封面
市場調查報告書
商品編碼
1616234

自熱重整藍氫市場機會、成長促進因素、產業趨勢分析與預測 2024 - 2032 年

Autothermal Reforming Blue Hydrogen Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 70 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

全球自熱重整藍氫市場預計 2023 年價值 5,840 萬美元,預計 2024 年至 2032 年複合年成長率為 16.5%。在自熱重整 (ATR) 中,部分氧化和蒸氣重整反應在單一反應器內同時發生,產生包含氫氣、一氧化碳和二氧化碳的合成氣。對能夠與煉油廠和石化廠等現有工業運作無縫整合的流程的需求也不斷成長。這種整合促進了清潔燃料的生產以及現有的化學工藝,從而增強了商業前景。

這種整合不僅減少了基礎設施投資,還提供了營運協同效應,有可能降低氫生產商的整體成本。此外,該製程在藍氫生產過程中捕獲二氧化碳的能力使其與循環碳經濟模型完美契合。在這些模型中,捕獲的碳可以重複使用或儲存,進一步推動產業成長。自熱重整藍氫市場按應用和地區分類。

從應用來看,市場分為煉油、化工和其他領域。到 2032 年,化學領域的成長率預計將超過 19%。隨著化學公司減少碳足跡的壓力越來越大,ATR 成為一個令人信服的選擇。它能夠捕捉氫氣生產過程中高達 99% 的二氧化碳排放,幫助化學公司滿足嚴格的環境標準。

市場範圍
開始年份 2023年
預測年份 2024-2032
起始值 5840 萬美元
預測值 2.447 億美元
複合年成長率 16.5%

預計到2032 年,歐洲自熱重整藍氫市場將超過1.27 億美元。的迅速轉向。此外,歐洲努力減少對化石燃料進口(尤其是天然氣)的依賴,也是產品採用的關鍵動力。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統
  • 監管環境
  • 產業影響力
    • 成長動力
    • 產業陷阱與挑戰
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 戰略儀表板
  • 創新與科技格局

第 5 章:市場規模與預測:按應用分類,2021 - 2032

  • 主要趨勢
  • 石油精煉廠
  • 化學
  • 其他

第 6 章:市場規模與預測:按地區分類,2021 - 2032 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 法國
    • 英國
    • 義大利
    • 荷蘭
    • 俄羅斯
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿曼
    • 阿拉伯聯合大公國
    • 科威特
    • 卡達
    • 南非
  • 拉丁美洲

第 7 章:公司簡介

  • Air Liquide
  • Air Products
  • Clariant AG
  • Equinor
  • Johnson Matthey
  • KBR
  • Lummus Technology
  • Linde
  • Shell
  • Technip Energies
  • Thyssenkrupp
  • Wood
簡介目錄
Product Code: 11424

The Global Autothermal Reforming Blue Hydrogen Market, valued at USD 58.4 million in 2023, is projected to expand at a CAGR of 16.5% from 2024 to 2032. This process produces hydrogen by reacting hydrocarbons, predominantly natural gas, with oxygen and steam. In autothermal reforming (ATR), partial oxidation and steam reforming reactions occur simultaneously within a single reactor, yielding a synthesis gas that comprises hydrogen, carbon monoxide, and carbon dioxide. There is also a growing demand for processes that can seamlessly integrate with established industrial operations, such as refineries and petrochemical plants. This integration facilitates clean fuel production alongside existing chemical processes, enhancing business prospects.

Such integration not only curtails infrastructure investments but also offers operational synergies, potentially lowering overall costs for hydrogen producers. Furthermore, the capability of the process to capture CO2 during blue hydrogen production aligns it perfectly with circular carbon economy models. In these models, captured carbon can either be reused or stored, further propelling industry growth. The autothermal reforming blue hydrogen market is categorized by application and region.

In terms of application, the market is divided into petroleum refining, chemicals, and other sectors. The chemical segment is poised to witness a growth rate exceeding 19% till 2032. This is attributed to its efficiency in producing large hydrogen volumes, bolstering continuous production. With mounting pressure on chemical firms to curtail their carbon footprint, ATR emerges as a compelling choice. It boasts the capability to capture up to 99% of CO2 emissions during hydrogen production, aiding chemical companies in meeting stringent environmental standards.

Market Scope
Start Year2023
Forecast Year2024-2032
Start Value$58.4 Million
Forecast Value$244.7 Million
CAGR16.5%

Europe autothermal reforming blue hydrogen market is projected to surpass USD 127 million by 2032. The region's swift pivot towards low-carbon technologies is fueled by stringent carbon emission regulations, notably the European Union's Green Deal and the ambition for carbon neutrality by 2050. Financial incentives, such as subsidies, grants, and carbon credits, bolster hydrogen projects in the region. Additionally, Europe's drive to lessen its dependence on fossil fuel imports, particularly natural gas, stands as a pivotal motivator for product adoption.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research Design
  • 1.2 Base estimates & calculations
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market Definitions

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL analysis

Chapter 4 Competitive landscape, 2023

  • 4.1 Introduction
  • 4.2 Strategic dashboard
  • 4.3 Innovation & technology landscape

Chapter 5 Market Size and Forecast, By Application, 2021 - 2032 (USD Million & MT)

  • 5.1 Key trends
  • 5.2 Petroleum refinery
  • 5.3 Chemical
  • 5.4 Others

Chapter 6 Market Size and Forecast, By Region, 2021 - 2032 (USD Million & MT)

  • 6.1 Key trends
  • 6.2 North America
    • 6.2.1 U.S.
    • 6.2.2 Canada
    • 6.2.3 Mexico
  • 6.3 Europe
    • 6.3.1 Germany
    • 6.3.2 France
    • 6.3.3 UK
    • 6.3.4 Italy
    • 6.3.5 Netherlands
    • 6.3.6 Russia
  • 6.4 Asia Pacific
    • 6.4.1 China
    • 6.4.2 India
    • 6.4.3 Japan
    • 6.4.4 Australia
  • 6.5 Middle East & Africa
    • 6.5.1 Saudi Arabia
    • 6.5.2 Oman
    • 6.5.3 UAE
    • 6.5.4 Kuwait
    • 6.5.5 Qatar
    • 6.5.6 South Africa
  • 6.6 Latin America

Chapter 7 Company Profiles

  • 7.1 Air Liquide
  • 7.2 Air Products
  • 7.3 Clariant AG
  • 7.4 Equinor
  • 7.5 Johnson Matthey
  • 7.6 KBR
  • 7.7 Lummus Technology
  • 7.8 Linde
  • 7.9 Shell
  • 7.10 Technip Energies
  • 7.11 Thyssenkrupp
  • 7.12 Wood