Advanced carbon materials are transforming industries through applications in:
- Lightweight, high-strength composites for aerospace and automotive
- Next-generation batteries and supercapacitors
- Thermal management in electronics
- Medical implants and drug delivery systems
- Water purification and environmental remediation
- Sensors and electronic components
Their commercial importance continues to grow as manufacturing processes mature, reducing costs and enabling broader adoption across multiple sectors where conventional materials cannot meet increasingly demanding performance requirements. "The Global Market for Advanced Carbon Materials 2025-2035" provides an in-depth analysis of the entire carbon materials ecosystem, from traditional carbon fibers to cutting-edge nanomaterials like graphene and carbon nanotubes. With the push for sustainable development and the transition to green energy, advanced carbon materials are playing an increasingly critical role in enabling next-generation technologies. Their exceptional properties-including high strength-to-weight ratios, thermal and electrical conductivity, and chemical stability-make them indispensable in addressing complex engineering challenges across multiple industries.
This report examines the technical, commercial, and market aspects of carbon materials, offering strategic insights into production technologies, supply chains, competitive landscapes, and growth opportunities.
Report contents include:
- Market Analysis and Forecasts:
- Comprehensive market sizing and growth projections through 2035 for all advanced carbon material categories
- Detailed regional analysis covering North America, Europe, Asia-Pacific, and emerging markets
- End-user industry breakdown with application-specific forecasts
- Pricing trends and cost analyses across the entire carbon materials spectrum
- Production capacities by material type and leading manufacturers
- Material Coverage:
- Carbon Fibers: PAN-based, pitch-based, bio-based, and recycled carbon fibers
- Carbon Black: Conventional, specialty, and recovered carbon black
- Graphite: Natural flake, synthetic, spherical, and expandable graphite
- Graphene: Few-layer, multi-layer, graphene oxide, and graphene nanoplatelets
- Carbon Nanotubes: Single-walled, multi-walled, and vertically aligned CNTs
- Nanodiamonds: Detonation nanodiamonds and fluorescent nanodiamonds
- Other Carbon Materials: Carbon aerogels, fullerenes, carbon nanofibers, and biochar
- Application Analysis:
- Thermal Management: Interface materials, heat spreaders, and thermal solutions
- Energy Storage: Battery additives, supercapacitors, and fuel cell components
- Composites: Aerospace, automotive, wind energy, and sporting goods
- Electronics: Conductive inks, sensors, EMI shielding, and flexible electronics
- Environmental Technologies: Carbon capture, water purification, and remediation
- Technology Assessment:
- Manufacturing processes and innovations for each carbon material type
- Technology readiness levels (TRL) and commercialization timelines
- Emerging synthesis methods and their potential impact on markets
- Key technical challenges and R&D priorities
- Competitive Landscape:
- Detailed profiles of 1000+ companies across the carbon materials value chain. Companies profiled include Arkema, Birla Carbon, Black Bear Carbon, Black Semiconductor GmbH, C12, Carbon Conversions, Carbice, Cabot Corporation, Directa Plus, DowAksa, Eden Innovations, First Graphene, Fujitsu Laboratories, GrafTech International, Graphene Manufacturing Group, Graphenea, GraphEnergy Tech, Graphjet Technology, Hexcel Corporation, Huntsman Corporation, HydroGraph, Imerys, INBRAIN Neuroelectronics, Levidian Nanosystems, Lyten, Mersen, Nanocomp Technologies, Naieel Technology, NanoXplore, NDB Technology, OCSiAl Group, Paragraf, Perpetuus Carbon Group, Premier Graphene, Resonac, Samsung, SGL Carbon, Skeleton Technologies, Syrah Resources, Talga Resources, Teijin Limited, Thomas Swan, Toray Industries, TrimTabs, Universal Matter, Vartega, Versarien, and Zeon Specialty Materials.
- Strategic analysis of key market players including producers and product developers, including product portfolios and business models
- Mergers, acquisitions, and strategic partnerships reshaping the industry
- Emerging start-ups and innovators disrupting traditional markets
- Sustainability and Regulatory Analysis:
- Environmental impact assessments of production processes
- Carbon footprint comparisons across material types
- Regulatory frameworks affecting carbon materials globally
- Recycling and circular economy initiatives
TABLE OF CONTENTS
1. THE ADVANCED CARBON MATERIALS MARKET
- 1.1. Market overview
- 1.2. Main Applications
- 1.2.1. Thermal Management in Electronics
- 1.2.2. Conductive Battery Additives and Electrodes
- 1.2.3. Composites
- 1.3. Role of advanced carbon materials in the green transition
2. CARBON FIBERS
- 2.1. Properties of carbon fibers
- 2.1.1. Types by modulus
- 2.1.2. Types by the secondary processing
- 2.2. Precursor material types
- 2.2.1. PAN: Polyacrylonitrile
- 2.2.1.1. Spinning
- 2.2.1.2. Stabilizing
- 2.2.1.3. Carbonizing
- 2.2.1.4. Surface treatment
- 2.2.1.5. Sizing
- 2.2.1.6. Pitch-based carbon fibers
- 2.2.1.7. Isotropic pitch
- 2.2.1.8. Mesophase pitch
- 2.2.1.9. Viscose (Rayon)-based carbon fibers
- 2.2.2. Bio-based and alternative precursors
- 2.2.2.1. Lignin
- 2.2.2.2. Polyethylene
- 2.2.2.3. Vapor grown carbon fiber (VGCF)
- 2.2.2.4. Textile PAN
- 2.2.3. Recycled carbon fibers (r-CF)
- 2.2.3.1. Recycling processes
- 2.2.3.2. Companies
- 2.2.4. Carbon Fiber 3D Printing
- 2.2.5. Plasma oxidation
- 2.2.6. Carbon fiber reinforced polymer (CFRP)
- 2.3. Markets and applications
- 2.3.1. Aerospace
- 2.3.2. Wind energy
- 2.3.3. Sports & leisure
- 2.3.4. Automotive
- 2.3.5. Pressure vessels
- 2.3.6. Oil and gas
- 2.4. Market analysis
- 2.4.1. Market Growth Drivers and Trends
- 2.4.2. Regulations
- 2.4.3. Price and Costs Analysis
- 2.4.4. Supply Chain
- 2.4.5. Competitive Landscape
- 2.4.5.1. Annual capacity, by producer
- 2.4.5.2. Market share, by capacity
- 2.4.6. Future Outlook
- 2.4.7. Addressable Market Size
- 2.4.8. Risks and Opportunities
- 2.4.9. Global market
- 2.4.9.1. Global carbon fiber demand 2016-2035, by industry (MT)
- 2.4.9.2. Global carbon fiber revenues 2016-2035, by industry (billions USD)
- 2.4.9.3. Global carbon fiber demand 2016-2035, by region (MT)
- 2.5. Company profiles
- 2.5.1. Carbon fiber producers (29 company profiles)
- 2.5.2. Carbon Fiber composite producers (62 company profiles)
- 2.5.3. Carbon fiber recyclers (16 company profiles)
3. CARBON BLACK
- 3.1. Commercially available carbon black
- 3.2. Properties
- 3.2.1. Particle size distribution
- 3.2.2. Structure-Aggregate size
- 3.2.3. Surface chemistry
- 3.2.4. Agglomerates
- 3.2.5. Colour properties
- 3.2.6. Porosity
- 3.2.7. Physical form
- 3.3. Manufacturing processes
- 3.4. Markets and applications
- 3.4.1. Tires and automotive
- 3.4.2. Non-Tire Rubber (Industrial rubber)
- 3.4.3. Other markets
- 3.5. Specialty carbon black
- 3.5.1. Global market size for specialty CB
