封面
市場調查報告書
商品編碼
1568918

2024-2032年全球燃料電池堆回收再利用市場預測

Global Fuel Cell Stack Recycling and Reuse Market Forecast 2024-2032

出版日期: | 出版商: Inkwood Research | 英文 298 Pages | 商品交期: 2-3個工作天內

價格

主要發現

預計到 2032 年,全球燃料電池堆回收再利用市場將達到 5.3254 億美元,2024-2032 年預測期間複合年增長率為 22.36%。研究考慮的基準年是2023年,估計期間是2024年至2032年。這項市場研究還定性和定量分析了 COVID-19 對燃料電池堆回收和再利用市場的影響。

燃料電池是一種電化學裝置,透過與氧氣反應,將燃料(通常是氫)的化學能轉化為電能,產生水和熱作為單獨的產品。與傳統內燃機不同,燃料電池提供了更清潔的能源替代方案,僅排放水蒸氣而不排放有害污染物。這使得它們在交通、固定發電和便攜式電源等各個領域都非常有吸引力。

燃料電池運作的核心是燃料電池堆,基本上它是燃料電池系統的核心。燃料電池堆是多個單獨的燃料電池堆疊在一起以產生更高功率的電力。每個燃料電池都包含一個發生電化學反應的膜電極組件 (MEA),由管理反應物流和電氣連接的雙極板隔開。中東和非洲的主要材料是鉑族金屬(PGM),尤其是鉑,它在反應過程中充當催化劑。其他重要部件包括不銹鋼和鋁等材料,它們可提供結構穩定性。

由於燃料電池堆對鉑等稀有且昂貴的金屬的依賴,其回收和再利用已成為該行業的重點關注點。回收可以回收有價值的材料並減少對環境的影響,同時支持氫技術的可持續發展。隨著氫經濟的發展,企業越來越多地投資於這些關鍵部件的回收和再利用,以確保成本效率和資源安全。

市場洞察

全球燃料電池堆回收再利用市場成長的主要驅動力

  • 貴金屬的稀有性
  • 各行業越來越多採用燃料電池汽車
  • 回收法的技術進步

燃料電池堆回收方面的技術進步對於提高這個不斷發展的行業的可持續性至關重要。溶劑型回收製程和先進熔煉技術的開發等創新使得更有效地回收有價值的材料成為可能,特別是鉑金和鈀等鉑族金屬 (PGM)。

像 Umicore 這樣的公司正在引入高溫火法冶金工藝,其中加入鈣鹽來安全地捕獲氟化氫等有害副產品,使回收過程更安全、更環保。這些工藝可以回收金屬和非金屬成分,減少對原始材料的需求並支持循環經濟方法。

此外,莊信萬豐等行業領導者開發的基於溶劑和表面活性劑的方法等替代方法提供了有前景的解決方案,無需焚燒。這些進步將使鉑催化劑和其他材料從燃料電池膜中分離出來並重新利用,大大增加燃料電池回收的可行性。

此類創新不僅提高了材料回收率,還減少了與傳統回收方法相關的環境影響,並幫助該行業滿足對永續燃料電池技術不斷增長的需求。

全球燃料電池堆回收再利用市場的主要成長阻礙因素

  • 回收成本高昂
  • 燃料電池回收的技術複雜性

燃料電池中複雜的設計和複雜材料的使用給拆卸帶來了課題,也是高效回收的主要障礙。

成分的分離,尤其是鉑催化劑,通常需要特殊的工藝,既耗時又昂貴,給回收工作帶來了額外的課題。

燃料電池堆回收再利用的全球市場 | 主要趨勢

  • 燃料電池製造商越來越多地採用創新方法來提高回收效率和成本效益。主要進步之一是燃料電池的模組化設計,這使得它們在生命週期結束時可以輕鬆拆卸。模組化組件可以更有效地回收鉑族金屬等關鍵材料,從而簡化回收過程。
  • 政府法規和政策對於推動燃料電池回收技術的採用發揮著至關重要的作用。嚴格的環境法規和綠色技術激勵措施相結合,正在推動企業專注於材料回收和減少廢物。

