封面
市場調查報告書
商品編碼
1513567

假影像偵測市場規模 - 按產品、部署模型、組織規模、最終用戶和預測,2024 年至 2032 年

Fake Image Detection Market Size - By Offering, By Deployment Model, By Organization Size, By End User & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 250 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

在人工智慧和機器學習技術創新的推動下,2024 年至 2032 年間,全球虛假影像偵測市場規模將達到 20% 的複合年成長率。在數位媒體的普遍影響力的推動下,操縱視覺效果的案例不斷增加,對先進檢測工具的需求也隨之增加。這些創新使企業、政府和線上平台能夠維護誠信、打擊欺騙並維護公眾對數位內容的信任。這一趨勢凸顯了向主動措施的重大轉變,以識別和減輕各個部門和社會環境中虛假圖像的影響。

例如,2024 年 5 月,OpenAI 推出了一款工具來檢測人工智慧生成的圖像,標記和保護數位內容以打擊錯誤訊息,特別是在選舉等關鍵事件期間。這一發展表明,對能夠有效識別和防範人工智慧生成圖像的技術的需求不斷增加,特別是在選舉等敏感時期。它突顯了市場的潛在擴張,因為組織尋求先進的工具來對抗操縱視覺效果的擴散並保持對數位內容完整性的信任。

虛假影像檢測產業根據產品、部署模型、組織規模、最終用戶和區域進行細分。

到 2032 年,大型企業部門將在先進技術和強大的網路安全措施方面利用大量資源,建立相當大的立足點。這些企業面臨惡意行為者傳播錯誤訊息的更大風險。對人工智慧和機器學習解決方案的投資使他們能夠有效地檢測和減少虛假圖像。此外,合規性要求和聲譽管理推動了複雜檢測工具的採用。作為品牌誠信和公眾信任的守護者,大型企業在塑造假影像檢測技術不斷發展的格局方面發揮關鍵作用。

由於該行業極易遭受詐欺和聲譽風險,BFSI 細分市場到 2032 年將獲得顯著收益。金融機構越來越依賴先進的人工智慧和機器學習演算法來檢測身分盜竊和偽造文件等詐欺活動中使用的操縱影像。監管合規要求和客戶信任維護進一步推動了採用。隨著金融交易日益線上化,BFSI 領域在提高假影像檢測技術的有效性和採用方面發揮關鍵作用。

由於數位化的快速發展、網路普及率的提高以及錯誤訊息的增加,亞太地區虛假影像檢測市場佔有率從 2024 年到 2032 年將實現顯著的複合年成長率。該地區的政府和企業正在投資人工智慧驅動的技術來打擊虛假圖像。此外,大型科技公司的存在和新興的新創生態系統有助於亞太地區成為全球假影像檢測產業的重要貢獻者。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
  • 供應商格局
    • 數據提供者
    • 技術開發商
    • 軟體供應商
    • 系統整合商
    • 雲端服務供應商
  • 利潤率分析
  • 技術與創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
    • 成長動力
      • 錯誤訊息和虛假訊息的擴散
      • 人工智慧 (AI) 和機器學習 (ML) 的進步
      • 保護企業和組織的品牌聲譽
      • 政府監管合規性以規範虛假圖像的使用
    • 產業陷阱與挑戰
      • 不斷發展的影像處理技術
      • 影像資料量大且多樣化
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:市場估計與預測:依產品分類,2021 - 2032 年

  • 主要趨勢
  • 軟體
    • Deepfake影像偵測
    • Photoshop 影像偵測
    • AI產生的影像偵測
    • 即時驗證
    • 其他
  • 服務
    • 諮詢服務
    • 整合與部署
    • 支援與維護

第 6 章:市場估計與預測:按部署模型,2021 - 2032 年

  • 主要趨勢
  • 本地

第 7 章:市場估計與預測:依組織規模,2021 - 2032 年

  • 主要趨勢
  • 大型企業
  • 中小企業

第 8 章:市場估計與預測:按最終用戶分類,2021 - 2032 年

  • 主要趨勢
  • BFSI
  • 政府
  • 衛生保健
  • 電信
  • 媒體與娛樂
  • 其他

第 9 章:市場估計與預測:按地區,2021 - 2032

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 西班牙
    • 義大利
    • 俄羅斯
    • 北歐人
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳新銀行
    • 東南亞
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地區
  • MEA
    • 阿拉伯聯合大公國
    • 南非
    • 沙烏地阿拉伯
    • MEA 的其餘部分

第 10 章:公司簡介

  • Amazon
  • Baidu
  • Clearview AI
  • DuckDuckGoose AI
  • DuckDuckGoose AI
  • Facia
  • Ghiro AI
  • Google
  • Gradiant
  • iDenfy
  • Image Forgery Detector
  • Imagga
  • Intel
  • iProov
  • Meta AI
  • Microsoft Corporation
  • Primeau Forensics
  • Q-integrity
  • Sentinel AI
  • Truepic
簡介目錄
Product Code: 9056

Global Fake Image Detection Market size will record a 20% CAGR between 2024 and 2032, driven by technological innovations in AI and machine learning. As instances of manipulated visuals rise, driven by digital media's pervasive influence, the demand for advanced detection tools intensifies. These innovations empower businesses, governments, and online platforms to safeguard integrity, combat deception, and preserve public trust in digital content. This trend underscores a crucial shift towards proactive measures for identifying and mitigating the impact of fake images across various sectors and societal contexts.

