封面
市場調查報告書
商品編碼
1616046

人工智慧車輛偵測系統市場機會、成長動力、產業趨勢分析與預測 2024 - 2032

AI Vehicle Inspection System Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 180 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2023年,全球人工智慧車輛檢查系統市場價值為12億美元,預計2024年至2032年複合年成長率為18%。透明度和效率。將人工智慧驅動的損壞檢測系統整合到數位市場中可顯著提高車輛狀況評估的準確性。公司正在利用創新工具來提供詳細且可靠的車輛資訊。例如,2024 年 1 月,OPENLANE, Inc.

推出了 Visual Boost AI,這是一種先進的損壞檢測疊加層,適用於 OPENLANE 美國市場上每輛經銷商委託的車輛。這種由人工智慧驅動的技術透過在狀況報告中包含的照片上清楚地標記檢測到的外部損壞來增強車輛檢查報告。市場依組件分為硬體、軟體和服務。 2023年,硬體領域的價值將超過5億美元。

能夠檢測微小缺陷和損壞的高解析度攝影機和先進感測器正在推動人工智慧車輛檢測系統市場損壞檢測領域的顯著成長。汽車行業和車隊營運商正在尋求提高檢查的精度和可靠性。先進的成像技術甚至可以識別最小的缺陷。高解析度相機提供詳細的視覺效果,能夠偵測傳統檢查方法可能遺漏的細微問題。

市場範圍
開始年份 2023年
預測年份 2024-2032
起始值 12億美元
預測值 57 億美元
複合年成長率 18%

人工智慧車輛偵測系統市場按應用分為損壞檢測、保險索賠評估、品質控制、安全檢查等。人們越來越關注降低營運成本和改善車輛生命週期管理,這推動了對人工智慧驅動的損壞檢測系統的需求。先進的感測器可提高評估車輛零件狀況的準確性。這項技術進步提高了損壞檢測的有效性,並有助於提高維護和維修過程的效率。

北美在全球人工智慧車輛偵測系統市場中佔據主導地位,到2023年,其主要佔有率將超過35%。安全法規。該地區主要汽車製造商和科技公司的存在也有助於人工智慧檢測系統的快速開發和採用。參與者擴大尋求創新解決方案來簡化汽車檢查並提高汽車行業的營運效率。例如,2024 年7 月,Click-Ins 宣布與Draiver 建立策略合作夥伴關係。 。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
  • 供應商格局
    • 硬體供應商
    • 軟體開發商
    • 服務提供者
    • 系統整合商
    • 最終用戶
  • 利潤率分析
  • 技術與創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
    • 成長動力
      • 對車輛安全和品質控制的日益關注
      • 人工智慧和機器學習技術的進步
      • 不斷成長的汽車工業和車隊管理部門
      • 快速轉向電動車
    • 產業陷阱與挑戰
      • 與現有系統的整合挑戰
      • 初期投資高
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:市場估計與預測:按組成部分,2021 - 2032 年

  • 主要趨勢
  • 硬體
    • 相機
    • 感應器
    • 掃描儀
    • 其他
  • 軟體
    • 數據分析平台
    • 人工智慧和機器學習演算法
    • 狀態監控軟體
    • 其他
  • 服務
    • 安裝與整合
    • 維護與支援
    • 軟體升級

第 6 章:市場估計與預測:依技術分類,2021 - 2032 年

  • 主要趨勢
  • 影像處理
  • 電腦視覺
  • 機器學習
  • 深度學習
  • 其他

第 7 章:市場估計與預測:依應用分類,2021 - 2032

  • 主要趨勢
  • 損壞偵測
  • 保險理賠評估
  • 品質管制
  • 安全檢查
  • 其他

第 8 章:市場估計與預測:按最終用戶分類,2021 - 2032 年

  • 主要趨勢
  • 汽車整車廠
  • 保險公司
  • 汽車租賃和租賃機構
  • 車隊營運商
  • 其他

第 9 章:市場估計與預測:按地區,2021 - 2032

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 俄羅斯
    • 北歐人
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
    • 東南亞
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地區
  • MEA
    • 阿拉伯聯合大公國
    • 南非
    • 沙烏地阿拉伯
    • MEA 的其餘部分

第 10 章:公司簡介

  • ADACOR
  • AIS (Automotive Intelligent Solutions)
  • Altoros
  • Automate.AI
  • Carscan
  • Daedalus AI
  • Dataline Technologies
  • DeepAuto
  • DeGould
  • Intellisystems Technologies
  • Konica Minolta, Inc.
  • Monk AI
  • ProovStation
  • Ravin AI
  • Sensata Technologies
  • Shenzhen Chuhui Technology Co., Ltd.
  • Testbed Telematica
  • Tractable
  • UVeye
  • Visual AI Labs
簡介目錄
Product Code: 11215

The Global AI Vehicle Inspection System Market was valued at USD 1.2 billion in 2023 and is expected to grow at 18% CAGR from 2024 to 2032. The automotive industry is increasingly adopting digital solutions, emphasizing advanced technologies to improve transparency and efficiency in vehicle transactions. The integration of AI-powered damage detection systems into digital marketplaces significantly enhances the accuracy of vehicle condition assessments. Companies are leveraging innovative tools to provide detailed and reliable vehicle information. For instance, in January 2024, OPENLANE, Inc.

introduced Visual Boost AI, an advanced damage detection overlay available for every dealer-consigned vehicle in OPENLANE's U.S. marketplace. This AI-driven technology enhances vehicle inspection reports by clearly marking detected exterior damage on photos included in the condition report. The market is segmented by component into hardware, software, and services. In 2023, the hardware segment was valued at over USD 500 million.

High-resolution cameras and advanced sensors capable of detecting minute defects and damages are driving significant growth in the damage detection segment of the AI vehicle inspection system market. Automotive industries and fleet operators are seeking to enhance the precision and reliability of their inspections. Sophisticated imaging technologies can identify even the smallest imperfections. High-resolution cameras provide detailed visuals that enable the detection of subtle issues that traditional inspection methods might miss.

Market Scope
Start Year2023
Forecast Year2024-2032
Start Value$1.2 Billion
Forecast Value$5.7 Billion
CAGR18%

The AI vehicle inspection system market is categorized by application into damage detection, insurance claim assessment, quality control, safety inspection, and others. The growing focus on reducing operational costs and improving vehicle lifecycle management is driving the demand for AI-powered damage detection systems. Advanced sensors offer enhanced accuracy in evaluating the condition of vehicle components. This technological evolution improves the effectiveness of damage detection and contributes to more efficient maintenance and repair processes.

North America dominated the global AI vehicle inspection system market with a major share of over 35% in 2023. The region's leadership is attributed to its advanced automotive industry, high adoption rate of new technologies, and stringent vehicle safety regulations. The presence of major automotive manufacturers and technology companies in the region also contributes to the rapid development and adoption of AI inspection systems. Players are increasingly seeking innovative solutions to streamline vehicle inspections and enhance operational efficiency in the automotive industry. For instance, in July 2024, Click-Ins announced a strategic partnership with Draiver.Through this collaboration, Draiver now offers Click-Ins' AI-driven vehicle inspection technology directly to its customers across multiple automotive sectors in the U.S. and international markets.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates & calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Hardware suppliers
    • 3.2.2 Software developers
    • 3.2.3 Service providers
    • 3.2.4 System integrators
    • 3.2.5 End-users
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Rising focus on vehicle safety and quality control
      • 3.8.1.2 Advancements in AI and machine learning technologies
      • 3.8.1.3 Growing automotive industry and fleet management sector
      • 3.8.1.4 Rapid shift towards electric vehicles
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Integration challenges with existing systems
      • 3.8.2.2 High initial investment
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2032 ($Bn)

  • 5.1 Key trends
  • 5.2 Hardware
    • 5.2.1 Cameras
    • 5.2.2 Sensors
    • 5.2.3 Scanners
    • 5.2.4 Others
  • 5.3 Software
    • 5.3.1 Data analysis platforms
    • 5.3.2 AI & machine learning algorithms
    • 5.3.3 Condition monitoring software
    • 5.3.4 Others
  • 5.4 Service
    • 5.4.1 Installation & integration
    • 5.4.2 Maintenance & support
    • 5.4.3 Software upgradation

Chapter 6 Market Estimates & Forecast, By Technology, 2021 - 2032 ($Bn)

  • 6.1 Key trends
  • 6.2 Image processing
  • 6.3 Computer vision
  • 6.4 Machine learning
  • 6.5 Deep learning
  • 6.6 Others

Chapter 7 Market Estimates & Forecast, By Application, 2021 - 2032 ($Bn)

  • 7.1 Key trends
  • 7.2 Damage detection
  • 7.3 Insurance claim assessment
  • 7.4 Quality control
  • 7.5 Safety inspection
  • 7.6 Others

Chapter 8 Market Estimates & Forecast, By End User, 2021 - 2032 ($Bn)

  • 8.1 Key trends
  • 8.2 Automotive OEMs
  • 8.3 Insurance companies
  • 8.4 Car rental & leasing agencies
  • 8.5 Fleet operators
  • 8.6 Others

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2032 ($Bn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
    • 9.3.7 Nordics
    • 9.3.8 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
    • 9.4.6 Southeast Asia
    • 9.4.7 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia
    • 9.6.4 Rest of MEA

Chapter 10 Company Profiles

  • 10.1 ADACOR
  • 10.2 AIS (Automotive Intelligent Solutions)
  • 10.3 Altoros
  • 10.4 Automate.AI
  • 10.5 Carscan
  • 10.6 Daedalus AI
  • 10.7 Dataline Technologies
  • 10.8 DeepAuto
  • 10.9 DeGould
  • 10.10 Intellisystems Technologies
  • 10.11 Konica Minolta, Inc.
  • 10.12 Monk AI
  • 10.13 ProovStation
  • 10.14 Ravin AI
  • 10.15 Sensata Technologies
  • 10.16 Shenzhen Chuhui Technology Co., Ltd.
  • 10.17 Testbed Telematica
  • 10.18 Tractable
  • 10.19 UVeye
  • 10.20 Visual AI Labs