細分分析

市場細分:按類型、按回收工藝、按最終用途行業

市場類型

  • 聚合物電解質燃料電池(PEMFC)
  • 固態氧化物燃料電池(SOFC)
  • 熔融碳酸鹽燃料電池 (MCFC)
  • 磷酸燃料電池(PAFC)
  • 其他類型

依回收過程劃分的市場

  • 乾回收
  • 濕式冶金回收

濕式冶金製程使用水基化學物質從廢燃料電池堆中回收有價值的金屬。該過程通常涉及浸出,其中酸或其他溶劑溶解金屬成分,然後透過沉澱、溶劑萃取和靜電紡絲等步驟分離和純化金屬。

與依賴高溫的火法冶煉不同,濕式冶煉在低溫下進行,因此消耗的能源較少。該過程可以選擇性地針對特定金屬,例如鉑、鈀和燃料電池中常見的其他有價值的材料,使其成為回收這些有價值資源的有效方法。

由於其對環境影響小且金屬回收效率高,濕式冶金製程在氫燃料電池回收中越來越受歡迎。由於化學環境可以精確控制,回收的金屬純度高,產率高。

此外,所需能源較低,使得濕式冶金方法具有成本效益,特別是隨著對永續回收解決方案的需求增加。此製程產生的有害排放也比火法冶金更少,並且更符合環境法規和永續發展目標。

  • 機械回收
  • 其他回收流程

依最終用途行業劃分的市場

  • 交通
  • 固定發電
  • 便攜式發電

區域分析

基於四大區域的區域調查

  • 北美洲:美國、加拿大
  • 歐洲 德國、英國、法國、義大利、西班牙、波蘭、比利時、其他歐洲
  • 亞太地區:中國、日本、韓國、澳洲/紐西蘭、印度、新加坡、馬來西亞和其他亞太地區。

亞太地區,尤其是日本、韓國和中國,處於燃料電池技術採用的前沿。燃料電池汽車 (FCV) 和固定電力系統的激增增加了對有效回收流程來管理廢棄燃料電池循環的需求。

中國處於領先地位,尤其是在氫能汽車領域,長城汽車等公司將回收製程納入其氫戰略。到 2025 年,中國的目標是在國內基礎設施的支持下,擁有超過 10,000 輛燃料電池汽車,以回收廢棄燃料電池並回收鉑等關鍵材料。

  • 世界其他地區:拉丁美洲、中東/非洲

競爭考量

全球燃料電池堆回收再利用市場的主要參與者

  • 巴拉德動力系統公司
  • 康明斯公司
  • 布魯姆能源公司
  • 斗山公司
  • 甘農和斯科特公司
  • 莊信萬豐公司

這些公司採取的主要策略

  • 2023 年,NedStack 與 ZBT 合作,共同開發氫燃料電池技術並實現產業化,旨在顯著增強兩家公司的能力。此次合作是 2027 年將燃料電池製造能力擴大到 1 吉瓦 (GW) 電堆策略努力的一部分。該合作夥伴關係利用了 ZBT 的燃料電池研究和測試專業知識以及 Nedstack 的先進製造基礎設施,重點是開發用於固定和海上應用的固態聚合物 (PEM) 燃料電池。
  • 莊信萬豐憑藉其 HyRefine 技術在燃料電池堆回收和再利用市場取得了重大進展。這項創新製程於 2023 年 11 月在實驗室規模上宣布,可有效回收廢燃料電池和電解槽中的鉑族金屬 (PGM) 和離聚物。這是世界上首次嘗試實現這些關鍵部件的循環利用。回收材料也已被證明可以與新材料的性能相匹配,提供顯著的可持續性效益並支持循環氫經濟。

我們提供 10% 免費客製化和 3 個月的分析師支援。

常見問題(FAQ):

  • 燃料電池堆回收再利用的市場規模和成長率預測是多少?
  • 答:到 2032 年,全球燃料電池堆回收再利用市場預計將達到 5.3254 億美元,預測期內複合年增長率為 22.36%。
  • 燃料電池堆回收回收的主要材料有哪些?

