封面
市場調查報告書
商品編碼
1568898

美國燃料電池電動卡車 (FCET) 產業二氧化碳排放生命週期評估(2024-2040)

Assessment of CO2 Emissions Life Cycle in the Fuel Cell Electric Truck Sector, United States, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 73 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

採用清潔氫氣生產源預計每 FCET 二氧化碳排放減少 43%,推動永續交通的變革性成長。

Frost & Sullivan 對燃料電池電動卡車 (FCET) 的二氧化碳 (CO2)排放進行了全面分析,特別是作為美國卡車運輸行業潛在燃料的氫氣。我們的分析從考慮氫的基本原理開始,並揭示了與傳統燃料相比,它具有減少生命週期排放的潛力。

從灰氫到可再生氫源,我們深入研究了不同的氫生產方法,並揭示了每種方法都有不同的碳足跡。我們將重點放在與燃料電池汽車製造相關的二氧化碳排放,以確定燃料電池堆和儲存槽等零件的二氧化碳排放量。此外,還預測了卡車使用壽命期間的二氧化碳總排放,並將其與電池電動卡車和柴油卡車進行比較。

最終,這項研究強調了迫切需要過渡到更清潔的氫氣生產方法並最佳化車輛製造,以實現卡車運輸行業二氧化碳排放量的大幅減少。

研究期間為2023年至2030年。

目錄

燃料電池電動卡車(FCET)產業二氧化碳排放的轉變

  • 為什麼成長如此困難?
  • The Strategic Imperative 8(TM)
  • 燃料電池電動卡車(FCET)產業二氧化碳排放三大戰略挑戰的影響

成長環境:氫生態系統

  • 氫是未來的燃料
  • 燃料電池電動卡車生命週期二氧化碳流量
  • 各種氫氣方法

生態系統

  • 調查範圍
  • 動力傳動系統技術細分

成長發電機

  • 生長促進因子
  • 成長抑制因素

制氫過程中CO2排放途徑

  • 主要氫氣方法分析
  • 影響氫氣方法採用的關鍵因素
  • 因素 1:低二氧化碳排放和準備水平
  • 因素 2:清潔氫氣計畫和目標
  • 因素 3:各州的氫氣生產潛力與計劃
  • 加州氫氣生產採用預測
  • 西南地區氫氣產量採用預測
  • 德克薩斯州氫氣生產採用預測
  • 氫氣生產中二氧化碳排放的軌跡

燃料電池電動卡車製造過程中的二氧化碳排放途徑

  • 燃料電池電動卡車主要零件
  • 燃料電池堆
  • 氫氣儲存槽
  • 電池
  • 二氧化碳排放軌跡:FCET 製造

成長發生器:FCET 運作期間二氧化碳排放軌跡:LDT

  • LDT使用案例的特徵和預測的先決條件
  • LDT循環A和H-H2消費量和CO2排放
  • LDT循環A~H-kgCO2/英里

成長發生器:FCET 運作期間的二氧化碳排放軌跡:MDT

  • MDT使用案例的特徵和預測的先決條件
  • MDT 循環 A 和 H-H2消費量以及 CO2排放
  • MDT循環A~H-kgCO2/英里

成長發生器:FCET 運作期間的二氧化碳排放軌跡:HDT

  • HDT使用案例的特徵和預測的先決條件
  • HDT循環A
  • HDT循環H
  • HDT循環A~H-kgCO2/英里

內燃機汽車、純電動車與燃料電池汽車二氧化碳排放軌跡比較

  • LDT:ICE、BEV、FCEV 的比較(A&H 循環)
  • MDT:ICE、BEV、FCEV 的比較(A&H 循環)
  • HDT:ICE、BEV、FCEV 的比較(A&H 循環)

重點

  • 前 3 項

成長機會宇宙

  • 成長機會 1:追蹤二氧化碳排放
  • 成長機會2:電池和燃料電池製造的區域垂直整合
  • 成長機會 3:氫基礎設施的擴建

最佳實踐認證

  • 最佳實踐評估

FROST RADAR

  • FROST RADAR

下一步

  • 成長機會的好處和影響
  • 下一步
  • 圖表列表
  • 免責聲明
簡介目錄
Product Code: PFI2-42

Adoption of Clean Hydrogen Production Sources Will Drive Transformational Growth in Sustainable Transportation Due to Reductions in CO2 Emissions by 43% Per FCET