- 3.6. Recovered carbon black (rCB)
- 3.6.1. Pyrolysis of End-of-Life Tires (ELT)
- 3.6.2. Discontinuous ("batch") pyrolysis
- 3.6.3. Semi-continuous pyrolysis
- 3.6.4. Continuous pyrolysis
- 3.6.5. Key players
- 3.6.6. Global market size for Recovered Carbon Black
- 3.7. Market analysis
- 3.7.1. Market Growth Drivers and Trends
- 3.7.2. Regulations
- 3.7.3. Supply chain
- 3.7.4. Price and Costs Analysis
- 3.7.4.1. Feedstock
- 3.7.4.2. Commercial carbon black
- 3.7.5. Competitive Landscape
- 3.7.5.1. Production capacities
- 3.7.6. Future Outlook
- 3.7.7. Customer Segmentation
- 3.7.8. Addressable Market Size
- 3.7.9. Risks and Opportunities
- 3.7.10. Global market
- 3.7.10.1. By market (tons)
- 3.7.10.2. By market (revenues)
- 3.7.10.3. By region (Tons)
- 3.8. Company profiles (51 company profiles)
4. GRAPHITE
- 4.1. Types of graphite
- 4.1.1. Natural vs synthetic graphite
- 4.2. Natural graphite
- 4.2.1. Classification
- 4.2.2. Processing
- 4.2.3. Flake
- 4.2.3.1. Grades
- 4.2.3.2. Applications
- 4.2.3.3. Spherical graphite
- 4.2.3.4. Expandable graphite
- 4.2.4. Amorphous graphite
- 4.2.5. Crystalline vein graphite
- 4.3. Synthetic graphite
- 4.3.1. Classification
- 4.3.1.1. Primary synthetic graphite
- 4.3.1.2. Secondary synthetic graphite
- 4.3.2. Processing
- 4.3.2.1. Processing for battery anodes
- 4.3.3. Issues with synthetic graphite production
- 4.3.4. Isostatic Graphite
- 4.3.4.1. Description
- 4.3.4.2. Markets
- 4.3.4.3. Producers and production capacities
- 4.3.5. Graphite electrodes
- 4.3.6. Extruded Graphite
- 4.3.7. Vibration Molded Graphite
- 4.3.8. Die-molded graphite
- 4.4. New technologies
- 4.5. Recycling of graphite materials
- 4.6. Markers and applications
- 4.7. Graphite pricing (ton)
- 4.8. Global production of graphite
- 4.8.1. The graphite market in 2024 and beyond
- 4.8.2. China dominance
- 4.8.3. United States subsidies/loans and tariffs on Chinese imports
- 4.8.4. Global mine production and reserves of natural graphite
- 4.8.5. Global graphite production in tonnes, 2016-2023
- 4.8.6. Estimated global graphite production in tonnes, 2024-2035
- 4.8.7. Synthetic graphite supply
- 4.9. Global market demand for graphite by end use market 2016-2035, tonnes
- 4.9.1. Natural graphite
- 4.9.2. Synthetic graphite
- 4.10. Demand for graphite by end use markets, 2023
- 4.11. Demand for graphite by end use markets, 2035
- 4.12. Demand by region
- 4.12.1. China
- 4.12.1.1. Diversification of global supply and production
- 4.12.2. Asia-Pacific
- 4.12.2.1. Synthetic graphite
- 4.12.2.2. Natural graphite
- 4.12.3. North America
- 4.12.3.1. Synthetic graphite
- 4.12.3.2. Natural graphite
- 4.12.4. Europe
- 4.12.4.1. Natural graphite
- 4.12.5. Brazil
- 4.13. Factors that aid graphite market growth
- 4.14. Factors that hinder graphite market growth
- 4.15. Main market players
- 4.15.1. Natural graphite
- 4.15.2. Synthetic graphite
- 4.16. Market supply chain
- 4.17. Company profiles (102 company profiles)
5. BIOCHAR
- 5.1. What is biochar?
- 5.2. Carbon sequestration
- 5.3. Properties of biochar
- 5.4. Markets and applications
- 5.5. Biochar production
- 5.6. Feedstocks
- 5.7. Production processes
- 5.7.1. Sustainable production
- 5.7.2. Pyrolysis
- 5.7.2.1. Slow pyrolysis
- 5.7.2.2. Fast pyrolysis
- 5.7.3. Gasification
- 5.7.4. Hydrothermal carbonization (HTC)
- 5.7.5. Torrefaction
- 5.7.6. Equipment manufacturers
- 5.8. Carbon credits
- 5.8.1. Overview
- 5.8.2. Removal and reduction credits
- 5.8.3. The advantage of biochar
- 5.8.4. Price
- 5.8.5. Buyers of biochar credits
- 5.8.6. Competitive materials and technologies
- 5.8.6.1. Geologic carbon sequestration
- 5.8.6.2. Bioenergy with Carbon Capture and Storage (BECCS)
- 5.8.6.3. Direct Air Carbon Capture and Storage (DACCS)
- 5.8.6.4. Enhanced mineral weathering with mineral carbonation
- 5.8.6.5. Ocean alkalinity enhancement
- 5.8.6.6. Forest preservation and afforestation
- 5.9. Markets for biochar
- 5.9.1. Agriculture & livestock farming
- 5.9.1.1. Market drivers and trends
- 5.9.1.2. Applications
- 5.9.2. Construction materials
- 5.9.2.1. Market drivers and trends
- 5.9.2.2. Applications
- 5.9.3. Wastewater treatment
- 5.9.3.1. Market drivers and trends
- 5.9.3.2. Applications
- 5.9.4. Filtration
- 5.9.4.1. Market drivers and trends
- 5.9.4.2. Applications
- 5.9.5. Carbon capture
- 5.9.5.1. Market drivers and trends
- 5.9.5.2. Applications
- 5.9.6. Cosmetics
- 5.9.6.1. Market drivers and trends
- 5.9.6.2. Applications
- 5.9.7. Textiles
- 5.9.7.1. Market drivers and trends
- 5.9.7.2. Applications
- 5.9.8. Additive manufacturing
- 5.9.8.1. Market drivers and trends
- 5.9.8.2. Applications
- 5.9.9. Ink
- 5.9.9.1. Market drivers and trends
- 5.9.9.2. Applications
- 5.9.10. Polymers
- 5.9.10.1. Market drivers and trends
- 5.9.10.2. Applications
- 5.9.11. Packaging
- 5.9.11.1. Market drivers and trends
- 5.9.11.2. Applications
- 5.9.12. Steel and metal
- 5.9.12.1. Market drivers and trends
- 5.9.12.2. Applications
- 5.9.13. Energy
- 5.9.13.1. Market drivers and trends
- 5.9.13.2. Applications
- 5.10. Market analysis
- 5.10.1. Market Growth Drivers and Trends
- 5.10.2. Regulations
- 5.10.3. Price and Costs Analysis
- 5.10.4. Supply Chain
- 5.10.5. Competitive Landscape
- 5.10.6. Future Outlook
- 5.10.7. Customer Segmentation
- 5.10.8. Addressable Market Size
- 5.10.9. Risks and Opportunities
- 5.11. Global market
- 5.11.1. By market
- 5.11.2. By region
- 5.11.3. By feedstocks
- 5.11.3.1. China and Asia-Pacific
- 5.11.3.2. North America
- 5.11.3.3. Europe
- 5.11.3.4. South America
- 5.11.3.5. Africa
- 5.11.3.6. Middle East
- 5.12. Company profiles (130 company profiles)
6. GRAPHENE
- 6.1. Types of graphene
- 6.2. Properties
- 6.3. Market analysis
- 6.3.1. Market Growth Drivers and Trends
- 6.3.2. Regulations
- 6.3.3. Price and Costs Analysis
- 6.3.3.1. Pristine graphene flakes pricing/CVD graphene
- 6.3.3.2. Few-Layer graphene pricing
- 6.3.3.3. Graphene nanoplatelets pricing
- 6.3.3.4. Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing
- 6.3.3.5. Multi-Layer graphene (MLG) pricing
- 6.3.3.6. Graphene ink
- 6.3.4. Markets and applications
- 6.3.4.1. Batteries
- 6.3.4.2. Supercapacitors
- 6.3.4.3. Polymer additives
- 6.3.4.4. Sensors
- 6.3.4.5. Conductive inks
- 6.3.4.6. Transparent conductive films
- 6.3.4.7. Transistors and integrated circuits
- 6.3.4.8. Filtration
- 6.3.4.9. Thermal management
- 6.3.4.10. 3D printing
- 6.3.4.11. Adhesives
- 6.3.4.12. Aerospace
- 6.3.4.13. Automotive
- 6.3.4.14. Fuel cells
- 6.3.4.15. Biomedical and healthcare
- 6.3.4.16. Paints and coatings
- 6.3.4.17. Photovoltaics
- 6.3.5. Supply Chain
- 6.3.6. Future Outlook
- 6.3.7. Addressable Market Size
- 6.3.8. Risks and Opportunities
- 6.3.9. Global demand 2018-2035, tons
- 6.3.9.1. Global demand by graphene material (tons)
- 6.3.9.2. Global demand by end user market
- 6.3.9.3. Graphene market, by region
- 6.4. Company profiles (368 company profiles)
7. CARBON NANOTUBES
- 7.1. Properties
- 7.1.1. Comparative properties of CNTs
- 7.2. Multi-walled carbon nanotubes (MWCNTs)
- 7.2.1. Properties
- 7.2.2. Markets and applications
- 7.3. Single-walled carbon nanotubes (SWCNTs)
- 7.3.1. Properties
- 7.3.2. Markets and applications
- 7.3.3. Company profiles (152 company profiles)
- 7.4. Other types
- 7.4.1. Double-walled carbon nanotubes (DWNTs)
- 7.4.1.1. Properties
- 7.4.1.2. Applications
- 7.4.2. Vertically aligned CNTs (VACNTs)
- 7.4.2.1. Properties
- 7.4.2.2. Applications
- 7.4.3. Few-walled carbon nanotubes (FWNTs)
- 7.4.3.1. Properties
- 7.4.3.2. Applications
- 7.4.4. Carbon Nanohorns (CNHs)
- 7.4.4.1. Properties
- 7.4.4.2. Applications
- 7.4.5. Carbon Onions
- 7.4.5.1. Properties
- 7.4.5.2. Applications
- 7.4.6. Boron Nitride nanotubes (BNNTs)
- 7.4.6.1. Properties
- 7.4.6.2. Applications
- 7.4.6.3. Production
- 7.4.7. Companies (6 company profiles)
8. CARBON NANOFIBERS
- 8.1. Properties
- 8.2. Synthesis
- 8.2.1. Chemical vapor deposition
- 8.2.2. Electrospinning
- 8.2.3. Template-based
- 8.2.4. From biomass
- 8.3. Markets
- 8.3.1. Energy storage
- 8.3.1.1. Batteries
- 8.3.1.2. Supercapacitors
- 8.3.1.3. Fuel cells
- 8.3.2. CO2 capture
- 8.3.3. Composites
- 8.3.4. Filtration
- 8.3.5. Catalysis
- 8.3.6. Sensors
- 8.3.7. Electromagnetic Interference (EMI) Shielding
- 8.3.8. Biomedical
- 8.3.9. Concrete
- 8.4. Market analysis
- 8.4.1. Market Growth Drivers and Trends
- 8.4.2. Price and Costs Analysis
- 8.4.3. Supply Chain
- 8.4.4. Future Outlook
- 8.4.5. Addressable Market Size
- 8.4.6. Risks and Opportunities
- 8.5. Global market revenues
- 8.6. Companies (12 company profiles)
9. FULLERENES
- 9.1. Properties
- 9.2. Markets and applications
- 9.3. Technology Readiness Level (TRL)
- 9.4. Market analysis
- 9.4.1. Market Growth Drivers and Trends
- 9.4.2. Price and Costs Analysis
- 9.4.3. Supply Chain
- 9.4.4. Future Outlook
- 9.4.5. Customer Segmentation
- 9.4.6. Addressable Market Size
- 9.4.7. Risks and Opportunities
- 9.4.8. Global market demand
- 9.5. Producers (20 company profiles)
10. NANODIAMONDS
- 10.1. Introduction
- 10.2. Types
- 10.2.1. Detonation Nanodiamonds
- 10.2.2. Fluorescent nanodiamonds (FNDs)
- 10.3. Markets and applications
- 10.4. Market analysis
- 10.4.1. Market Growth Drivers and Trends
- 10.4.2. Regulations
- 10.4.3. Price and Costs Analysis
- 10.4.4. Supply Chain
- 10.4.5. Future Outlook
- 10.4.6. Risks and Opportunities
- 10.4.7. Global demand 2018-2035, tonnes
- 10.5. Company profiles (30 company profiles)
11. GRAPHENE QUANTUM DOTS
- 11.1. Comparison to quantum dots
- 11.2. Properties
- 11.3. Synthesis
- 11.3.1. Top-down method
- 11.3.2. Bottom-up method
- 11.4. Applications
- 11.5. Graphene quantum dots pricing
- 11.6. Graphene quantum dot producers (9 company profiles)
12. CARBON FOAM
- 12.1. Types
- 12.1.1. Carbon aerogels