答:鉑族金屬 (PGM)、鈀 (Pd) 和銠 (Rh) 等鉑族金屬、不銹鋼、鋁以及燃料電池堆中使用的其他結構材料在回收過程中得到回收。

  • 全球燃料電池堆回收再利用市場成長最快的地區在哪裡?

答:亞太地區是全球燃料電池堆回收再利用市場成長最快的地區。

目錄

第1章 調查範圍和調查手法

第2章 摘要整理

  • 市場規模·估計
  • 市場概要
  • 調查範圍
  • 危機情勢分析
  • 主要市場調查結果

第3章 市場動態

  • 主要的促進因素
    • 貴金屬的稀有性
    • 各行業越來越多採用燃料電池汽車
    • 回收法的技術進步
  • 主要的阻礙因素
    • 回收成本高昂
    • 燃料電池回收的技術複雜性

第4章 主要分析

  • 親市場分析
  • 主要市場趨勢
    • 開發適合回收的製造技術
    • 法規促進燃料電池回收並鼓勵對材料回收和永續技術的投資
  • 波特的五力分析
  • 成長預測製圖
    • 北美的成長預測製圖
    • 歐洲的成長展望製圖
    • 亞太地區的成長展望製圖
    • 全球其他地區的成長前景圖
  • 市場成熟度分析
  • 市場集中度分析
  • 價值鏈分析
  • 主要購買標準
    • 成本效益
    • 對環境的影響
    • 法規遵守
    • 技術和流程的效率性
    • 可靠性和一貫性
  • 燃料電池堆回收再利用市場監管框架

第5章 各類型市場

  • 固體高分子形燃料電池(PEMFC)
    • 市場預測圖
    • 市場區隔分析
  • 固體氧化物燃料電池(SOFC)
    • 市場預測圖
    • 市場區隔分析
  • 溶融碳酸鹽燃料電池(MCFC)
    • 市場預測圖
    • 市場區隔分析
  • 磷酸型燃料電池(PAFC)
    • 市場預測圖
    • 市場區隔分析
  • 其他的類型
    • 市場預測圖
    • 市場區隔分析

第6章 回收各流程市場

  • 乾式回收
    • 市場預測圖
    • 市場區隔分析
  • 濕式冶金回收
    • 市場預測圖
    • 市場區隔分析
  • 機器式回收
    • 市場預測圖
    • 市場區隔分析
  • 其他的回收流程
    • 市場預測圖
    • 市場區隔分析

第7章 各最終用途產業市場

  • 運輸
    • 市場預測圖
    • 市場區隔分析
  • 固定式發電
    • 市場預測圖
    • 市場區隔分析
  • 可攜式發電
    • 市場預測圖
    • 市場區隔分析

第8章 地區分析

  • 北美
    • 美國
    • 加拿大
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 波蘭
    • 比利時
    • 其他歐洲
  • 亞太地區
    • 中國
    • 日本
    • 韓國
    • 澳洲·紐西蘭
    • 印度
    • 新加坡
    • 馬來西亞
    • 其他亞太地區
  • 全球其他地區
    • 南美
    • 中東·非洲

第9章 競爭情形

  • 主要策略的發展
    • MERGERS & ACQUISITIONS
    • PRODUCT LAUNCHES & DEVELOPMENTS
    • PARTNERSHIPS & AGREEMENTS
    • BUSINESS EXPANSIONS & DIVESTITURES
  • 企業簡介
    • BALLARD POWER
    • BLOOM ENERGY
    • CUMINS INC
    • DOOSAN CORPORATION
    • GANNON & SCOTT
    • HENSEL RECYCLING
    • JOHNSON MATTHEY
    • NEDSTACK FUEL CELL TECHNOLOGY BV
    • PLUG POWER INC
    • ROBERT BOSCH GMBH
Product Code: 94848

KEY FINDINGS

The global fuel cell stack recycling and reuse market is expected to reach $532.54 million by 2032, growing at a CAGR of 22.36% during the forecast period, 2024-2032. The base year considered for the study is 2023, and the estimated period is between 2024 and 2032. The market study has also analyzed the impact of COVID-19 on the fuel cell stack recycling and reuse market qualitatively and quantitatively.

A fuel cell is an electrochemical device that converts chemical energy from a fuel, typically hydrogen, into electricity through a reaction with oxygen, with water and heat as by-products. Unlike traditional combustion engines, fuel cells offer a cleaner energy alternative, emitting only water vapor instead of harmful pollutants. This makes them highly attractive for various sectors, including transportation, stationary power generation, and portable power applications.

Central to the operation of a fuel cell is the fuel cell stack, which is essentially the heart of the fuel cell system. A fuel cell stack consists of multiple individual fuel cells layered together to generate a higher output of electricity. Each fuel cell contains a membrane electrode assembly (MEA), where the electrochemical reactions take place, separated by bipolar plates that manage the flow of reactants and electrical connections. The key materials involved in the MEA are platinum group metals (PGMs), especially platinum, which serve as catalysts in the reaction process. Other critical components include materials like stainless steel and aluminum that provide structural stability.

Given the reliance on rare and expensive metals like platinum, the recycling and reuse of fuel cell stacks have become a critical focus for the industry. Recycling recovers valuable materials and reduces environmental impacts, while supporting the sustainable scaling of hydrogen technologies. As the hydrogen economy grows, companies are increasingly investing in the recovery and reuse of these key components to ensure cost-efficiency and resource security.

MARKET INSIGHTS

Key enablers of the global fuel cell stack recycling and reuse market growth:

  • Scarcity of precious metals
  • Rising adoption of fuel cell vehicles across industries
  • Technological advancements in recycling methods

Technological advancements in recycling methods for fuel cell stacks are critical to enhancing the sustainability of this growing industry. Innovations such as the development of solvent-based recycling processes and advanced smelting techniques have allowed for more efficient recovery of valuable materials, particularly platinum group metals (PGMs) like platinum and palladium.

Companies like Umicore have implemented high-temperature pyrometallurgical processes, which incorporate calcium salts to safely capture hazardous by-products like hydrogen fluoride, making the recycling process safer and more environmentally friendly. These processes enable the recovery of both metals and non-metallic components, reducing the need for virgin materials and supporting a circular economy approach.

Moreover, alternative methods such as solvent and surfactant-based approaches, as developed by industry leaders like Johnson Matthey, offer promising solutions that avoid the need for incineration. These advancements allow for the separation and reuse of platinum catalysts and other materials from fuel cell membranes, significantly enhancing the viability of fuel cell recycling.

Such innovations not only improve material recovery rates but also reduce the environmental impact associated with traditional recycling methods, positioning the industry to meet the rising demand for sustainable fuel cell technologies.

Key growth restraining factors of the global fuel cell stack recycling and reuse market:

  • High costs associated with recycling
  • Technical complexity of recycling fuel cells

The intricate design and the use of complex materials in fuel cells create challenges for disassembly, posing a major obstacle to efficient recycling.

Separating the components, particularly the platinum catalyst, involves specialized processes that are often time-consuming and expensive, adding further difficulty to recycling efforts.