In this study, Frost & Sullivan offers a comprehensive exploration of the carbon dioxide (CO2) trail of a fuel cell electric truck (FCET) by investigating the carbon emission implications of FCETs, particularly with focus on hydrogen as a prospective fuel for the trucking industry in the United States. Our analysis begins with the rationale for considering hydrogen, highlighting its potential to mitigate life cycle emissions as compared to conventional fuels.

We delve into various hydrogen production methods, ranging from grey hydrogen to renewable sources, each carrying distinct carbon footprints. Emphasis falls on the CO2 emissions associated with manufacturing fuel cell vehicles, pinpointing significant contributions from components including fuel cell stacks and hydrogen storage tanks. Furthermore, we project total CO2 emissions throughout the operation of a truck, drawing comparative insights with its battery electric and diesel truck counterparts.

Ultimately, this study underscores the urgency of transitioning to cleaner hydrogen production methods and optimizing vehicle manufacturing to achieve substantial CO2 emission reductions in the trucking sector.

The study period is 2023 to 2030.

Table of Contents

Transformation in CO2 Emissions from the Fuel Cell Electric Truck Industry

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top Three Strategic Imperatives on the CO2 Emissions of Fuel Cell Electric Truck (FCET) Industry

Growth Environment:Hydrogen Ecosystem

  • Hydrogen is the Fuel of the Future
  • Life Cycle CO2 Flow of a Fuel Cell Electric Truck
  • Different Methods of Producing Hydrogen

Ecosystem

  • Research Scope
  • Powertrain Technology Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

CO2 Emission Trail During Hydrogen Production

  • Analysis of Major Hydrogen Production Methods
  • Key Factors Impacting Adoption of H2 Production Methods
  • Factor 1: Lower CO2 Emissions & Readiness Levels
  • Factor 2: Clean Hydrogen Programs and Targets
  • Factor 3: States' H2 Production Potential & Plan
  • Adoption Forecast of H2 Production in California
  • Adoption Forecast of H2 Production in the Southwest
  • Adoption Forecast of H2 Production in Texas
  • CO2 Emission Trail from H2 Production

CO2 Emission Trail During the Manufacture of a Fuel Cell Electric Truck

  • Major Components of a Fuel Cell Electric Truck
  • Fuel Cell Stack
  • Hydrogen Storage Tanks
  • Battery
  • CO2 Emission Trail: Manufacture of an FCET

Growth Generator: CO2 Emission Trail During Operation of an FCET: LDT

  • LDT Use Case Characteristics and Forecast Assumptions
  • LDT Cycle A & H-H2 Consumption and CO2 Emissions
  • LDT Cycle A to H-kgCO2 Per Mile

Growth Generator: CO2 Emission Trail during Operation of an FCET: MDT

  • MDT Use Case Characteristics and Forecast Assumptions
  • MDT Cycle A & H-H2 Consumption and CO2 Emissions
  • MDT Cycle A to H - kgCO2 per Mile

Growth Generator: CO2 Emission Trail during Operation of an FCET: HDT

  • HDT Use Case Characteristics and Forecast Assumptions
  • HDT-Cycle A
  • HDT-Cycle H
  • HDT Cycle A to H-kgCO2 Per Mile

CO2 Emission Trail Comparison between ICE Vehicles, BEVs, and FCEVs

  • LDT: ICE, BEV, and FCEV Comparison (Cycle A & H)
  • MDT: ICE, BEV, and FCEV Comparison (Cycle A & H)
  • HDT: ICE, BEV, and FCEV Comparison (Cycle A & H)

Key Takeaways

  • Top 3 Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Geographic-specific Vertical Integration for Battery and Fuel Cell Manufacture
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Best Practices Recognition

  • Best Practices Recognition

Frost Radar

  • Frost Radar

Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer