
- 10.17.2.4. Chemical looping processes
- 10.17.3. SWOT analysis
- 10.17.4. Blue ammonia
- 10.17.4.1. Blue ammonia projects
- 10.17.5. Markets and applications
- 10.17.5.1. Chemical energy storage
- 10.17.5.1.1. Ammonia fuel cells
- 10.17.5.2. Marine fuel
- 10.17.6. Prices
- 10.17.7. Estimated market demand
- 10.17.8. Companies and projects
- 10.18. Biofuels from carbon capture
- 10.18.1. Overview
- 10.18.2. CO2 capture from point sources
- 10.18.3. Production routes
- 10.18.4. SWOT analysis
- 10.18.5. Direct air capture (DAC)
- 10.18.5.1. Description
- 10.18.5.2. Deployment
- 10.18.5.3. Point source carbon capture versus Direct Air Capture
- 10.18.5.4. Technologies
- 10.18.5.4.1. Solid sorbents
- 10.18.5.4.2. Liquid sorbents
- 10.18.5.4.3. Liquid solvents
- 10.18.5.4.4. Airflow equipment integration
- 10.18.5.4.5. Passive Direct Air Capture (PDAC)
- 10.18.5.4.6. Direct conversion
- 10.18.5.4.7. Co-product generation
- 10.18.5.4.8. Low Temperature DAC
- 10.18.5.4.9. Regeneration methods
- 10.18.5.5. Commercialization and plants
- 10.18.5.6. Metal-organic frameworks (MOFs) in DAC
- 10.18.5.7. DAC plants and projects-current and planned
- 10.18.5.8. Markets for DAC
- 10.18.5.9. Costs
- 10.18.5.10. Challenges
- 10.18.5.11. Players and production
- 10.18.6. Carbon utilization for biofuels
- 10.18.6.1. Production routes
- 10.18.6.1.1. Electrolyzers
- 10.18.6.1.2. Low-carbon hydrogen
- 10.18.6.2. Products & applications
- 10.18.6.2.1. Vehicles
- 10.18.6.2.2. Shipping
- 10.18.6.2.3. Aviation
- 10.18.6.2.4. Costs
- 10.18.6.2.5. Ethanol
- 10.18.6.2.6. Methanol
- 10.18.6.2.7. Sustainable Aviation Fuel
- 10.18.6.2.8. Methane
- 10.18.6.2.9. Algae based biofuels
- 10.18.6.2.10. CO2-fuels from solar
- 10.18.6.3. Challenges
- 10.18.6.4. SWOT analysis
- 10.18.6.5. Companies
- 10.19. Bio-oils (pyrolysis oils)
- 10.19.1. Description
- 10.19.1.1. Advantages of bio-oils
- 10.19.2. Production
- 10.19.2.1. Fast Pyrolysis
- 10.19.2.2. Costs of production
- 10.19.2.3. Upgrading
- 10.19.3. SWOT analysis
- 10.19.4. Applications
- 10.19.5. Bio-oil producers
- 10.19.6. Prices
- 10.20. Refuse Derived Fuels (RDF)
- 10.20.1. Overview
- 10.20.2. Production
- 10.20.2.1. Production process
- 10.20.2.2. Mechanical biological treatment
- 10.20.3. Markets
- 10.21. Company profiles 1899 (211 company profiles)
11. SUSTAINABLE ELECTRONICS
- 11.1. Overview
- 11.1.1. Green electronics manufacturing
- 11.1.2. Drivers for sustainable electronics
- 11.1.3. Environmental Impacts of Electronics Manufacturing
- 11.1.3.1. E-Waste Generation
- 11.1.3.2. Carbon Emissions
- 11.1.3.3. Resource Utilization
- 11.1.3.4. Waste Minimization
- 11.1.3.5. Supply Chain Impacts
- 11.1.4. New opportunities from sustainable electronics
- 11.1.5. Regulations
- 11.1.6. Powering sustainable electronics (Bio-based batteries)
- 11.1.7. Bioplastics in injection moulded electronics parts
- 11.2. Green electronics manufacturing
- 11.2.1. Conventional electronics manufacturing
- 11.2.2. Benefits of Green Electronics manufacturing