Global Fuel Cell Stack Recycling and Reuse Market | Top Trends

  • Fuel cell manufacturers are increasingly adopting innovative approaches to make recycling more efficient and cost-effective. One key advancement is the modular design of fuel cells, which allows for easier disassembly at the end of their lifecycle. Modular components simplify the recycling process by enabling the recovery of critical materials, such as platinum group metals, with greater efficiency.
  • Government regulations and policies are playing a pivotal role in driving the adoption of fuel cell recycling technologies. Stringent environmental regulations, coupled with incentives for green technologies, are pushing companies to focus on material recovery and the reduction of waste

SEGMENTATION ANALYSIS

Market Segmentation - Type, Recycling Process, and End Use Industry -

Market by Type:

  • Proton Exchange Membrane Fuel Cells (PEMFCs)
  • Solid Oxide Fuel Cells (SOFCs)
  • Molten Carbonate Fuel Cells (MCFCs)
  • Phosphoric Acid Fuel Cells (PAFCs)
  • Other Types

Market by Recycling Process:

  • Pyrometallurgical Recycling
  • Hydrometallurgical Recycling

The hydrometallurgical process involves the use of aqueous chemistry to recover valuable metals from spent fuel cell stacks. This process typically includes leaching, where acids or other solvents dissolve the metal components, followed by steps like precipitation, solvent extraction, and electro-winning to isolate and purify the metals.

Unlike pyrometallurgy, which relies on high temperatures, hydrometallurgy operates at lower temperatures, making it less energy-intensive. The process is capable of selectively targeting specific metals, such as platinum, palladium, and other precious materials commonly found in fuel cells, making it an effective method for recovering these valuable resources.

Hydrometallurgical processes are more popular in hydrogen fuel cell recycling due to their lower environmental impact and greater efficiency in metal recovery. The ability to precisely control the chemical environment allows for higher purity and better yields of recovered metals.

Additionally, the lower energy requirements make hydrometallurgy more cost-effective, especially as the demand for sustainable recycling solutions grows. The process also generates fewer hazardous emissions compared to pyrometallurgy, aligning better with environmental regulations and sustainability goals

  • Mechanical Recycling
  • Other Recycling Processes

Market by End Use Industry:

  • Transportation
  • Stationary Power Generation
  • Portable Power Generation

REGIONAL ANALYSIS

Geographical Study Based on Four Major Regions:

  • North America: The United States and Canada
  • Europe: Germany, the United Kingdom, France, Italy, Spain, Poland, Belgium, and Rest of Europe
  • Asia-Pacific: China, Japan, South Korea, Australia & New Zealand, India, Singapore, Malaysia, and Rest of Asia-Pacific.

The Asia-Pacific, particularly countries like Japan, South Korea, and China, is at the forefront of adopting fuel cell technology. This widespread deployment of fuel cell vehicles (FCVs) and stationary power systems leads to a growing need for efficient recycling processes to manage the end-of-life cycle of these cells.

China is leading the charge, particularly in the hydrogen vehicle sector, with companies like Great Wall Motor integrating recycling processes into their hydrogen strategy. By 2025, the country aims to have over 10,000 fuel cell vehicles on the road, underpinned by domestic infrastructure for recycling end-of-life fuel cells and recovering critical materials such as platinum.

  • Rest of World: Latin America, the Middle East & Africa

COMPETITIVE INSIGHTS

Major players in the global fuel cell stack recycling and reuse market:

  • Ballard Power Systems Inc
  • Cummins Inc
  • Bloom Energy Corporation
  • Doosan Corporation
  • Gannon & Scott Inc
  • Johnson Matthey Plc

Key strategies adopted by some of these companies:

  • In 2023, Nedstack partnered with ZBT to co-develop and industrialize hydrogen fuel cell technology, aiming to enhance their capabilities significantly. This collaboration is part of a strategic effort to scale up their fuel cell manufacturing capacity to a 1-gigawatt (GW) stack power rating by 2027. The partnership leverages ZBT's expertise in fuel cell research and testing alongside Nedstack's advanced manufacturing infrastructure, with a focus on developing Proton Exchange Membrane (PEM) fuel cells for stationary and maritime applications.
  • Johnson Matthey has demonstrated a significant advancement in the fuel cell stack recycling and reuse market with its HyRefine technology. This innovative process, shown at a lab scale in November 2023, effectively recycles both platinum group metals (PGMs) and ionomers from spent fuel cells and electrolyzers. This marks a world-first in achieving circularity for these critical components. Also, the recycled materials have been proven to match the performance of new materials, offering substantial sustainability benefits and supporting a circular hydrogen economy.

