封面
市場調查報告書
商品編碼
1699253

多模式人工智慧市場機會、成長動力、產業趨勢分析及 2025-2034 年預測

Multimodal AI Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025-2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 160 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

2024 年全球多模式人工智慧市場價值為 16 億美元,預計 2025 年至 2034 年的複合年成長率將達到 32.7%。成長主要得益於人工智慧和機器學習在零售、醫療保健和汽車等行業之間的日益融合,以及對人工智慧研發的投資不斷增加。多模式人工智慧代表了技術能力的重大轉變,實現了即時的人機協作並增強了邊緣人工智慧應用。這是一個快速發展的領域,它透過允許機器處理文字、圖像和語音等多種資料類型來實現更有效率的決策,從而推動創新。

多模式人工智慧市場 - IMG1

然而,道德人工智慧治理、運算效率和資料融合複雜性等挑戰持續為企業帶來障礙。儘管有這些障礙,世界各地的企業仍在利用多模式人工智慧來最佳化工作流程、減少錯誤並提高生產力。隨著各行各業尋求自動化來提高營運效率,尤其是在醫療保健、汽車和物流領域,採用自動化的速度正在加快。個人化服務和決策對人工智慧驅動工具的日益依賴進一步推動了需求,企業優先考慮人工智慧投資以獲得競爭優勢。

市場範圍
起始年份 2024
預測年份 2025-2034
起始值 16億美元
預測值 270億美元
複合年成長率 32.7%

多模式人工智慧使機器學習模型能夠分析和整合多種資料類型,包括文字、圖像、視訊和音頻,以提供更準確的輸出。 2024 年,影像資料部分的價值達到 5.654 億美元,這得益於卷積神經網路 (CNN) 等深度學習技術的進步,這些技術增強了影像分類和識別能力。機器學習領域在 2024 年佔據了 34.5% 的最大市場佔有率,預計到 2034 年仍將佔據主導地位。對預測分析的需求不斷成長,尤其是在醫療保健和銀行業,以及基於雲端的 ML 解決方案的日益普及,支持了擴張。目前,超過 87% 的企業傾向於使用雲端平台部署機器學習,從而促進了市場的成長。

多模式人工智慧市場分為生成型人工智慧、翻譯型人工智慧、解譯型人工智慧和互動式人工智慧。 2024 年,生成性多模式人工智慧領域的價值為 7.401 億美元,這主要歸因於各種數位平台對高品質內容創作的需求不斷成長。該公司正在大力投資人工智慧生成的文字、視訊和音訊以用於行銷​​目的,進一步推動該領域的發展。

從產業來看,多模式人工智慧的應用正在多個領域擴展,包括 BFSI、零售和電子商務、IT 和電信、政府、醫療保健和媒體。 2024 年,BFSI 產業貢獻了 5.705 億美元,這得益於人工智慧在增強金融服務和簡化營運方面的日益普及。

從地理位置來看,北美預計將引領市場,預計到 2034 年市場規模將達到 117 億美元。該地區對人工智慧投資的高度重視以及關鍵技術中心的存在促進了這一成長。預計到 2034 年,美國市場將以 33.6% 的複合年成長率擴張,這得益於對人工智慧新創公司的持續投資以及尖端多模式人工智慧解決方案的開發。

目錄

第1章:方法論與範圍

第2章:執行摘要

第3章:行業洞察

  • 產業生態系統分析
  • 產業衝擊力
    • 成長動力
      • 自動化需求不斷成長
      • 提升顧客體驗期望
      • 採用人工智慧相關的內容創作工具
      • 政府資助人工智慧研究
      • 安全領域對人工智慧的需求增加
    • 產業陷阱與挑戰
      • 資料隱私和安全問題
      • 工作替代風險
  • 成長潛力分析
  • 監管格局
  • 技術格局
  • 未來市場趨勢
  • 差距分析
  • 波特的分析
  • PESTEL分析

第4章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 主要市場參與者的競爭分析
  • 競爭定位矩陣
  • 策略儀表板

第5章:市場估計與預測:依資料形態,2021 年至 2034 年

  • 主要趨勢
  • 影像資料
  • 文字資料
  • 語音和聲音資料
  • 視訊資料
  • 音訊資料

第6章:市場估計與預測:按技術,2021 年至 2034 年

  • 主要趨勢
  • 機器學習
  • 自然語言處理
  • 電腦視覺
  • 情境感知
  • 物聯網

第7章:市場估計與預測:按類型,2021 年至 2034 年

  • 主要趨勢
  • 生成式多模態人工智慧
  • 翻譯多模態人工智慧
  • 解釋性多模態人工智慧
  • 互動式多模態人工智慧

第8章:市場估計與預測:按產業垂直,2021 年至 2034 年

  • 主要趨勢
  • 金融服務業
  • 零售與電子商務
  • 資訊科技和電信
  • 政府和公共部門
  • 衛生保健
  • 媒體和娛樂
  • 其他

第9章:市場估計與預測:按地區,2021 年至 2034 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 西班牙
    • 義大利
    • 荷蘭
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 澳洲
    • 韓國
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中東和非洲
    • 沙烏地阿拉伯
    • 南非
    • 阿拉伯聯合大公國

第10章:公司簡介

  • Aiberry Inc.
  • Aimesoft Inc.
  • Amazon Web Services, Inc.
  • Archetype AI Inc.
  • Beewant SAS
  • Google Inc.
  • Habana Labs Inc.
  • Hoppr Inc.
  • Inworld AI Inc.
  • International Business Machines Corporation (IBM)
  • Jina AI GmbH
  • Jiva.ai Ltd.
  • Microsoft Corporation
  • Mobius Labs Inc.
  • Modality.AI Inc.
  • Multimodal Inc.
  • Neuraptic AI SL
  • Newsbridge SAS
  • OpenAI Inc.
  • OpenStream AI Inc.
  • Owlbot.AI Inc.
  • Perceiv AI Inc.
  • Reka AI Inc.
  • Runway AI Inc.
  • Stability AI Ltd.
簡介目錄
Product Code: 10071

The Global Multimodal Ai Market was valued at USD 1.6 billion in 2024 and is projected to expand at a CAGR of 32.7% from 2025 to 2034. Growth is primarily fueled by the increasing integration of AI and ML across industries, including retail, healthcare, and automotive, alongside rising investments in AI research and development. Multimodal AI represents a major shift in technological capabilities, enabling real-time human-AI collaboration and enhancing edge AI applications. It is a rapidly evolving field that drives innovation by allowing machines to process diverse data types, such as text, images, and voice, for more efficient decision-making.

Multimodal AI Market - IMG1

However, challenges such as ethical AI governance, computational efficiency, and data fusion complexity continue to pose obstacles for companies. Despite these hurdles, businesses worldwide are leveraging multimodal AI to optimize workflows, reduce errors, and improve productivity. Adoption is accelerating as industries seek automation to enhance operational efficiency, particularly in healthcare, automotive, and logistics. The growing reliance on AI-driven tools for personalized services and decision-making further propels demand, with enterprises prioritizing AI investment to gain a competitive edge.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$1.6 Billion
Forecast Value$27 Billion
CAGR32.7%

Multimodal AI enables machine learning models to analyze and integrate multiple data types, including text, images, video, and audio, to deliver more accurate outputs. The image data segment accounted for USD 565.4 million in 2024, driven by advancements in deep learning techniques, such as Convolutional Neural Networks (CNN), which have enhanced image classification and recognition capabilities. The machine learning segment held the largest market share of 34.5% in 2024 and is projected to dominate through 2034. Growing demand for predictive analytics, particularly in healthcare and banking, as well as the increasing adoption of cloud-based ML solutions, supports expansion. More than 87% of enterprises now prefer cloud platforms for machine learning deployment, reinforcing market growth.

The multimodal AI market is categorized into generative, translative, explanatory, and interactive AI. The generative multimodal AI segment was valued at USD 740.1 million in 2024, largely due to rising demand for high-quality content creation across various digital platforms. Companies are investing significantly in AI-generated text, video, and audio for marketing purposes, further boosting the segment.

Industry-wise, multimodal AI adoption is expanding across multiple sectors, including BFSI, retail and e-commerce, IT and telecommunications, government, healthcare, and media. The BFSI sector contributed USD 570.5 million in 2024, driven by the increasing use of AI to enhance financial services and streamline operations.

Geographically, North America is expected to lead the market, with projections estimating a market size of USD 11.7 billion by 2034. The region's strong focus on AI investment and the presence of key technology hubs contribute to this growth. The US market is anticipated to expand at a CAGR of 33.6% in 2034, driven by continuous investment in AI startups and the development of cutting-edge multimodal AI solutions.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rising demand for automation
      • 3.2.1.2 Enhance customer experience expectations
      • 3.2.1.3 Adoption of AI related content creation tools
      • 3.2.1.4 Government funding in AI research
      • 3.2.1.5 Increase in demand for AI in security
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Data privacy and security concerns
      • 3.2.2.2 Risk of job replacement
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
  • 3.5 Technology landscape
  • 3.6 Future market trends
  • 3.7 Gap analysis
  • 3.8 Porter's analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Data Modality, 2021 – 2034 ($ Mn)

  • 5.1 Key trends
  • 5.2 Image data
  • 5.3 Text data
  • 5.4 Speech & voice data
  • 5.5 Video data
  • 5.6 Audio data

Chapter 6 Market Estimates and Forecast, By Technology, 2021 – 2034 ($ Mn)

  • 6.1 Key trends
  • 6.2 Machine learning
  • 6.3 Natural language processing
  • 6.4 Computer vision
  • 6.5 Context awareness
  • 6.6 Internet of things

Chapter 7 Market Estimates and Forecast, By Type, 2021 – 2034 ($ Mn)

  • 7.1 Key trends
  • 7.2 Generative Multimodal AI
  • 7.3 Translative Multimodal AI
  • 7.4 Explanatory Multimodal AI
  • 7.5 Interactive Multimodal AI

Chapter 8 Market Estimates and Forecast, By Industry Vertical, 2021 – 2034 ($ Mn)

  • 8.1 Key trends
  • 8.2 BFSI
  • 8.3 Retail & ecommerce
  • 8.4 IT & Telecommunication
  • 8.5 Government & public sector
  • 8.6 Healthcare
  • 8.7 Media & entertainment
  • 8.8 Others

Chapter 9 Market Estimates and Forecast, By Region, 2021 – 2034 ($ Mn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Netherlands
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Aiberry Inc.
  • 10.2 Aimesoft Inc.
  • 10.3 Amazon Web Services, Inc.
  • 10.4 Archetype AI Inc.
  • 10.5 Beewant SAS
  • 10.6 Google Inc.
  • 10.7 Habana Labs Inc.
  • 10.8 Hoppr Inc.
  • 10.9 Inworld AI Inc.
  • 10.10 International Business Machines Corporation (IBM)
  • 10.11 Jina AI GmbH
  • 10.12 Jiva.ai Ltd.
  • 10.13 Microsoft Corporation
  • 10.14 Mobius Labs Inc.
  • 10.15 Modality.AI Inc.
  • 10.16 Multimodal Inc.
  • 10.17 Neuraptic AI S.L.
  • 10.18 Newsbridge SAS
  • 10.19 OpenAI Inc.
  • 10.20 OpenStream AI Inc.
  • 10.21 Owlbot.AI Inc.
  • 10.22 Perceiv AI Inc.
  • 10.23 Reka AI Inc.
  • 10.24 Runway AI Inc.
  • 10.25 Stability AI Ltd.