For instance, in May 2024, OpenAI launched a tool to detect AI-generated images, marking and protecting digital content to combat misinformation, especially during critical events like elections. This development suggests an increasing demand for technologies that can effectively identify and safeguard against AI-generated images, particularly during sensitive periods such as elections. It highlights a potential expansion in the market as organizations seek advanced tools to combat the proliferation of manipulated visuals and maintain trust in digital content integrity.

The fake image detection industry is segmented based on offering, deployment model, organization size, end user, and region.

The large enterprises segment will establish a considerable foothold by 2032, leveraging substantial resources for advanced technologies and robust cybersecurity measures. These enterprises face heightened risks from malicious actors spreading misinformation. Investments in AI and machine learning solutions empower them to detect and mitigate fake images effectively. Moreover, compliance requirements and reputation management drive the adoption of sophisticated detection tools. As guardians of brand integrity and public trust, large enterprises are pivotal in shaping the evolving landscape of fake image detection technologies.

The BFSI segment will amass notable gains by 2032, attributed to the sector's high vulnerability to fraud and reputational risks. Financial institutions increasingly rely on advanced AI and machine learning algorithms to detect manipulated images used in fraudulent activities like identity theft and forged documents. Regulatory compliance mandates and customer trust preservation further drive adoption. As financial transactions move increasingly online, the BFSI segment plays a critical role in advancing the efficacy and adoption of fake image detection technologies.

Asia Pacific fake image detection market share will achieve a remarkable CAGR from 2024 to 2032, owing to rapid digitalization, increasing internet penetration, and rising instances of misinformation. Governments and enterprises across the region are investing in AI-driven technologies to combat fake images. Additionally, the presence of major technology firms and a burgeoning startup ecosystem contribute to Asia Pacific's role as a significant contributor to the global fake image detection industry.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
  • 1.2 Base estimates and calculations
    • 1.2.1 Base year calculation
    • 1.2.2 Key trends for market estimates
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry 360 degree synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Data providers
    • 3.2.2 Technology developers
    • 3.2.3 Software vendors
    • 3.2.4 System integrators
    • 3.2.5 Cloud service providers
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 The proliferation of misinformation and disinformation
      • 3.8.1.2 Advancements in artificial intelligence (AI) and machine learning (ML)
      • 3.8.1.3 Protecting the brand reputation of businesses and organizations
      • 3.8.1.4 Government regulatory compliance to regulate the use of fake images
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Evolving techniques of image manipulation
      • 3.8.2.2 High volume and diversity of image data
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Offering, 2021 - 2032 ($Bn)

  • 5.1 Key trends
  • 5.2 Software
    • 5.2.1 Deepfake image detection
    • 5.2.2 Photoshopped image detection
    • 5.2.3 AI-generated image detection
    • 5.2.4 Real-time verification
    • 5.2.5 Others
  • 5.3 Services
    • 5.3.1 Consulting services
    • 5.3.2 Integration & deployment
    • 5.3.3 Support & maintenance

Chapter 6 Market Estimates & Forecast, By Deployment Model, 2021 - 2032 ($Bn)

  • 6.1 Key trends
  • 6.2 On-premises
  • 6.3 Cloud

Chapter 7 Market Estimates & Forecast, By Organization Size, 2021 - 2032 ($Bn)

  • 7.1 Key trends
  • 7.2 Large enterprises
  • 7.3 SMEs

Chapter 8 Market Estimates & Forecast, By End User, 2021 - 2032 ($Bn)

  • 8.1 Key trends
  • 8.2 BFSI
  • 8.3 Government
  • 8.4 Healthcare
  • 8.5 Telecom
  • 8.6 Media & entertainment
  • 8.7 Others

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2032 ($Bn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Russia
    • 9.3.7 Nordics
    • 9.3.8 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Southeast Asia
    • 9.4.7 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 Amazon
  • 10.2 Baidu
  • 10.3 Clearview AI
  • 10.4 DuckDuckGoose AI
  • 10.5 DuckDuckGoose AI
  • 10.6 Facia
  • 10.7 Ghiro AI
  • 10.8 Google
  • 10.9 Gradiant
  • 10.10 iDenfy
  • 10.11 Image Forgery Detector
  • 10.12 Imagga
  • 10.13 Intel
  • 10.14 iProov
  • 10.15 Meta AI
  • 10.16 Microsoft Corporation
  • 10.17 Primeau Forensics
  • 10.18 Q-integrity
  • 10.19 Sentinel AI
  • 10.20 Truepic