- 12.1.1.1. Carbon-based aerogel composites
- 12.2. Properties
- 12.3. Applications
- 12.4. Company profiles (9 company profiles)
13. DIAMOND-LIKE CARBON (DLC) COATINGS
- 13.1. Properties
- 13.2. Applications and markets
- 13.3. Global market size
- 13.4. Company profiles (9 company profiles)
14. ACTIVATED CARBON
- 14.1. Overview
- 14.2. Types
- 14.2.1. Powdered Activated Carbon (PAC)
- 14.2.2. Granular Activated Carbon (GAC)
- 14.2.3. Extruded Activated Carbon (EAC)
- 14.2.4. Impregnated Activated Carbon
- 14.2.5. Bead Activated Carbon (BAC
- 14.2.6. Polymer Coated Carbon
- 14.3. Production
- 14.3.1. Coal-based Activated Carbon
- 14.3.2. Wood-based Activated Carbon
- 14.3.3. Coconut Shell-based Activated Carbon
- 14.3.4. Fruit Stone and Nutshell-based Activated Carbon
- 14.3.5. Polymer-based Activated Carbon
- 14.3.6. Activated Carbon Fibers (ACFs)
- 14.4. Markets and applications
- 14.4.1. Water Treatment
- 14.4.2. Air Purification
- 14.4.3. Food and Beverage Processing
- 14.4.4. Pharmaceutical and Medical Applications
- 14.4.5. Chemical and Petrochemical Industries
- 14.4.6. Mining and Precious Metal Recovery
- 14.4.7. Environmental Remediation
- 14.5. Market analysis
- 14.5.1. Market Growth Drivers and Trends
- 14.5.2. Regulations
- 14.5.3. Price and Costs Analysis
- 14.5.4. Supply Chain
- 14.5.5. Future Outlook
- 14.5.6. Customer Segmentation
- 14.5.7. Addressable Market Size
- 14.5.8. Risks and Opportunities
- 14.6. Global market revenues 2020-2035
- 14.7. Companies (22 company profiles)
15. CARBON AEROGELS AND XEROGELS
- 15.1. Overview
- 15.2. Types
- 15.2.1. Resorcinol-Formaldehyde (RF) Carbon Aerogels and Xerogels
- 15.2.2. Phenolic-Furfural (PF) Carbon Aerogels and Xerogels
- 15.2.3. Melamine-Formaldehyde (MF) Carbon Aerogels and Xerogels
- 15.2.4. Biomass-derived Carbon Aerogels and Xerogels
- 15.2.5. Doped Carbon Aerogels and Xerogels
- 15.2.6. Composite Carbon Aerogels and Xerogels
- 15.3. Markets and applications
- 15.3.1. Energy Storage
- 15.3.2. Thermal Insulation
- 15.3.3. Catalysis
- 15.3.4. Environmental Remediation
- 15.3.5. Other Applications
- 15.4. Market analysis
- 15.4.1. Market Growth Drivers and Trends
- 15.4.2. Regulations
- 15.4.3. Price and Costs Analysis
- 15.4.4. Supply Chain
- 15.4.5. Future Outlook
- 15.4.6. Customer Segmentation
- 15.4.7. Addressable Market Size
- 15.4.8. Risks and Opportunities
- 15.5. Global market
- 15.6. Companies(10 company profiles)
16. CARBON MATERIALS FROM CARBON CAPTURE AND UTILIZATION
- 16.1. CO2 capture from point sources
- 16.1.1. Transportation
- 16.1.2. Global point source CO2 capture capacities
- 16.1.3. By source
- 16.1.4. By endpoint
- 16.2. Main carbon capture processes
- 16.2.1. Materials
- 16.2.2. Post-combustion
- 16.2.3. Oxy-fuel combustion
- 16.2.4. Liquid or supercritical CO2: Allam-Fetvedt Cycle
- 16.2.5. Pre-combustion
- 16.3. Carbon separation technologies
- 16.3.1. Absorption capture
- 16.3.2. Adsorption capture
- 16.3.3. Membranes
- 16.3.4. Liquid or supercritical CO2 (Cryogenic) capture
- 16.3.5. Chemical Looping-Based Capture
- 16.3.6. Calix Advanced Calciner
- 16.3.7. Other technologies
- 16.3.7.1. Solid Oxide Fuel Cells (SOFCs)
- 16.3.8. Comparison of key separation technologies
- 16.3.9. Electrochemical conversion of CO2
- 16.3.9.1. Process overview
- 16.4. Direct air capture (DAC)
- 16.5. Companies (4 company profiles)
17. RESEARCH METHODOLOGY
18. REFERENCES