The global market for advanced bio-based and sustainable materials is experiencing rapid growth driven by increasing environmental concerns, regulatory pressure for sustainable solutions, and growing consumer demand for eco-friendly products. These materials are being developed to replace petroleum-based and other non-sustainable materials across multiple industries while offering improved environmental performance and circularity.
Key drivers include:
- Push to reduce carbon emissions and environmental impact
- Government regulations promoting sustainable materials
- Corporate sustainability commitments
- Consumer preference for eco-friendly products
- Need for alternatives to petroleum-based materials
- Advancement in production technologies
- Investment in bio-based manufacturing
The market encompasses multiple material categories including bio-based chemicals, polymers, composites, and advanced materials for construction, packaging, textiles, and electronics applications. Current market size is estimated at over $100 billion and growing at 10-15% annually, with bio-based polymers and sustainable packaging representing the largest segments.
Significant opportunities exist in:
- Drop-in replacements for petroleum-based chemicals
- Novel bio-based polymers with enhanced properties
- Natural fiber composites for automotive and construction
- Sustainable building materials and green steel
- Bio-based packaging solutions
- Next-generation sustainable textiles
- Electronics from renewable materials
The outlook remains highly positive as technologies mature and costs decrease. Growth is expected to accelerate as manufacturers increase adoption of sustainable materials to meet environmental goals and consumer demands. Asia Pacific represents the fastest growing market, while Europe leads in technology development and adoption.
This extensive 2200+ page report provides detailed market data and analysis of the rapidly growing advanced bio-based and sustainable materials market, covering bio-based chemicals, polymers, composites, construction materials, packaging, textiles, adhesives, and electronics applications. The report includes granular 10-year forecasts, competitive analysis of over 1,000 companies, and in-depth assessment of technologies, manufacturing processes, and end-use markets.
Key Report Features:
- Comprehensive analysis of bio-based chemicals and intermediates including starch, glucose, lignin, and plant-based feedstocks
- Detailed market sizing and forecasts for bio-based polymers and plastics including PLA, PHA, bio-PE, bio-PET
- Assessment of natural fiber composites and wood composites market opportunities
- Analysis of sustainable construction materials including bio-concrete, green steel, and thermal materials
- Deep dive into bio-based packaging applications and markets
- Coverage of sustainable textiles and bio-based leather alternatives
- Evaluation of bio-based adhesives, coatings and electronic materials
- Company profiles of over 1,000 companies developing advanced sustainable materials. Companies profiled include ADBioplastics, AlgiKnit, Allbirds Materials, Ananas Anam, Anellotech, Avantium, Basilisk, BASF, Blue Planet, Bluepha, Bolt Threads, Borealis, Braskem, Carbios, CarbonCure, Cargill, Cathay Biotech, CJ Biomaterials, Danimer Scientific, DuPont, Ecologic Brands, Ecovative, FlexSea, Futamura, Genomatica, GRECO, Helian Polymers BV, Huitong Biomaterials, Interface, Kaneka, Kingfa Science and Technology, Lactips, Loliware, MarinaTex, Modern Meadow, Mogu, Mushroom Packaging, MycoWorks, Natural Fiber Welding, NatureWorks, Newlight Technologies, Notpla, Novamont, Novozymes, Orange Fiber, Origin Materials, Ourobio, Paptic, Plantic Technologies, PlantSea, Prometheus Materials, Roquette, RWDC Industries, Solidia Technologies, Spinnova, Succinity, Sulapac, Sulzer, TerraVerdae Bioworks, Tipa Corp, Total Corbion, TotalEnergies Corbion, Trinseo, UPM, Vitrolabs, Wear Once, Xampla, Yield10 Bioscience, Zoa BioFabrics and more....
Detailed Coverage Includes:
- Raw material sourcing and feedstock analysis
- Production processes and manufacturing methods
- Material properties and performance characteristics
- End-use applications and market opportunities
- Competitive landscape and company strategies
- Technology roadmaps and future outlook
- Regional market analysis
- Regulatory considerations
- Sustainability metrics and environmental impact
The report segments the market by:
Material Type:
- Bio-based chemicals and intermediates
- Bio-based polymers and plastics
- Natural fiber composites
- Sustainable construction materials
- Bio-based packaging
- Sustainable textiles
- Bio-based adhesives and coatings
- Sustainable electronics
End-Use Markets:
- Packaging
- Construction
- Automotive
- Textiles & Apparel
- Electronics
- Consumer Products
- Industrial Applications
Geographic Regions:
- North America
- Europe
- Asia Pacific
- Rest of World
TABLE OF CONTENTS
1. RESEARCH METHODOLOGY
2. INTRODUCTION
- 2.1. Definition of Sustainable and Bio-based Materials
- 2.2. Importance and Benefits of Bio-based and Sustainable Materials
3. BIOBASED CHEMICALS AND INTERMEDIATES
- 3.1. BIOREFINERIES
- 3.2. BIO-BASED FEEDSTOCK AND LAND USE
- 3.3. PLANT-BASED
- 3.3.1. STARCH
- 3.3.1.1. Overview
- 3.3.1.2. Sources
- 3.3.1.3. Global production
- 3.3.1.4. Lysine
- 3.3.1.4.1. Source
- 3.3.1.4.2. Applications
- 3.3.1.4.3. Global production
- 3.3.1.5. Glucose
- 3.3.1.5.1. HMDA
- 3.3.1.5.1.1. Overview
- 3.3.1.5.1.2. Sources
- 3.3.1.5.1.3. Applications
- 3.3.1.5.1.4. Global production
- 3.3.1.5.2. 1,5-diaminopentane (DA5)
- 3.3.1.5.2.1. Overview
- 3.3.1.5.2.2. Sources
- 3.3.1.5.2.3. Applications
- 3.3.1.5.2.4. Global production
- 3.3.1.5.3. Sorbitol
- 3.3.1.5.3.1. Isosorbide
- 3.3.1.5.3.1.1. Overview
- 3.3.1.5.3.1.2. Sources
- 3.3.1.5.3.1.3. Applications
- 3.3.1.5.3.1.4. Global production
- 3.3.1.5.4. Lactic acid
- 3.3.1.5.4.1. Overview
- 3.3.1.5.4.2. D-lactic acid
- 3.3.1.5.4.3. L-lactic acid
- 3.3.1.5.4.4. Lactide
- 3.3.1.5.5. Itaconic acid
- 3.3.1.5.5.1. Overview
- 3.3.1.5.5.2. Sources
- 3.3.1.5.5.3. Applications
- 3.3.1.5.5.4. Global production
- 3.3.1.5.6. 3-HP
- 3.3.1.5.6.1. Overview
- 3.3.1.5.6.2. Sources
- 3.3.1.5.6.3. Applications
- 3.3.1.5.6.4. Global production
- 3.3.1.5.6.5. Acrylic acid
- 3.3.1.5.6.5.1. Overview
- 3.3.1.5.6.5.2. Applications
- 3.3.1.5.6.5.3. Global production
- 3.3.1.5.6.6. 1,3-Propanediol (1,3-PDO)
- 3.3.1.5.6.6.1. Overview
- 3.3.1.5.6.6.2. Applications
- 3.3.1.5.6.6.3. Global production
- 3.3.1.5.7. Succinic Acid
- 3.3.1.5.7.1. Overview
- 3.3.1.5.7.2. Sources
- 3.3.1.5.7.3. Applications
- 3.3.1.5.7.4. Global production
- 3.3.1.5.7.5. 1,4-Butanediol (1,4-BDO)
- 3.3.1.5.7.5.1. Overview
- 3.3.1.5.7.5.2. Applications
- 3.3.1.5.7.5.3. Global production
- 3.3.1.5.7.6. Tetrahydrofuran (THF)
- 3.3.1.5.7.6.1. Overview
- 3.3.1.5.7.6.2. Applications
- 3.3.1.5.7.6.3. Global production
- 3.3.1.5.8. Adipic acid
- 3.3.1.5.8.1. Overview
- 3.3.1.5.8.2. Applications
- 3.3.1.5.8.3. Caprolactame
- 3.3.1.5.8.3.1. Overview
- 3.3.1.5.8.3.2. Applications
- 3.3.1.5.8.3.3. Global production
- 3.3.1.5.9. Isobutanol