- 11.2.3. Challenges in adopting Green Electronics manufacturing
- 11.2.4. Approaches
- 11.2.4.1. Closed-Loop Manufacturing
- 11.2.4.2. Digital Manufacturing
- 11.2.4.2.1. Advanced robotics & automation
- 11.2.4.2.2. AI & machine learning analytics
- 11.2.4.2.3. Internet of Things (IoT)
- 11.2.4.2.4. Additive manufacturing
- 11.2.4.2.5. Virtual prototyping
- 11.2.4.2.6. Blockchain-enabled supply chain traceability
- 11.2.4.3. Renewable Energy Usage
- 11.2.4.4. Energy Efficiency
- 11.2.4.5. Materials Efficiency
- 11.2.4.6. Sustainable Chemistry
- 11.2.4.7. Recycled Materials
- 11.2.4.7.1. Advanced chemical recycling
- 11.2.4.8. Bio-Based Materials
- 11.2.5. Greening the Supply Chain
- 11.2.5.1. Key focus areas
- 11.2.5.2. Sustainability activities from major electronics brands
- 11.2.5.3. Key challenges
- 11.2.5.4. Use of digital technologies
- 11.2.6. Sustainable Printed Circuit Board (PCB) manufacturing
- 11.2.6.1. Conventional PCB manufacturing
- 11.2.6.2. Trends in PCBs
- 11.2.6.2.1. High-Speed PCBs
- 11.2.6.2.2. Flexible PCBs
- 11.2.6.2.3. 3D Printed PCBs
- 11.2.6.2.4. Sustainable PCBs
- 11.2.6.3. Reconciling sustainability with performance
- 11.2.6.4. Sustainable supply chains
- 11.2.6.5. Sustainability in PCB manufacturing
- 11.2.6.5.1. Sustainable cleaning of PCBs
- 11.2.6.6. Design of PCBs for sustainability
- 11.2.6.6.1. Rigid
- 11.2.6.6.2. Flexible
- 11.2.6.6.3. Additive manufacturing
- 11.2.6.6.4. In-mold elctronics (IME)
- 11.2.6.7. Materials
- 11.2.6.7.1. Metal cores
- 11.2.6.7.2. Recycled laminates
- 11.2.6.7.3. Conductive inks
- 11.2.6.7.4. Green and lead-free solder
- 11.2.6.7.5. Biodegradable substrates
- 11.2.6.7.5.1. Bacterial Cellulose
- 11.2.6.7.5.2. Mycelium
- 11.2.6.7.5.3. Lignin
- 11.2.6.7.5.4. Cellulose Nanofibers
- 11.2.6.7.5.5. Soy Protein
- 11.2.6.7.5.6. Algae
- 11.2.6.7.5.7. PHAs
- 11.2.6.7.6. Biobased inks
- 11.2.6.8. Substrates
- 11.2.6.8.1. Halogen-free FR4
- 11.2.6.8.1.1. FR4 limitations
- 11.2.6.8.1.2. FR4 alternatives
- 11.2.6.8.1.3. Bio-Polyimide
- 11.2.6.8.2. Metal-core PCBs
- 11.2.6.8.3. Biobased PCBs
- 11.2.6.8.3.1. Flexible (bio) polyimide PCBs
- 11.2.6.8.3.2. Recent commercial activity
- 11.2.6.8.4. Paper-based PCBs
- 11.2.6.8.5. PCBs without solder mask
- 11.2.6.8.6. Thinner dielectrics
- 11.2.6.8.7. Recycled plastic substrates
- 11.2.6.8.8. Flexible substrates
- 11.2.6.9. Sustainable patterning and metallization in electronics manufacturing
- 11.2.6.9.1. Introduction
- 11.2.6.9.2. Issues with sustainability
- 11.2.6.9.3. Regeneration and reuse of etching chemicals
- 11.2.6.9.4. Transition from Wet to Dry phase patterning
- 11.2.6.9.5. Print-and-plate
- 11.2.6.9.6. Approaches
- 11.2.6.9.6.1. Direct Printed Electronics
- 11.2.6.9.6.2. Photonic Sintering
- 11.2.6.9.6.3. Biometallization
- 11.2.6.9.6.4. Plating Resist Alternatives
- 11.2.6.9.6.5. Laser-Induced Forward Transfer
- 11.2.6.9.6.6. Electrohydrodynamic Printing
- 11.2.6.9.6.7. Electrically conductive adhesives (ECAs
- 11.2.6.9.6.8. Green electroless plating
- 11.2.6.9.6.9. Smart Masking
