市場調查報告書
商品編碼
1535897
臨床試驗中的人工智慧市場規模- 按組件(軟體、服務)、按技術(機器學習(ML)、自然語言處理(NLP)、電腦視覺、情境機器人)、按應用、按最終用戶和預測,2024 - 2032 年AI in Clinical Trials Market Size - By Component (Software, Service), By Technology (Machine Learning (ML), Natural Language Processing (NLP), Computer Vision, Contextual Bots), By Application, By End User & Forecast, 2024 - 2032 |
在人工智慧技術和個人化醫療不斷進步的推動下,2024 年至 2032 年間,全球人工智慧臨床試驗市場規模將達到 14% 的複合年成長率。增強的人工智慧演算法可以實現更準確的資料分析、更快的藥物開發並提高試驗效率。此外,個人化醫療的興起允許根據個別患者資料制定客製化治療計劃,最佳化治療結果。隨著人工智慧技術的發展和個人化方法變得更加普遍,它們的綜合影響將加速臨床試驗,使其更有效率和有效,從而擴大市場。
例如,2023 年 11 月,阿斯特捷利康推出 Evinova,將人工智慧和數位健康解決方案整合到臨床試驗中,針對 CRO、試驗申辦者、照護團隊和患者,利用該公司已在全球使用的技術。此舉顯示將先進技術融入臨床研究、推動創新、改善試驗結果以及潛在增加市場採用的趨勢不斷上升。隨著阿斯特捷利康等主要參與者採用人工智慧,這凸顯了人工智慧在改變臨床試驗流程和結果方面的不斷擴大的作用。
臨床試驗產業中的人工智慧根據組件、技術、應用、最終用戶和地區進行細分。
機器學習領域將在 2024 年至 2032 年期間大幅成長。機器學習演算法在處理大量臨床資料、識別模式和預測試驗結果方面發揮關鍵作用。這些功能顯著減少了資料分析所需的時間並提高了決策的準確性。製藥公司擴大利用機器學習來最佳化患者選擇、監控試驗進度並確保符合監管標準。將機器學習整合到臨床試驗中可以提高效率並提高試驗的整體質量,支持市場擴張。
到 2032 年,藥物發現領域將獲得可觀的效益,這歸因於其對加速藥物開發進程的變革性影響。人工智慧技術增強了預測模型,最佳化了臨床試驗設計,並更有效地識別潛在的候選藥物,從而大大減少了時間和成本。先進的演算法分析大量資料集,以發現新的藥物交互作用和生物標記,從而產生更有針對性的治療方法。隨著製藥公司擴大採用人工智慧來簡化發現和提高成功率,這一領域將佔據相當大的市場佔有率。
亞太地區人工智慧臨床試驗市場將在2024年至2032年實現適度的複合年成長率。有利的環境。由於改善醫療保健結果和解決日益嚴重的慢性病負擔的需要,中國、印度和日本等國家處於將人工智慧技術融入臨床試驗的最前沿。大量患者群體的存在和先進技術解決方案的可用性進一步支持亞太地區人工智慧在臨床試驗行業的擴張。
Global AI in Clinical Trials Market size will capture a 14% CAGR between 2024 and 2032, driven by continuous advancements in AI technologies and personalized medicine. Enhanced AI algorithms enable more accurate data analysis, faster drug development, and improved trial efficiency. Also, the rise of personalized medicine allows for tailored treatment plans based on individual patient data, optimizing therapeutic outcomes. As AI technologies evolve and personalized approaches become more prevalent, their combined impact will accelerate clinical trials, making them more efficient and effective, thereby expanding the market.
For instance, in November 2023, AstraZeneca introduced Evinova to integrate AI and digital health solutions into clinical trials, targeting CROs, trial sponsors, care teams, and patients, leveraging technologies already used globally by the company. This move indicates a rising trend towards integrating advanced technologies in clinical research, driving innovation, improving trial outcomes, and potentially increasing market adoption. As major players like AstraZeneca adopt AI, it underscores the expanding role of AI in transforming clinical trial processes and outcomes.
The AI in clinical trials industry is segmented based on component, technology, application, end-user, and region.
The machine learning segment will witness substantial growth throughout 2024-2032. Machine learning algorithms play a pivotal role in processing vast amounts of clinical data, identifying patterns, and predicting trial outcomes. These capabilities significantly reduce the time required for data analysis and enhance decision-making accuracy. Pharmaceutical companies are increasingly leveraging machine learning to optimize patient selection, monitor trial progress, and ensure compliance with regulatory standards. The integration of machine learning in clinical trials improves efficiency and enhances the overall quality of trials, supporting market expansion.
The drug discovery segment will amass considerable gains by 2032, attributed to its transformative impact on accelerating drug development processes. AI technologies enhance predictive modeling, optimize clinical trial designs, and identify potential drug candidates more efficiently, considerably reducing time and costs. Advanced algorithms analyze vast datasets to uncover novel drug interactions and biomarkers, leading to more targeted therapies. As pharmaceutical companies increasingly adopt AI for its ability to streamline discovery and improve success rates, this segment will hold a decent market share.
Asia Pacific AI in clinical trials market will achieve a moderate CAGR from 2024 to 2032. The region's rapidly evolving healthcare infrastructure, increasing investment in medical research, and supportive government policies create a conducive environment for AI adoption. Countries like China, India, and Japan are at the forefront of integrating AI technologies into clinical trials, driven by the need to improve healthcare outcomes and address the growing burden of chronic diseases. The presence of a large patient population and the availability of advanced technological solutions further support the expansion of the Asia Pacific AI in clinical trials industry.