- 3.3.1.5.9.1. Overview
- 3.3.1.5.9.2. Sources
- 3.3.1.5.9.3. Applications
- 3.3.1.5.9.4. Global production
- 3.3.1.5.9.5. p-Xylene
- 3.3.1.5.9.5.1. Overview
- 3.3.1.5.9.5.2. Sources
- 3.3.1.5.9.5.3. Applications
- 3.3.1.5.9.5.4. Global production
- 3.3.1.5.9.5.5. Terephthalic acid
- 3.3.1.5.9.5.6. Overview
- 3.3.1.5.10. 1,3 Proppanediol
- 3.3.1.5.10.1.1. Overview
- 3.3.1.5.10.2. Sources
- 3.3.1.5.10.3. Applications
- 3.3.1.5.10.4. Global production
- 3.3.1.5.11. Monoethylene glycol (MEG)
- 3.3.1.5.11.1. Overview
- 3.3.1.5.11.2. Sources
- 3.3.1.5.11.3. Applications
- 3.3.1.5.11.4. Global production
- 3.3.1.5.12. Ethanol
- 3.3.1.5.12.1. Overview
- 3.3.1.5.12.2. Sources
- 3.3.1.5.12.3. Applications
- 3.3.1.5.12.4. Global production
- 3.3.1.5.12.5. Ethylene
- 3.3.1.5.12.5.1. Overview
- 3.3.1.5.12.5.2. Applications
- 3.3.1.5.12.5.3. Global production
- 3.3.1.5.12.5.4. Propylene
- 3.3.1.5.12.5.5. Vinyl chloride
- 3.3.1.5.12.6. Methly methacrylate
- 3.3.2. SUGAR CROPS
- 3.3.2.1. Saccharose
- 3.3.2.1.1. Aniline
- 3.3.2.1.1.1. Overview
- 3.3.2.1.1.2. Applications
- 3.3.2.1.1.3. Global production
- 3.3.2.1.2. Fructose
- 3.3.2.1.2.1. Overview
- 3.3.2.1.2.2. Applications
- 3.3.2.1.2.3. Global production
- 3.3.2.1.2.4. 5-Hydroxymethylfurfural (5-HMF)
- 3.3.2.1.2.4.1. Overview
- 3.3.2.1.2.4.2. Applications
- 3.3.2.1.2.4.3. Global production
- 3.3.2.1.2.5. 5-Chloromethylfurfural (5-CMF)
- 3.3.2.1.2.5.1. Overview
- 3.3.2.1.2.5.2. Applications
- 3.3.2.1.2.5.3. Global production
- 3.3.2.1.2.6. Levulinic Acid
- 3.3.2.1.2.6.1. Overview
- 3.3.2.1.2.6.2. Applications
- 3.3.2.1.2.6.3. Global production
- 3.3.2.1.2.7. FDME
- 3.3.2.1.2.7.1. Overview
- 3.3.2.1.2.7.2. Applications
- 3.3.2.1.2.7.3. Global production
- 3.3.2.1.2.8. 2,5-FDCA
- 3.3.2.1.2.8.1. Overview
- 3.3.2.1.2.8.2. Applications
- 3.3.2.1.2.8.3. Global production
- 3.3.3. LIGNOCELLULOSIC BIOMASS
- 3.3.3.1. Levoglucosenone
- 3.3.3.1.1. Overview
- 3.3.3.1.2. Applications
- 3.3.3.1.3. Global production
- 3.3.3.2. Hemicellulose
- 3.3.3.2.1. Overview
- 3.3.3.2.2. Biochemicals from hemicellulose
- 3.3.3.2.3. Global production
- 3.3.3.2.4. Furfural
- 3.3.3.2.4.1. Overview
- 3.3.3.2.4.2. Applications
- 3.3.3.2.4.3. Global production
- 3.3.3.2.4.4. Furfuyl alcohol
- 3.3.3.2.4.4.1. Overview
- 3.3.3.2.4.4.2. Applications
- 3.3.3.2.4.4.3. Global production
- 3.3.3.3. Lignin
- 3.3.3.3.1. Overview
- 3.3.3.3.2. Sources
- 3.3.3.3.3. Applications
- 3.3.3.3.3.1. Aromatic compounds
- 3.3.3.3.3.1.1. Benzene, toluene and xylene
- 3.3.3.3.3.1.2. Phenol and phenolic resins
- 3.3.3.3.3.1.3. Vanillin
- 3.3.3.3.3.2. Polymers
- 3.3.3.3.4. Global production
- 3.3.4. PLANT OILS
- 3.3.4.1. Overview
- 3.3.4.2. Glycerol
- 3.3.4.2.1. Overview
- 3.3.4.2.2. Applications
- 3.3.4.2.3. Global production
- 3.3.4.2.4. MPG
- 3.3.4.2.4.1. Overview
- 3.3.4.2.4.2. Applications
- 3.3.4.2.4.3. Global production
- 3.3.4.2.5. ECH
- 3.3.4.2.5.1. Overview
- 3.3.4.2.5.2. Applications
- 3.3.4.2.5.3. Global production
- 3.3.4.3. Fatty acids
- 3.3.4.3.1. Overview
- 3.3.4.3.2. Applications
- 3.3.4.3.3. Global production
- 3.3.4.4. Castor oil
- 3.3.4.4.1. Overview
- 3.3.4.4.2. Sebacic acid
- 3.3.4.4.2.1. Overview
- 3.3.4.4.2.2. Applications
- 3.3.4.4.2.3. Global production
- 3.3.4.4.3. 11-Aminoundecanoic acid (11-AA)
- 3.3.4.4.3.1. Overview
- 3.3.4.4.3.2. Applications
- 3.3.4.4.3.3. Global production
- 3.3.4.5. Dodecanedioic acid (DDDA)
- 3.3.4.5.1. Overview
- 3.3.4.5.2. Applications
- 3.3.4.5.3. Global production
- 3.3.4.6. Pentamethylene diisocyanate
- 3.3.4.6.1. Overview
- 3.3.4.6.2. Applications
- 3.3.4.6.3. Global production
- 3.3.5. NON-EDIBIBLE MILK
- 3.3.5.1. Casein
- 3.3.5.1.1. Overview
- 3.3.5.1.2. Applications
- 3.3.5.1.3. Global production
- 3.4. WASTE
- 3.4.1. Food waste
- 3.4.1.1. Overview
- 3.4.1.2. Products and applications
- 3.4.1.2.1. Global production
- 3.4.2. Agricultural waste
- 3.4.2.1. Overview
- 3.4.2.2. Products and applications
- 3.4.2.3. Global production
- 3.4.3. Forestry waste
- 3.4.3.1. Overview
- 3.4.3.2. Products and applications
- 3.4.3.3. Global production
- 3.4.4. Aquaculture/fishing waste
- 3.4.4.1. Overview
- 3.4.4.2. Products and applications
- 3.4.4.3. Global production
- 3.4.5. Municipal solid waste
- 3.4.5.1. Overview
- 3.4.5.2. Products and applications
- 3.4.5.3. Global production
- 3.4.6. Industrial waste
- 3.4.7. Waste oils
- 3.4.7.1. Overview
- 3.4.7.2. Products and applications
- 3.4.7.3. Global production
- 3.5. MICROBIAL & MINERAL SOURCES
- 3.5.1. Microalgae
- 3.5.1.1. Overview
- 3.5.1.2. Products and applications
- 3.5.1.3. Global production
- 3.5.2. Macroalgae
- 3.5.2.1. Overview
- 3.5.2.2. Products and applications
- 3.5.2.3. Global production
- 3.5.3. Mineral sources
- 3.5.3.1. Overview
- 3.5.3.2. Products and applications
- 3.6. GASEOUS
- 3.6.1. Biogas
- 3.6.1.1. Overview
- 3.6.1.2. Products and applications
- 3.6.1.3. Global production
- 3.6.2. Syngas
- 3.6.2.1. Overview
- 3.6.2.2. Products and applications
- 3.6.2.3. Global production
- 3.6.3. Off gases - fermentation CO2, CO
- 3.6.3.1. Overview
- 3.6.3.2. Products and applications
- 3.7. COMPANY PROFILES (128 company profiles)
4. BIOBASED POLYMERS AND PLASTICS
- 4.1. Overview
- 4.1.1. Drop-in bio-based plastics
- 4.1.2. Novel bio-based plastics
- 4.2. Biodegradable and compostable plastics
- 4.2.1. Biodegradability
- 4.2.2. Compostability
- 4.3. Types
- 4.4. Key market players
- 4.5. Synthetic biobased polymers
- 4.5.1. Polylactic acid (Bio-PLA)
- 4.5.1.1. Market analysis
- 4.5.1.2. Production
- 4.5.1.3. Producers and production capacities, current and planned
- 4.5.1.3.1. Lactic acid producers and production capacities
- 4.5.1.3.2. PLA producers and production capacities
- 4.5.1.3.3. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
- 4.5.2. Polyethylene terephthalate (Bio-PET)
- 4.5.2.1. Market analysis
- 4.5.2.2. Producers and production capacities
- 4.5.2.3. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
- 4.5.3. Polytrimethylene terephthalate (Bio-PTT)
- 4.5.3.1. Market analysis
- 4.5.3.2. Producers and production capacities
- 4.5.3.3. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
- 4.5.4. Polyethylene furanoate (Bio-PEF)
- 4.5.4.1. Market analysis
- 4.5.4.2. Comparative properties to PET
- 4.5.4.3. Producers and production capacities
- 4.5.4.3.1. FDCA and PEF producers and production capacities
- 4.5.4.3.2. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).
- 4.5.5. Polyamides (Bio-PA)
- 4.5.5.1. Market analysis
- 4.5.5.2. Producers and production capacities
- 4.5.5.3. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
- 4.5.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
- 4.5.6.1. Market analysis
- 4.5.6.2. Producers and production capacities
- 4.5.6.3. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
- 4.5.7. Polybutylene succinate (PBS) and copolymers
- 4.5.7.1. Market analysis
- 4.5.7.2. Producers and production capacities
- 4.5.7.3. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
- 4.5.8. Polyethylene (Bio-PE)
- 4.5.8.1. Market analysis
- 4.5.8.2. Producers and production capacities
- 4.5.8.3. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).
- 4.5.9. Polypropylene (Bio-PP)
- 4.5.9.1. Market analysis
- 4.5.9.2. Producers and production capacities
- 4.5.9.3. Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)
- 4.6. Natural biobased polymers
- 4.6.1. Polyhydroxyalkanoates (PHA)
- 4.6.1.1. Technology description
- 4.6.1.2. Types
- 4.6.1.2.1. PHB
- 4.6.1.2.2. PHBV
- 4.6.1.3. Synthesis and production processes
- 4.6.1.4. Market analysis
- 4.6.1.5. Commercially available PHAs
- 4.6.1.6. Markets for PHAs
- 4.6.1.6.1. Packaging
- 4.6.1.6.2. Cosmetics
- 4.6.1.6.2.1. PHA microspheres
- 4.6.1.6.3. Medical
- 4.6.1.6.3.1. Tissue engineering
- 4.6.1.6.3.2. Drug delivery
- 4.6.1.6.4. Agriculture
- 4.6.1.6.4.1. Mulch film
- 4.6.1.6.4.2. Grow bags
- 4.6.1.7. Producers and production capacities
- 4.6.2. Cellulose
- 4.6.2.1. Microfibrillated cellulose (MFC)
- 4.6.2.1.1. Market analysis
- 4.6.2.1.2. Producers and production capacities
- 4.6.2.2. Nanocellulose
- 4.6.2.2.1. Cellulose nanocrystals
- 4.6.2.2.1.1. Synthesis
- 4.6.2.2.1.2. Properties
- 4.6.2.2.1.3. Production
- 4.6.2.2.1.4. Applications
- 4.6.2.2.1.5. Market analysis
- 4.6.2.2.1.6. Producers and production capacities
- 4.6.2.2.2. Cellulose nanofibers
- 4.6.2.2.2.1. Applications
- 4.6.2.2.2.2. Market analysis
- 4.6.2.2.2.3. Producers and production capacities
- 4.6.2.2.3. Bacterial Nanocellulose (BNC)
- 4.6.2.2.3.1. Production
- 4.6.2.2.3.2. Applications
- 4.6.3. Protein-based bioplastics
- 4.6.3.1. Types, applications and producers
- 4.6.4. Algal and fungal
- 4.6.4.1. Algal
- 4.6.4.1.1. Advantages
- 4.6.4.1.2. Production
- 4.6.4.1.3. Producers
- 4.6.4.2. Mycelium
- 4.6.4.2.1. Properties
- 4.6.4.2.2. Applications
- 4.6.4.2.3. Commercialization
- 4.6.5. Chitosan
- 4.6.5.1. Technology description
- 4.7. Bio-rubber
- 4.7.1. Overview
- 4.7.2. Applications
- 4.7.3. Importance of Recycling and Residue Utilization
- 4.7.4. Raw Material Sourcing and Selection
- 4.7.5. Production Methods and Processing Techniques
- 4.7.6. Environmental Impact and Benefits
- 4.7.7. Material Properties and Testing
- 4.7.8. Comparison with Conventional Rubber
- 4.7.9. Applications in Construction
- 4.7.9.1. Bio-Rubber Use in Building Panels
- 4.7.9.2. Thermal and Acoustic Insulation
- 4.7.10. Applications in the Automotive Industry
- 4.7.10.1. Automotive Parts and Components
- 4.7.11. Applications in Personal Protective Equipment (PPE)
- 4.7.11.1. Gloves, Boots, and Safety Equipment
- 4.7.11.2. Enhancing Durability and Comfort
- 4.7.11.3. 2. Standards Compliance and Health Implications
- 4.7.11.4. Challenges and Limitations
- 4.7.12. Technological Challenges in Bio-Rubber Production
- 4.7.13. Cost and Economic Viability
- 4.7.14. Regulatory and Safety Concerns
- 4.7.15. Sustainability and Environmental Impact Analysis
- 4.7.16. Growth Prospects in Construction, Automotive, and PPE Sectors
- 4.8. Bio-plastic from residues
- 4.8.1. Overview
- 4.8.2. Production and Properties
- 4.8.3. Manufacturing Processes and Techniques
- 4.8.4. Material Properties: Biodegradability, Food-Safe, and Recyclability
- 4.8.5. Applications
- 4.8.5.1. Caps and Closures
- 4.8.5.1.1. Bottle Caps and Sealing Solutions
- 4.8.5.1.2. Compatibility with Food and Beverage Standards
- 4.8.5.2. Personal Protective Equipment (PPE)
- 4.8.5.2.1. Bio-Plastic in Face Shields, Gloves, and Masks
- 4.8.5.2.2. Biodegradability and Safety Standards
- 4.8.5.2.3. Market Trends in Eco-Friendly PPE
- 4.8.5.3. Healthcare and Medical Products
- 4.8.5.3.1. Disposable Medical Tools, Packaging, and Devices
- 4.8.5.3.2. Sterility, Safety, and Bio-Compatibility Standards
- 4.8.5.3.3. Adoption by Healthcare Providers
- 4.8.5.4. Agriculture
- 4.8.5.4.1. Mulch Films, Plant Pots, and Seed Coatings
- 4.8.5.5. Cosmetics and Food
- 4.8.5.5.1. Bio-Plastic in Cosmetic Jars, Food Containers, and Wraps
- 4.8.5.5.2. Food Contact Safety and Aesthetic Appeal
- 4.8.5.5.3. Demand Trends for Sustainable Cosmetic and Food Packaging
- 4.8.5.6. Automotive Interior Components
- 4.8.5.6.1. Bio-Plastic in Dashboards, Panels, and Upholstery
- 4.8.5.6.2. Performance and Durability Standards
- 4.8.5.6.3. Market Adoption in Eco-Friendly Automotive Solutions
- 4.9. Production by region
- 4.9.1. North America
- 4.9.2. Europe
- 4.9.3. Asia-Pacific
- 4.9.3.1. China
- 4.9.3.2. Japan
- 4.9.3.3. Thailand
- 4.9.3.4. Indonesia
- 4.9.4. Latin America
- 4.10. End use markets
- 4.10.1. Packaging
- 4.10.1.1. Processes for bioplastics in packaging
- 4.10.1.2. Applications
- 4.10.1.3. Flexible packaging
- 4.10.1.3.1. Production volumes 2019-2035
- 4.10.1.4. Rigid packaging
- 4.10.1.4.1. Production volumes 2019-2035
- 4.10.2. Consumer products
- 4.10.2.1. Applications
- 4.10.2.2. Production volumes 2019-2035
- 4.10.3. Automotive
- 4.10.3.1. Applications
- 4.10.3.2. Production volumes 2019-2035
- 4.10.4. Construction
- 4.10.4.1. Applications
- 4.10.4.2. Production volumes 2019-2035
- 4.10.5. Textiles
- 4.10.5.1. Apparel
- 4.10.5.2. Footwear
- 4.10.5.3. Medical textiles
- 4.10.5.4. Production volumes 2019-2035
- 4.10.6. Electronics
- 4.10.6.1. Applications
- 4.10.6.2. Production volumes 2019-2035
- 4.10.7. Agriculture and horticulture
- 4.10.7.1. Production volumes 2019-2035
- 4.11. Lignin
- 4.11.1. Introduction
- 4.11.1.1. What is lignin?
- 4.11.1.1.1. Lignin structure
- 4.11.1.2. Types of lignin
- 4.11.1.2.1. Sulfur containing lignin
- 4.11.1.2.2. Sulfur-free lignin from biorefinery process
- 4.11.1.3. Properties
- 4.11.1.4. The lignocellulose biorefinery
- 4.11.1.5. Markets and applications
- 4.11.1.6. Challenges for using lignin
- 4.11.2. Lignin production processes
- 4.11.2.1. Lignosulphonates
- 4.11.2.2. Kraft Lignin
- 4.11.2.2.1. LignoBoost process
- 4.11.2.2.2. LignoForce method
- 4.11.2.2.3. Sequential Liquid Lignin Recovery and Purification
- 4.11.2.2.4. A-Recovery+
- 4.11.2.3. Soda lignin
- 4.11.2.4. Biorefinery lignin
- 4.11.2.4.1. Commercial and pre-commercial biorefinery lignin production facilities and. processes
- 4.11.2.5. Organosolv lignins
- 4.11.2.6. Hydrolytic lignin
- 4.11.3. Markets for lignin
- 4.11.3.1. Market drivers and trends for lignin
- 4.11.3.2. Production capacities
- 4.11.3.2.1. Technical lignin availability (dry ton/y)
- 4.11.3.2.2. Biomass conversion (Biorefinery)
- 4.11.3.3. Global consumption of lignin
- 4.11.3.3.1. By type
- 4.11.3.3.2. By market
- 4.11.3.5. Heat and power energy
- 4.11.3.6. Pyrolysis and syngas
- 4.11.3.7. Aromatic compounds
- 4.11.3.7.1. Benzene, toluene and xylene
- 4.11.3.7.2. Phenol and phenolic resins
- 4.11.3.7.3. Vanillin
- 4.11.3.8. Plastics and polymers
- 4.12. COMPANY PROFILES (526 company profiles)
5. NATURAL FIBER PLASTICS AND COMPOSITES
- 5.1. Introduction
- 5.1.1. What are natural fiber materials?