- 11.2.6.9.6.10. Component Integration
- 11.2.6.9.6.11. Bio-inspired material deposition
- 11.2.6.9.6.12. Multi-material jetting
- 11.2.6.9.6.13. Vacuumless deposition
- 11.2.6.9.6.14. Upcycling waste streams
- 11.2.6.10. Sustainable attachment and integration of components
- 11.2.6.10.1. Conventional component attachment materials
- 11.2.6.10.2. Materials
- 11.2.6.10.2.1. Conductive adhesives
- 11.2.6.10.2.2. Biodegradable adhesives
- 11.2.6.10.2.3. Magnets
- 11.2.6.10.2.4. Bio-based solders
- 11.2.6.10.2.5. Bio-derived solders
- 11.2.6.10.2.6. Recycled plastics
- 11.2.6.10.2.7. Nano adhesives
- 11.2.6.10.2.8. Shape memory polymers
- 11.2.6.10.2.9. Photo-reversible polymers
- 11.2.6.10.2.10. Conductive biopolymers
- 11.2.6.10.3. Processes
- 11.2.6.10.3.1. Traditional thermal processing methods
- 11.2.6.10.3.2. Low temperature solder
- 11.2.6.10.3.3. Reflow soldering
- 11.2.6.10.3.4. Induction soldering
- 11.2.6.10.3.5. UV curing
- 11.2.6.10.3.6. Near-infrared (NIR) radiation curing
- 11.2.6.10.3.7. Photonic sintering/curing
- 11.2.6.10.3.8. Hybrid integration
- 11.2.7. Sustainable integrated circuits
- 11.2.7.1. IC manufacturing
- 11.2.7.2. Sustainable IC manufacturing
- 11.2.7.3. Wafer production
- 11.2.7.3.1. Silicon
- 11.2.7.3.2. Gallium nitride ICs
- 11.2.7.3.3. Flexible ICs
- 11.2.7.3.4. Fully printed organic ICs
- 11.2.7.4. Oxidation methods
- 11.2.7.4.1. Sustainable oxidation
- 11.2.7.4.2. Metal oxides
- 11.2.7.4.3. Recycling
- 11.2.7.4.4. Thin gate oxide layers
- 11.2.7.5. Patterning and doping
- 11.2.7.5.1. Processes
- 11.2.7.5.1.1. Wet etching
- 11.2.7.5.1.2. Dry plasma etching
- 11.2.7.5.1.3. Lift-off patterning
- 11.2.7.5.1.4. Surface doping
- 11.2.7.6. Metallization
- 11.2.7.6.1. Evaporation
- 11.2.7.6.2. Plating
- 11.2.7.6.3. Printing
- 11.2.7.6.3.1. Printed metal gates for organic thin film transistors
- 11.2.7.6.4. Physical vapour deposition (PVD)
- 11.2.8. End of life
- 11.2.8.1. Hazardous waste
- 11.2.8.2. Emissions
- 11.2.8.3. Water Usage
- 11.2.8.4. Recycling
- 11.2.8.4.1. Mechanical recycling
- 11.2.8.4.2. Electro-Mechanical Separation
- 11.2.8.4.3. Chemical Recycling
- 11.2.8.5. Electrochemical Processes
- 11.2.8.5.1. Thermal Recycling
- 11.2.8.6. Green Certification
- 11.3. Global market
- 11.3.1. Global PCB manufacturing industry
- 11.3.2. Sustainable PCBs
- 11.3.3. Sustainable ICs
- 11.4. Company profiles 2157 (45 company profiles)
12. BIOBASED ADHESIVES AND SEALANTS
- 12.1. Overview
- 12.1.1. Biobased Epoxy Adhesives
- 12.1.2. Bioobased Polyurethane Adhesives
- 12.1.3. Other Biobased Adhesives and Sealants
- 12.2. Types
- 12.2.1. Cellulose-Based
- 12.2.2. Starch-Based
- 12.2.3. Lignin-Based
- 12.2.4. Vegetable Oils
- 12.2.5. Protein-Based
- 12.2.6. Tannin-Based
- 12.2.7. Algae-based
- 12.2.8. Chitosan-based
- 12.2.9. Natural Rubber-based
- 12.2.10. Silkworm Silk-based
- 12.2.11. Mussel Protein-based
- 12.2.12. Soy-based Foam
- 12.3. Global revenues
- 12.3.1. By types
- 12.3.2. By market
- 12.4. Company profiles (15 company profiles)
13. REFERENCES