- 5.1.2. Benefits of natural fibers over synthetic
- 5.1.3. Markets and applications for natural fibers
- 5.1.4. Commercially available natural fiber products
- 5.1.5. Market drivers for natural fibers
- 5.1.6. Market challenges
- 5.1.7. Wood flour as a plastic filler
- 5.2. Types of natural fibers in plastic composites
- 5.2.1. Plants
- 5.2.1.1. Seed fibers
- 5.2.1.1.1. Kapok
- 5.2.1.1.2. Luffa
- 5.2.1.2. Bast fibers
- 5.2.1.2.1. Jute
- 5.2.1.2.2. Hemp
- 5.2.1.2.3. Flax
- 5.2.1.2.4. Ramie
- 5.2.1.2.5. Kenaf
- 5.2.1.3. Leaf fibers
- 5.2.1.3.1. Sisal
- 5.2.1.3.2. Abaca
- 5.2.1.4. Fruit fibers
- 5.2.1.4.1. Coir
- 5.2.1.4.2. Banana
- 5.2.1.4.3. Pineapple
- 5.2.1.5. Stalk fibers from agricultural residues
- 5.2.1.5.1. Rice fiber
- 5.2.1.5.2. Corn
- 5.2.1.6. Cane, grasses and reed
- 5.2.1.6.1. Switchgrass
- 5.2.1.6.2. Sugarcane (agricultural residues)
- 5.2.1.6.3. Bamboo
- 5.2.1.6.4. Fresh grass (green biorefinery)
- 5.2.1.7. Modified natural polymers
- 5.2.1.7.1. Mycelium
- 5.2.1.7.2. Chitosan
- 5.2.1.7.3. Alginate
- 5.2.2. Animal (fibrous protein)
- 5.2.3. Wood-based natural fibers
- 5.2.3.1. Cellulose fibers
- 5.2.3.1.1. Market overview
- 5.2.3.1.2. Producers
- 5.2.3.2. Microfibrillated cellulose (MFC)
- 5.2.3.2.1. Market overview
- 5.2.3.2.2. Producers
- 5.2.3.3. Cellulose nanocrystals
- 5.2.3.3.1. Market overview
- 5.2.3.3.2. Producers
- 5.2.3.4. Cellulose nanofibers
- 5.2.3.4.1. Market overview
- 5.2.3.4.2. Producers
- 5.3. Processing and Treatment of Natural Fibers
- 5.4. Interface and Compatibility of Natural Fibers with Plastic Matrices
- 5.4.1. Adhesion and Bonding
- 5.4.2. Moisture Absorption and Dimensional Stability
- 5.4.3. Thermal Expansion and Compatibility
- 5.4.4. Dispersion and Distribution
- 5.4.5. Matrix Selection
- 5.4.6. Fiber Content and Alignment
- 5.4.7. Manufacturing Techniques
- 5.5. Manufacturing processes
- 5.5.1. Injection molding
- 5.5.2. Compression moulding
- 5.5.3. Extrusion
- 5.5.4. Thermoforming
- 5.5.5. Thermoplastic pultrusion
- 5.5.6. Additive manufacturing (3D printing)
- 5.6. Global market for natural fibers
- 5.6.1. Automotive
- 5.6.1.1. Applications
- 5.6.1.2. Commercial production
- 5.6.1.3. SWOT analysis
- 5.6.2. Packaging
- 5.6.2.1. Applications
- 5.6.2.2. SWOT analysis
- 5.6.3. Construction
- 5.6.3.1. Applications
- 5.6.3.2. SWOT analysis
- 5.6.4. Appliances
- 5.6.4.1. Applications
- 5.6.4.2. SWOT analysis
- 5.6.5. Consumer electronics
- 5.6.5.1. Applications
- 5.6.5.2. SWOT analysis
- 5.6.6. Furniture
- 5.6.6.1. Applications
- 5.6.6.2. SWOT analysis
- 5.7. Wood composites
- 5.7.1. Applications
- 5.7.2. Importance of Wood Composite in Sustainable Manufacturing
- 5.7.3. Market Overview and Dynamics of Wood Composite Market
- 5.7.4. Production and Material Properties
- 5.7.5. Types of Wood Composite Materials
- 5.7.6. Performance Characteristics
- 5.7.7. Applications
- 5.7.7.1. Tools and Appliances
- 5.7.7.1.1. Wood Composite Use in Industrial Tools
- 5.7.7.1.2. Bearings, Including Sliding Bearings
- 5.7.7.1.3. Advantages of Wood Composite Bearings in Load-Bearing Applications
- 5.7.7.1.4. Case Studies
- 5.7.7.1.5. Industry Trends
- 5.7.7.2. Construction and Building Materials
- 5.7.7.2.1. Wood Composite in Floor Plates, Panels, and Walls
- 5.7.7.2.2. Benefits in Construction: Strength, Insulation, and Aesthetics
- 5.7.7.2.3. Case Studies
- 5.7.7.3. Engine Components
- 5.7.7.3.1. Benefits of Wood Composite in Weight Reduction and Insulation
- 5.7.7.3.2. Analysis of Wood Composite Performance in High-Stress Environments
- 5.7.8. Technological Barriers
- 5.7.9. Environmental and Sustainability Considerations
- 5.7.10. Emerging Technologies in Wood Composite Manufacturing
- 5.8. Competitive landscape
- 5.9. Future outlook
- 5.10. Revenues
- 5.10.1. By end use market
- 5.10.2. By Material Type
- 5.10.3. By Plastic Type
- 5.10.4. By region
- 5.11. Company profiles (67 company profiles)
6. SUSTAINABLE CONSTRUCTION MATERIALS
- 6.1. Market overview
- 6.1.1. Benefits of Sustainable Construction
- 6.1.2. Global Trends and Drivers
- 6.2. Global revenues
- 6.2.1. By materials type
- 6.2.2. By market
- 6.3. Types of sustainable construction materials
- 6.3.1. Established bio-based construction materials
- 6.3.2. Hemp-based Materials
- 6.3.2.1. Hemp Concrete (Hempcrete)
- 6.3.2.2. Hemp Fiberboard
- 6.3.2.3. Hemp Insulation
- 6.3.3. Mycelium-based Materials
- 6.3.3.1. Insulation
- 6.3.3.2. Structural Elements
- 6.3.3.3. Acoustic Panels
- 6.3.3.4. Decorative Elements
- 6.3.4. Sustainable Concrete and Cement Alternatives
- 6.3.4.1. Geopolymer Concrete
- 6.3.4.2. Recycled Aggregate Concrete
- 6.3.4.3. Lime-Based Materials
- 6.3.4.4. Self-healing concrete
- 6.3.4.4.1. Bioconcrete
- 6.3.4.4.2. Fiber concrete
- 6.3.4.5. Microalgae biocement
- 6.3.4.6. Carbon-negative concrete
- 6.3.4.7. Biomineral binders
- 6.3.5. Natural Fiber Composites
- 6.3.5.1. Types of Natural Fibers
- 6.3.5.2. Properties
- 6.3.5.3. Applications in Construction
- 6.3.6. Cellulose nanofibers
- 6.3.6.1. Sandwich composites
- 6.3.6.2. Cement additives
- 6.3.6.3. Pump primers
- 6.3.6.4. Insulation materials
- 6.3.6.5. Coatings and paints
- 6.3.6.6. 3D printing materials
- 6.3.7. Sustainable Insulation Materials
- 6.3.7.1. Types of sustainable insulation materials
- 6.3.7.2. Aerogel Insulation
- 6.3.7.2.1. Silica aerogels
- 6.3.7.2.1.1. Properties
- 6.3.7.2.1.2. Thermal conductivity
- 6.3.7.2.1.3. Mechanical
- 6.3.7.2.1.4. Silica aerogel precursors
- 6.3.7.2.1.5. Products
- 6.3.7.2.1.5.1. Monoliths
- 6.3.7.2.1.5.2. Powder
- 6.3.7.2.1.5.3. Granules
- 6.3.7.2.1.5.4. Blankets
- 6.3.7.2.1.5.5. Aerogel boards
- 6.3.7.2.1.5.6. Aerogel renders
- 6.3.7.2.1.6. 3D printing of aerogels
- 6.3.7.2.1.7. Silica aerogel from sustainable feedstocks
- 6.3.7.2.1.8. Silica composite aerogels
- 6.3.7.2.1.8.1. Organic crosslinkers
- 6.3.7.2.1.9. Cost of silica aerogels
- 6.3.7.2.1.10. Main players
- 6.3.7.2.2. Aerogel-like foam materials
- 6.3.7.2.2.1. Properties
- 6.3.7.2.2.2. Applications
- 6.3.7.2.3. Metal oxide aerogels
- 6.3.7.2.4. Organic aerogels
- 6.3.7.2.4.1. Polymer aerogels
- 6.3.7.2.5. Biobased and sustainable aerogels (bio-aerogels)
- 6.3.7.2.5.1. Cellulose aerogels
- 6.3.7.2.5.1.1. Cellulose nanofiber (CNF) aerogels
- 6.3.7.2.5.1.2. Cellulose nanocrystal aerogels
- 6.3.7.2.5.1.3. Bacterial nanocellulose aerogels
- 6.3.7.2.5.2. Lignin aerogels
- 6.3.7.2.5.3. Alginate aerogels
- 6.3.7.2.5.4. Starch aerogels
- 6.3.7.2.5.5. Chitosan aerogels
- 6.3.7.2.6. Carbon aerogels
- 6.3.7.2.6.1. Carbon nanotube aerogels
- 6.3.7.2.6.2. Graphene and graphite aerogels
- 6.3.7.2.7. Additive manufacturing (3D printing)
- 6.3.7.2.7.1. Carbon nitride
- 6.3.7.2.7.2. Gold
- 6.3.7.2.7.3. Cellulose
- 6.3.7.2.7.4. Graphene oxide
- 6.3.7.2.8. Hybrid aerogels
- 6.4. Carbon capture and utilization
- 6.4.1. Overview
- 6.4.2. Market structure
- 6.4.3. CCUS technologies in the cement industry
- 6.4.4. Products
- 6.4.4.1. Carbonated aggregates
- 6.4.4.2. Additives during mixing
- 6.4.4.3. Carbonates from natural minerals
- 6.4.4.4. Carbonates from waste
- 6.4.5. Concrete curing
- 6.4.6. Costs
- 6.4.7. Challenges
- 6.5. Green steel
- 6.5.1. Current Steelmaking processes
- 6.5.1.1.1. Capturing then sequestering or utilizing carbon emissions from conventional steel mills.
- 6.5.2. Decarbonization target and policies
- 6.5.2.1. EU Carbon Border Adjustment Mechanism (CBAM)
- 6.5.3. Advances in clean production technologies
- 6.5.4. Production technologies
- 6.5.4.1. The role of hydrogen
- 6.5.4.2. Comparative analysis
- 6.5.4.3. Hydrogen Direct Reduced Iron (DRI)
- 6.5.4.4. Electrolysis
- 6.5.4.5. Carbon Capture, Utilization and Storage (CCUS)
- 6.5.4.6. Biochar replacing coke
- 6.5.4.7. Hydrogen Blast Furnace
- 6.5.4.8. Renewable energy powered processes
- 6.5.4.9. Flash ironmaking
- 6.5.4.10. Hydrogen Plasma Iron Ore Reduction
- 6.5.4.11. Ferrous Bioprocessing
- 6.5.4.12. Microwave Processing
- 6.5.4.13. Additive Manufacturing
- 6.5.4.14. Technology readiness level (TRL)
- 6.5.5. Properties
- 6.6. Markets and applications
- 6.6.1. Residential Buildings
- 6.6.2. Commercial and Office Buildings
- 6.6.3. Infrastructure
- 6.7. Company profiles (144 company profiles)
7. BIOBASED PACKAGING MATERIALS
- 7.1. Market overview
- 7.1.1. Current global packaging market and materials
- 7.1.2. Market trends
- 7.1.3. Drivers for recent growth in bioplastics in packaging
- 7.1.4. Challenges for bio-based and sustainable packaging
- 7.2. Materials
- 7.2.1. Materials innovation
- 7.2.2. Active packaging
- 7.2.3. Monomaterial packaging
- 7.2.4. Conventional polymer materials used in packaging
- 7.2.4.1. Polyolefins: Polypropylene and polyethylene
- 7.2.4.2. PET and other polyester polymers
- 7.2.4.3. Renewable and bio-based polymers for packaging
- 7.2.4.4. Comparison of synthetic fossil-based and bio-based polymers
- 7.2.4.5. Processes for bioplastics in packaging
- 7.2.4.6. End-of-life treatment of bio-based and sustainable packaging
- 7.3. Synthetic bio-based packaging materials
- 7.3.1. Polylactic acid (Bio-PLA)
- 7.3.1.1. Properties
- 7.3.1.2. Applicaitons
- 7.3.2. Polyethylene terephthalate (Bio-PET)
- 7.3.2.1. Properties
- 7.3.2.2. Applications
- 7.3.2.3. Advantages of Bio-PET in Packaging
- 7.3.2.4. Challenges and Limitations
- 7.3.3. Polytrimethylene terephthalate (Bio-PTT)
- 7.3.3.1. Production Process
- 7.3.3.2. Properties
- 7.3.3.3. Applications
- 7.3.3.4. Advantages of Bio-PTT in Packaging
- 7.3.3.5. Challenges and Limitations
- 7.3.4. Polyethylene furanoate (Bio-PEF)
- 7.3.4.1. Properties
- 7.3.4.2. Applications
- 7.3.4.3. Advantages of Bio-PEF in Packaging
- 7.3.4.4. Challenges and Limitations
- 7.3.5. Bio-PA
- 7.3.5.1. Properties
- 7.3.5.2. Applications in Packaging
- 7.3.5.3. Advantages of Bio-PA in Packaging
- 7.3.5.4. Challenges and Limitations
- 7.3.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
- 7.3.6.1. Properties
- 7.3.6.2. Applications in Packaging
- 7.3.6.3. Advantages of Bio-PBAT in Packaging
- 7.3.6.4. Challenges and Limitations
- 7.3.7. Polybutylene succinate (PBS) and copolymers
- 7.3.7.1. Properties
- 7.3.7.2. Applications in Packaging
- 7.3.7.3. Advantages of Bio-PBS and Co-polymers in Packaging
- 7.3.7.4. Challenges and Limitations
- 7.3.8. Polypropylene (Bio-PP)
- 7.3.8.1. Properties
- 7.3.8.2. Applications in Packaging
- 7.3.8.3. Advantages of Bio-PP in Packaging
- 7.3.8.4. Challenges and Limitations
- 7.4. Natural bio-based packaging materials
- 7.4.1. Polyhydroxyalkanoates (PHA)
- 7.4.1.1. Properties
- 7.4.1.2. Applications in Packaging
- 7.4.1.3. Advantages of PHA in Packaging
- 7.4.1.4. Challenges and Limitations
- 7.4.2. Starch-based blends
- 7.4.2.1. Properties
- 7.4.2.2. Applications in Packaging
- 7.4.2.3. Advantages of Starch-Based Blends in Packaging
- 7.4.2.4. Challenges and Limitations
- 7.4.3. Cellulose
- 7.4.3.1. Feedstocks
- 7.4.3.1.1. Wood
- 7.4.3.1.2. Plant
- 7.4.3.1.3. Tunicate
- 7.4.3.1.4. Algae
- 7.4.3.1.5. Bacteria
- 7.4.3.2. Microfibrillated cellulose (MFC)
- 7.4.3.3. Nanocellulose
- 7.4.3.3.1. Cellulose nanocrystals
- 7.4.3.3.1.1. Applications in packaging
- 7.4.3.3.2. Cellulose nanofibers
- 7.4.3.3.2.1. Applications in packaging
- 7.4.3.3.2.1.1. Reinforcement and barrier
- 7.4.3.3.2.1.2. Biodegradable food packaging foil and films
- 7.4.3.3.2.1.3. Paperboard coatings
- 7.4.3.3.3. Bacterial Nanocellulose (BNC)
- 7.4.3.3.3.1. Applications in packaging
- 7.4.4. Protein-based bioplastics in packaging
- 7.4.5. Lipids and waxes for packaging
- 7.4.6. Seaweed-based packaging
- 7.4.6.1. Production
- 7.4.6.2. Applications in packaging
- 7.4.6.3. Producers
- 7.4.7. Mycelium
- 7.4.7.1. Applications in packaging
- 7.4.8. Chitosan
- 7.4.8.1. Applications in packaging
- 7.4.9. Bio-naphtha
- 7.4.9.1. Overview
- 7.4.9.2. Markets and applications
- 7.5. Applications
- 7.5.1. Paper and board packaging
- 7.5.2. Food packaging
- 7.5.2.1. Bio-Based films and trays
- 7.5.2.2. Bio-Based pouches and bags
- 7.5.2.3. Bio-Based textiles and nets
- 7.5.2.4. Bioadhesives
- 7.5.2.4.1. Starch
- 7.5.2.4.2. Cellulose
- 7.5.2.4.3. Protein-Based
- 7.5.2.5. Barrier coatings and films
- 7.5.2.5.1. Polysaccharides
- 7.5.2.5.1.1. Chitin
- 7.5.2.5.1.2. Chitosan
- 7.5.2.5.1.3. Starch
- 7.5.2.5.2. Poly(lactic acid) (PLA)
- 7.5.2.5.3. Poly(butylene Succinate)
- 7.5.2.5.4. Functional Lipid and Proteins Based Coatings
- 7.5.2.6. Active and Smart Food Packaging
- 7.5.2.6.1. Active Materials and Packaging Systems
- 7.5.2.6.2. Intelligent and Smart Food Packaging
- 7.5.2.7. Antimicrobial films and agents
- 7.5.2.7.1. Natural
- 7.5.2.7.2. Inorganic nanoparticles
- 7.5.2.7.3. Biopolymers
- 7.5.2.8. Bio-based Inks and Dyes
- 7.5.2.9. Edible films and coatings
- 7.6. Biobased films and coatings in packaging
- 7.6.1. Challenges using bio-based paints and coatings
- 7.6.2. Types of bio-based coatings and films in packaging
- 7.6.2.1. Polyurethane coatings
- 7.6.2.1.1. Properties
- 7.6.2.1.2. Bio-based polyurethane coatings
- 7.6.2.1.3. Products
- 7.6.2.2. Acrylate resins
- 7.6.2.2.1. Properties
- 7.6.2.2.2. Bio-based acrylates
- 7.6.2.2.3. Products
- 7.6.2.3. Polylactic acid (Bio-PLA)
- 7.6.2.3.1. Properties
- 7.6.2.3.2. Bio-PLA coatings and films
- 7.6.2.4. Polyhydroxyalkanoates (PHA) coatings
- 7.6.2.5. Cellulose coatings and films
- 7.6.2.5.1. Microfibrillated cellulose (MFC)
- 7.6.2.5.2. Cellulose nanofibers
- 7.6.2.5.2.1. Properties
- 7.6.2.5.2.2. Product developers
- 7.6.2.6. Lignin coatings
- 7.6.2.7. Protein-based biomaterials for coatings
- 7.6.2.7.1. Plant derived proteins
- 7.6.2.7.2. Animal origin proteins
- 7.7. Carbon capture derived materials for packaging
- 7.7.1. Benefits of carbon utilization for plastics feedstocks
- 7.7.2. CO2-derived polymers and plastics
- 7.7.3. CO2 utilization products
- 7.8. Global biobased packaging markets
- 7.8.1. Flexible packaging
- 7.8.2. Rigid packaging
- 7.8.3. Coatings and films
- 7.9. Company profiles (207 company profiles)
8. SUSTAINABLE TEXTILES AND APPAREL
- 8.1. Types of bio-based fibres
- 8.1.1. Natural fibres
- 8.1.2. Main-made bio-based fibres
- 8.2. Bio-based synthetics
- 8.3. Recyclability of bio-based fibres
- 8.4. Lyocell
- 8.5. Bacterial cellulose
- 8.6. Algae textiles
- 8.7. Bio-based leather
- 8.7.1. Properties of bio-based leathers
- 8.7.1.1. Tear strength.
- 8.7.1.2. Tensile strength
- 8.7.1.3. Bally flexing
- 8.7.2. Comparison with conventional leathers
- 8.7.3. Comparative analysis of bio-based leathers
- 8.7.4. Plant-based leather
- 8.7.4.1. Overview
- 8.7.4.2. Production processes
- 8.7.4.2.1. Feedstocks
- 8.7.4.2.1.1. Agriculture Residues
- 8.7.4.2.1.2. Food Processing Waste
- 8.7.4.2.1.3. Invasive Plants
- 8.7.4.2.1.4. Culture-Grown Inputs
- 8.7.4.2.2. Textile-Based
- 8.7.4.2.3. Bio-Composite
- 8.7.4.3. Products
- 8.7.4.4. Market players
- 8.7.5. Mycelium leather
- 8.7.5.1. Overview
- 8.7.5.2. Production process
- 8.7.5.2.1. Growth conditions
- 8.7.5.2.2. Tanning Mycelium Leather
- 8.7.5.2.3. Dyeing Mycelium Leather
- 8.7.5.3. Products
- 8.7.5.4. Market players
- 8.7.6. Microbial leather
- 8.7.6.1. Overview
- 8.7.6.2. Production process
- 8.7.6.3. Fermentation conditions
- 8.7.6.4. Harvesting
- 8.7.6.5. Products
- 8.7.6.6. Market players
- 8.7.7. Lab grown leather
- 8.7.7.1. Overview
- 8.7.7.2. Production process
- 8.7.7.3. Products
- 8.7.7.4. Market players
- 8.7.8. Protein-based leather
- 8.7.8.1. Overview
- 8.7.8.2. Production process
- 8.7.8.3. Commercial activity
- 8.7.9. Sustainable textiles coatings and dyes
- 8.7.9.1. Overview
- 8.7.9.1.1. Coatings
- 8.7.9.1.2. Dyes
- 8.7.9.2. Commercial activity
- 8.8. Markets
- 8.8.1. Footwear
- 8.8.2. Fashion & Accessories
- 8.8.3. Automotive & Transport
- 8.8.4. Furniture
- 8.9. Global market revenues
- 8.9.1. By region
- 8.9.2. By end use market
- 8.10. Company profiles. (67 company profiles)
9. BIOBASED COATINGS AND RESINS
- 9.1. Drop-in replacements
- 9.2. Bio-based resins
- 9.3. Reducing carbon footprint in industrial and protective coatings
- 9.4. Market drivers
- 9.5. Challenges using bio-based coatings
- 9.6. Types
- 9.6.1. Eco-friendly coatings technologies
- 9.6.1.1. UV-cure
- 9.6.1.2. Waterborne coatings
- 9.6.1.3. Treatments with less or no solvents
- 9.6.1.4. Hyperbranched polymers for coatings
- 9.6.1.5. Powder coatings
- 9.6.1.6. High solid (HS) coatings
- 9.6.1.7. Use of bio-based materials in coatings
- 9.6.1.7.1. Biopolymers
- 9.6.1.7.2. Coatings based on agricultural waste
- 9.6.1.7.3. Vegetable oils and fatty acids
- 9.6.1.7.4. Proteins
- 9.6.1.7.5. Cellulose
- 9.6.1.7.6. Plant-Based wax coatings
- 9.6.2. Barrier coatings
- 9.6.2.1. Polysaccharides
- 9.6.2.1.1. Chitin
- 9.6.2.1.2. Chitosan
- 9.6.2.1.3. Starch
- 9.6.2.2. Poly(lactic acid) (PLA)
- 9.6.2.3. Poly(butylene Succinate
- 9.6.2.4. Functional Lipid and Proteins Based Coatings
- 9.6.3. Alkyd coatings
- 9.6.3.1. Alkyd resin properties
- 9.6.3.2. Bio-based alkyd coatings
- 9.6.3.3. Products
- 9.6.4. Polyurethane coatings
- 9.6.4.1. Properties
- 9.6.4.2. Bio-based polyurethane coatings
- 9.6.4.2.1. Bio-based polyols
- 9.6.4.2.2. Non-isocyanate polyurethane (NIPU)
- 9.6.4.3. Products
- 9.6.5. Epoxy coatings
- 9.6.5.1. Properties
- 9.6.5.2. Bio-based epoxy coatings
- 9.6.5.3. Prod
- 9.6.5.4. Products
- 9.6.6. Acrylate resins
- 9.6.6.1. Properties
- 9.6.6.2. Bio-based acrylates
- 9.6.6.3. Products
- 9.6.7. Polylactic acid (Bio-PLA)
- 9.6.7.1. Properties
- 9.6.7.2. Bio-PLA coatings and films
- 9.6.8. Polyhydroxyalkanoates (PHA)
- 9.6.8.1. Properties
- 9.6.8.2. PHA coatings
- 9.6.8.3. Commercially available PHAs
- 9.6.9. Cellulose
- 9.6.9.1. Microfibrillated cellulose (MFC)
- 9.6.9.1.1. Properties
- 9.6.9.1.2. Applications in coatings
- 9.6.9.2. Cellulose nanofibers
- 9.6.9.2.1. Properties
- 9.6.9.2.2. Applications in coatings
- 9.6.9.3. Cellulose nanocrystals
- 9.6.9.4. Bacterial Nanocellulose (BNC)
- 9.6.10. Rosins
- 9.6.11. Bio-based carbon black
- 9.6.11.1. Lignin-based
- 9.6.11.2. Algae-based
- 9.6.12. Lignin coatings
- 9.6.13. Edible films and coatings
- 9.6.14. Antimicrobial films and agents
- 9.6.14.1. Natural
- 9.6.14.2. Inorganic nanoparticles
- 9.6.14.3. Biopolymers
- 9.6.15. Nanocoatings
- 9.6.16. Protein-based biomaterials for coatings
- 9.6.16.1. Plant derived proteins
- 9.6.16.2. Animal origin proteins
- 9.6.17. Algal coatings
- 9.6.18. Polypeptides
- 9.6.19. Global market revenues
- 9.7. Company profiles (168 company profiles)
10. BIOFUELS
- 10.1. Comparison to fossil fuels
- 10.2. Role in the circular economy
- 10.3. Market drivers
- 10.4. Market challenges
- 10.5. Liquid biofuels market
- 10.5.1. Liquid biofuel production and consumption (in thousands of m3), 2000-2022
- 10.5.2. Liquid biofuels market 2020-2035, by type and production.
- 10.6. The global biofuels market
- 10.6.1. Diesel substitutes and alternatives
- 10.6.2. Gasoline substitutes and alternatives
- 10.7. SWOT analysis: Biofuels market
- 10.8. Comparison of biofuel costs 2023, by type
- 10.9. Types
- 10.9.1. Solid Biofuels
- 10.9.2. Liquid Biofuels
- 10.9.3. Gaseous Biofuels
- 10.9.4. Conventional Biofuels
- 10.9.5. Advanced Biofuels
- 10.10. Feedstocks
- 10.10.1. First-generation (1-G)
- 10.10.2. Second-generation (2-G)
- 10.10.2.1. Lignocellulosic wastes and residues
- 10.10.2.2. Biorefinery lignin
- 10.10.3. Third-generation (3-G)
- 10.10.3.1. Algal biofuels
- 10.10.3.1.1. Properties
- 10.10.3.1.2. Advantages
- 10.10.4. Fourth-generation (4-G)
- 10.10.5. Advantages and disadvantages, by generation
- 10.10.6. Energy crops
- 10.10.6.1. Feedstocks
- 10.10.6.2. SWOT analysis
- 10.10.7. Agricultural residues
- 10.10.7.1. Feedstocks
- 10.10.7.2. SWOT analysis
- 10.10.8. Manure, sewage sludge and organic waste
- 10.10.8.1. Processing pathways
- 10.10.8.2. SWOT analysis
- 10.10.9. Forestry and wood waste
- 10.10.9.1. Feedstocks
- 10.10.9.2. SWOT analysis
- 10.10.10. Feedstock costs
- 10.11. Hydrocarbon biofuels
- 10.11.1. Biodiesel
- 10.11.1.1. Biodiesel by generation
- 10.11.1.2. SWOT analysis
- 10.11.1.3. Production of biodiesel and other biofuels
- 10.11.1.3.1. Pyrolysis of biomass
- 10.11.1.3.2. Vegetable oil transesterification
- 10.11.1.3.3. Vegetable oil hydrogenation (HVO)
- 10.11.1.3.3.1. Production process
- 10.11.1.3.4. Biodiesel from tall oil
- 10.11.1.3.5. Fischer-Tropsch BioDiesel
- 10.11.1.3.6. Hydrothermal liquefaction of biomass
- 10.11.1.3.7. CO2 capture and Fischer-Tropsch (FT)
- 10.11.1.3.8. Dymethyl ether (DME)
- 10.11.1.4. Prices
- 10.11.1.5. Global production and consumption
- 10.11.2. Renewable diesel
- 10.11.2.1. Production
- 10.11.2.2. SWOT analysis
- 10.11.2.3. Global consumption
- 10.11.2.4. Prices
- 10.11.3. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
- 10.11.3.1. Description
- 10.11.3.2. SWOT analysis
- 10.11.3.3. Global production and consumption
- 10.11.3.4. Production pathways
- 10.11.3.5. Prices
- 10.11.3.6. Bio-aviation fuel production capacities
- 10.11.3.7. Market challenges
- 10.11.3.8. Global consumption
- 10.11.4. Bio-naphtha
- 10.11.4.1. Overview
- 10.11.4.2. SWOT analysis
- 10.11.4.3. Markets and applications
- 10.11.4.4. Prices
- 10.11.4.5. Production capacities, by producer, current and planned
- 10.11.4.6. Production capacities, total (tonnes), historical, current and planned
- 10.12. Alcohol fuels
- 10.12.1. Biomethanol
- 10.12.1.1. SWOT analysis
- 10.12.1.2. Methanol-to gasoline technology
- 10.12.1.2.1. Production processes
- 10.12.1.2.1.1. Anaerobic digestion
- 10.12.1.2.1.2. Biomass gasification
- 10.12.1.2.1.3. Power to Methane
- 10.12.2. Ethanol
- 10.12.2.1. Technology description
- 10.12.2.2. 1G Bio-Ethanol
- 10.12.2.3. SWOT analysis
- 10.12.2.4. Ethanol to jet fuel technology
- 10.12.2.5. Methanol from pulp & paper production
- 10.12.2.6. Sulfite spent liquor fermentation
- 10.12.2.7. Gasification
- 10.12.2.7.1. Biomass gasification and syngas fermentation
- 10.12.2.7.2. Biomass gasification and syngas thermochemical conversion
- 10.12.2.8. CO2 capture and alcohol synthesis
- 10.12.2.9. Biomass hydrolysis and fermentation
- 10.12.2.9.1. Separate hydrolysis and fermentation
- 10.12.2.9.2. Simultaneous saccharification and fermentation (SSF)
- 10.12.2.9.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
- 10.12.2.9.4. Simultaneous saccharification and co-fermentation (SSCF)
- 10.12.2.9.5. Direct conversion (consolidated bioprocessing) (CBP)
- 10.12.2.10. Global ethanol consumption
- 10.12.3. Biobutanol
- 10.12.3.1. Production
- 10.12.3.2. Prices
- 10.13. Biomass-based Gas
- 10.13.1. Feedstocks
- 10.13.1.1. Biomethane
- 10.13.1.2. Production pathways
- 10.13.1.2.1. Landfill gas recovery
- 10.13.1.2.2. Anaerobic digestion
- 10.13.1.2.3. Thermal gasification
- 10.13.1.3. SWOT analysis
- 10.13.1.4. Global production
- 10.13.1.5. Prices
- 10.13.1.5.1. Raw Biogas
- 10.13.1.5.2. Upgraded Biomethane
- 10.13.1.6. Bio-LNG
- 10.13.1.6.1. Markets
- 10.13.1.6.1.1. Trucks
- 10.13.1.6.1.2. Marine
- 10.13.1.6.2. Production
- 10.13.1.6.3. Plants
- 10.13.1.7. bio-CNG (compressed natural gas derived from biogas)
- 10.13.1.8. Carbon capture from biogas
- 10.13.2. Biosyngas
- 10.13.2.1. Production
- 10.13.2.2. Prices
- 10.13.3. Biohydrogen
- 10.13.3.1. Description
- 10.13.3.2. SWOT analysis
- 10.13.3.3. Production of biohydrogen from biomass
- 10.13.3.3.1. Biological Conversion Routes
- 10.13.3.3.1.1. Bio-photochemical Reaction
- 10.13.3.3.1.2. Fermentation and Anaerobic Digestion
- 10.13.3.3.2. Thermochemical conversion routes
- 10.13.3.3.2.1. Biomass Gasification
- 10.13.3.3.2.2. Biomass Pyrolysis
- 10.13.3.3.2.3. Biomethane Reforming
- 10.13.3.4. Applications
- 10.13.3.5. Prices
- 10.13.4. Biochar in biogas production
- 10.13.5. Bio-DME
- 10.14. Chemical recycling for biofuels
- 10.14.1. Plastic pyrolysis
- 10.14.2. Used tires pyrolysis
- 10.14.2.1. Conversion to biofuel
- 10.14.3. Co-pyrolysis of biomass and plastic wastes
- 10.14.4. Gasification
- 10.14.4.1. Syngas conversion to methanol
- 10.14.4.2. Biomass gasification and syngas fermentation
- 10.14.4.3. Biomass gasification and syngas thermochemical conversion
- 10.14.5. Hydrothermal cracking
- 10.14.6. SWOT analysis
- 10.15. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
- 10.15.1. Introduction
- 10.15.2. Benefits of e-fuels
- 10.15.3. Feedstocks
- 10.15.3.1. Hydrogen electrolysis
- 10.15.3.2. CO2 capture
- 10.15.4. SWOT analysis
- 10.15.5. Production
- 10.15.5.1. eFuel production facilities, current and planned
- 10.15.6. Electrolysers
- 10.15.6.1. Commercial alkaline electrolyser cells (AECs)
- 10.15.6.2. PEM electrolysers (PEMEC)
- 10.15.6.3. High-temperature solid oxide electrolyser cells (SOECs)
- 10.15.7. Prices
- 10.15.8. Market challenges
- 10.15.9. Companies
- 10.16. Algae-derived biofuels
- 10.16.1. Technology description
- 10.16.2. Conversion pathways
- 10.16.3. SWOT analysis
- 10.16.4. Production
- 10.16.5. Market challenges
- 10.16.6. Prices
- 10.16.7. Producers
- 10.17. Green Ammonia
- 10.17.1. Production
- 10.17.1.1. Decarbonisation of ammonia production
- 10.17.1.2. Green ammonia projects
- 10.17.2. Green ammonia synthesis methods
- 10.17.2.1. Haber-Bosch process
- 10.17.2.2. Biological nitrogen fixation
- 10.17.2.3. Electrochemical production
- 10.17.2.4. Chemical looping processes
- 10.17.3. SWOT analysis
- 10.17.4. Blue ammonia
- 10.17.4.1. Blue ammonia projects
- 10.17.5. Markets and applications
- 10.17.5.1. Chemical energy storage
- 10.17.5.1.1. Ammonia fuel cells
- 10.17.5.2. Marine fuel
- 10.17.6. Prices
- 10.17.7. Estimated market demand
- 10.17.8. Companies and projects
- 10.18. Biofuels from carbon capture
- 10.18.1. Overview
- 10.18.2. CO2 capture from point sources
- 10.18.3. Production routes
- 10.18.4. SWOT analysis
- 10.18.5. Direct air capture (DAC)
- 10.18.5.1. Description
- 10.18.5.2. Deployment
- 10.18.5.3. Point source carbon capture versus Direct Air Capture
- 10.18.5.4. Technologies
- 10.18.5.4.1. Solid sorbents
- 10.18.5.4.2. Liquid sorbents
- 10.18.5.4.3. Liquid solvents
- 10.18.5.4.4. Airflow equipment integration
- 10.18.5.4.5. Passive Direct Air Capture (PDAC)
- 10.18.5.4.6. Direct conversion
- 10.18.5.4.7. Co-product generation
- 10.18.5.4.8. Low Temperature DAC
- 10.18.5.4.9. Regeneration methods
- 10.18.5.5. Commercialization and plants
- 10.18.5.6. Metal-organic frameworks (MOFs) in DAC
- 10.18.5.7. DAC plants and projects-current and planned
- 10.18.5.8. Markets for DAC
- 10.18.5.9. Costs
- 10.18.5.10. Challenges
- 10.18.5.11. Players and production
- 10.18.6. Carbon utilization for biofuels
- 10.18.6.1. Production routes
- 10.18.6.1.1. Electrolyzers
- 10.18.6.1.2. Low-carbon hydrogen
- 10.18.6.2. Products & applications
- 10.18.6.2.1. Vehicles
- 10.18.6.2.2. Shipping
- 10.18.6.2.3. Aviation
- 10.18.6.2.4. Costs
- 10.18.6.2.5. Ethanol
- 10.18.6.2.6. Methanol
- 10.18.6.2.7. Sustainable Aviation Fuel
- 10.18.6.2.8. Methane
- 10.18.6.2.9. Algae based biofuels
- 10.18.6.2.10. CO2-fuels from solar
- 10.18.6.3. Challenges
- 10.18.6.4. SWOT analysis
- 10.18.6.5. Companies
- 10.19. Bio-oils (pyrolysis oils)
- 10.19.1. Description
- 10.19.1.1. Advantages of bio-oils
- 10.19.2. Production
- 10.19.2.1. Fast Pyrolysis
- 10.19.2.2. Costs of production
- 10.19.2.3. Upgrading
- 10.19.3. SWOT analysis
- 10.19.4. Applications
- 10.19.5. Bio-oil producers
- 10.19.6. Prices
- 10.20. Refuse Derived Fuels (RDF)
- 10.20.1. Overview
- 10.20.2. Production
- 10.20.2.1. Production process
- 10.20.2.2. Mechanical biological treatment
- 10.20.3. Markets
- 10.21. Company profiles (211 company profiles)
11. SUSTAINABLE ELECTRONICS
- 11.1. Overview
- 11.1.1. Green electronics manufacturing
- 11.1.2. Drivers for sustainable electronics
- 11.1.3. Environmental Impacts of Electronics Manufacturing
- 11.1.3.1. E-Waste Generation
- 11.1.3.2. Carbon Emissions
- 11.1.3.3. Resource Utilization
- 11.1.3.4. Waste Minimization
- 11.1.3.5. Supply Chain Impacts
- 11.1.4. New opportunities from sustainable electronics
- 11.1.5. Regulations
- 11.1.6. Powering sustainable electronics (Bio-based batteries)
- 11.1.7. Bioplastics in injection moulded electronics parts
- 11.2. Green electronics manufacturing
- 11.2.1. Conventional electronics manufacturing
- 11.2.2. Benefits of Green Electronics manufacturing
- 11.2.3. Challenges in adopting Green Electronics manufacturing
- 11.2.4. Approaches
- 11.2.4.1. Closed-Loop Manufacturing
- 11.2.4.2. Digital Manufacturing
- 11.2.4.2.1. Advanced robotics & automation
- 11.2.4.2.2. AI & machine learning analytics
- 11.2.4.2.3. Internet of Things (IoT)
- 11.2.4.2.4. Additive manufacturing
- 11.2.4.2.5. Virtual prototyping
- 11.2.4.2.6. Blockchain-enabled supply chain traceability
- 11.2.4.3. Renewable Energy Usage
- 11.2.4.4. Energy Efficiency
- 11.2.4.5. Materials Efficiency
- 11.2.4.6. Sustainable Chemistry
- 11.2.4.7. Recycled Materials
- 11.2.4.7.1. Advanced chemical recycling
- 11.2.4.8. Bio-Based Materials
- 11.2.5. Greening the Supply Chain
- 11.2.5.1. Key focus areas
- 11.2.5.2. Sustainability activities from major electronics brands
- 11.2.5.3. Key challenges
- 11.2.5.4. Use of digital technologies
- 11.2.6. Sustainable Printed Circuit Board (PCB) manufacturing
- 11.2.6.1. Conventional PCB manufacturing
- 11.2.6.2. Trends in PCBs
- 11.2.6.2.1. High-Speed PCBs
- 11.2.6.2.2. Flexible PCBs
- 11.2.6.2.3. 3D Printed PCBs
- 11.2.6.2.4. Sustainable PCBs
- 11.2.6.3. Reconciling sustainability with performance
- 11.2.6.4. Sustainable supply chains
- 11.2.6.5. Sustainability in PCB manufacturing
- 11.2.6.5.1. Sustainable cleaning of PCBs
- 11.2.6.6. Design of PCBs for sustainability
- 11.2.6.6.1. Rigid
- 11.2.6.6.2. Flexible
- 11.2.6.6.3. Additive manufacturing
- 11.2.6.6.4. In-mold elctronics (IME)
- 11.2.6.7. Materials
- 11.2.6.7.1. Metal cores
- 11.2.6.7.2. Recycled laminates
- 11.2.6.7.3. Conductive inks
- 11.2.6.7.4. Green and lead-free solder
- 11.2.6.7.5. Biodegradable substrates
- 11.2.6.7.5.1. Bacterial Cellulose
- 11.2.6.7.5.2. Mycelium
- 11.2.6.7.5.3. Lignin
- 11.2.6.7.5.4. Cellulose Nanofibers
- 11.2.6.7.5.5. Soy Protein
- 11.2.6.7.5.6. Algae
- 11.2.6.7.5.7. PHAs
- 11.2.6.7.6. Biobased inks
- 11.2.6.8. Substrates
- 11.2.6.8.1. Halogen-free FR4
- 11.2.6.8.1.1. FR4 limitations
- 11.2.6.8.1.2. FR4 alternatives
- 11.2.6.8.1.3. Bio-Polyimide
- 11.2.6.8.2. Metal-core PCBs
- 11.2.6.8.3. Biobased PCBs
- 11.2.6.8.3.1. Flexible (bio) polyimide PCBs
- 11.2.6.8.3.2. Recent commercial activity
- 11.2.6.8.4. Paper-based PCBs
- 11.2.6.8.5. PCBs without solder mask
- 11.2.6.8.6. Thinner dielectrics
- 11.2.6.8.7. Recycled plastic substrates
- 11.2.6.8.8. Flexible substrates
- 11.2.6.9. Sustainable patterning and metallization in electronics manufacturing
- 11.2.6.9.1. Introduction
- 11.2.6.9.2. Issues with sustainability
- 11.2.6.9.3. Regeneration and reuse of etching chemicals
- 11.2.6.9.4. Transition from Wet to Dry phase patterning
- 11.2.6.9.5. Print-and-plate
- 11.2.6.9.6. Approaches
- 11.2.6.9.6.1. Direct Printed Electronics
- 11.2.6.9.6.2. Photonic Sintering
- 11.2.6.9.6.3. Biometallization
- 11.2.6.9.6.4. Plating Resist Alternatives
- 11.2.6.9.6.5. Laser-Induced Forward Transfer
- 11.2.6.9.6.6. Electrohydrodynamic Printing
- 11.2.6.9.6.7. Electrically conductive adhesives (ECAs
- 11.2.6.9.6.8. Green electroless plating
- 11.2.6.9.6.9. Smart Masking
- 11.2.6.9.6.10. Component Integration
- 11.2.6.9.6.11. Bio-inspired material deposition
- 11.2.6.9.6.12. Multi-material jetting
- 11.2.6.9.6.13. Vacuumless deposition
- 11.2.6.9.6.14. Upcycling waste streams
- 11.2.6.10. Sustainable attachment and integration of components
- 11.2.6.10.1. Conventional component attachment materials
- 11.2.6.10.2. Materials
- 11.2.6.10.2.1. Conductive adhesives
- 11.2.6.10.2.2. Biodegradable adhesives
- 11.2.6.10.2.3. Magnets
- 11.2.6.10.2.4. Bio-based solders
- 11.2.6.10.2.5. Bio-derived solders
- 11.2.6.10.2.6. Recycled plastics
- 11.2.6.10.2.7. Nano adhesives
- 11.2.6.10.2.8. Shape memory polymers
- 11.2.6.10.2.9. Photo-reversible polymers
- 11.2.6.10.2.10. Conductive biopolymers
- 11.2.6.10.3. Processes
- 11.2.6.10.3.1. Traditional thermal processing methods
- 11.2.6.10.3.2. Low temperature solder
- 11.2.6.10.3.3. Reflow soldering
- 11.2.6.10.3.4. Induction soldering
- 11.2.6.10.3.5. UV curing
- 11.2.6.10.3.6. Near-infrared (NIR) radiation curing
- 11.2.6.10.3.7. Photonic sintering/curing
- 11.2.6.10.3.8. Hybrid integration
- 11.2.7. Sustainable integrated circuits
- 11.2.7.1. IC manufacturing
- 11.2.7.2. Sustainable IC manufacturing
- 11.2.7.3. Wafer production
- 11.2.7.3.1. Silicon
- 11.2.7.3.2. Gallium nitride ICs
- 11.2.7.3.3. Flexible ICs
- 11.2.7.3.4. Fully printed organic ICs
- 11.2.7.4. Oxidation methods
- 11.2.7.4.1. Sustainable oxidation
- 11.2.7.4.2. Metal oxides
- 11.2.7.4.3. Recycling
- 11.2.7.4.4. Thin gate oxide layers
- 11.2.7.5. Patterning and doping
- 11.2.7.5.1. Processes
- 11.2.7.5.1.1. Wet etching
- 11.2.7.5.1.2. Dry plasma etching
- 11.2.7.5.1.3. Lift-off patterning
- 11.2.7.5.1.4. Surface doping
- 11.2.7.6. Metallization
- 11.2.7.6.1. Evaporation
- 11.2.7.6.2. Plating
- 11.2.7.6.3. Printing
- 11.2.7.6.3.1. Printed metal gates for organic thin film transistors
- 11.2.7.6.4. Physical vapour deposition (PVD)
- 11.2.8. End of life
- 11.2.8.1. Hazardous waste
- 11.2.8.2. Emissions
- 11.2.8.3. Water Usage
- 11.2.8.4. Recycling
- 11.2.8.4.1. Mechanical recycling
- 11.2.8.4.2. Electro-Mechanical Separation
- 11.2.8.4.3. Chemical Recycling
- 11.2.8.5. Electrochemical Processes
- 11.2.8.5.1. Thermal Recycling
- 11.2.8.6. Green Certification
- 11.3. Global market
- 11.3.1. Global PCB manufacturing industry
- 11.3.2. Sustainable PCBs
- 11.3.3. Sustainable ICs
- 11.4. Company profiles (45 company profiles)
12. BIOBASED ADHESIVES AND SEALANTS
- 12.1. Overview
- 12.1.1. Biobased Epoxy Adhesives
- 12.1.2. Bioobased Polyurethane Adhesives
- 12.1.3. Other Biobased Adhesives and Sealants
- 12.2. Types
- 12.2.1. Cellulose-Based
- 12.2.2. Starch-Based
- 12.2.3. Lignin-Based
- 12.2.4. Vegetable Oils
- 12.2.5. Protein-Based
- 12.2.6. Tannin-Based
- 12.2.7. Algae-based
- 12.2.8. Chitosan-based
- 12.2.9. Natural Rubber-based
- 12.2.10. Silkworm Silk-based
- 12.2.11. Mussel Protein-based
- 12.2.12. Soy-based Foam
- 12.3. Global revenues
- 12.3.1. By types
- 12.3.2. By market
- 12.4. Company profiles. (15 company profiles)
13. REFERENCES