We Offer 10% Free Customization and 3 Months Analyst Support

Frequently Asked Questions (FAQs):

  • What is the projected fuel cell stack recycling and reuse market size and growth rate?
  • A: The global fuel cell stack recycling and reuse market is expected to reach $532.54 million by 2032, growing at a CAGR of 22.36% during the forecast period.
  • What are the key materials recovered in fuel cell stack recycling?

A: Platinum group metals (PGMs) and other PGMs like palladium (Pd) and rhodium (Rh), as well as stainless steel, aluminum, and other structural materials used in the fuel cell stack, are recovered during the recycling process.

  • Which is the fastest-growing region in the global fuel cell stack recycling and reuse market?

A: Asia-Pacific is the fastest-growing region in the global fuel cell stack recycling and reuse market.

TABLE OF CONTENTS

1. RESEARCH SCOPE & METHODOLOGY

  • 1.1. STUDY OBJECTIVES
  • 1.2. METHODOLOGY
  • 1.3. ASSUMPTIONS & LIMITATIONS

2. EXECUTIVE SUMMARY

  • 2.1. MARKET SIZE & ESTIMATES
  • 2.2. MARKET OVERVIEW
  • 2.3. SCOPE OF STUDY
  • 2.4. CRISIS SCENARIO ANALYSIS
    • 2.4.1. IMPACT OF COVID-19 ON THE FUEL CELL STACK RECYCLING AND REUSE MARKET
  • 2.5. MAJOR MARKET FINDINGS
    • 2.5.1. STANDARDIZATION AND DESIGN FOR RECYCLING
    • 2.5.2. PROTON EXCHANGE MEMBRANE FUEL CELLS ARE THE MOST COMMONLY RECYCLED AND REUSED TYPE OF FUEL CELL
    • 2.5.3. PYROMETALLURGICAL RECYCLING IS THE PRIMARY PROCESS UTILIZED FOR FUEL CELL STACK RECYCLING AND REUSE
    • 2.5.4. TRANSPORTATION IS THE LEADING END USE INDUSTRY FOR FUEL CELL STACK RECYCLING AND REUSE

3. MARKET DYNAMICS

  • 3.1. KEY DRIVERS
    • 3.1.1. SCARCITY OF PRECIOUS METALS
    • 3.1.2. RISING ADOPTION OF FUEL CELL VEHICLES ACROSS INDUSTRIES
    • 3.1.3. TECHNOLOGICAL ADVANCEMENTS IN RECYCLING METHODS
  • 3.2. KEY RESTRAINTS
    • 3.2.1. HIGH COSTS ASSOCIATED WITH RECYCLING
    • 3.2.2. TECHNICAL COMPLEXITY OF RECYCLING FUEL CELLS

4. KEY ANALYTICS

  • 4.1. PARENT MARKET ANALYSIS
  • 4.2. KEY MARKET TRENDS
    • 4.2.1. DEVELOPMENT OF RECYCLING-FRIENDLY MANUFACTURING TECHNOLOGIES
    • 4.2.2. REGULATIONS DRIVE FUEL CELL RECYCLING, ENCOURAGING MATERIAL RECOVERY AND SUSTAINABLE TECH INVESTMENTS
  • 4.3. PORTER'S FIVE FORCES ANALYSIS
    • 4.3.1. BUYERS POWER
    • 4.3.2. SUPPLIERS POWER
    • 4.3.3. SUBSTITUTION
    • 4.3.4. NEW ENTRANTS
    • 4.3.5. INDUSTRY RIVALRY
  • 4.4. GROWTH PROSPECT MAPPING
    • 4.4.1. GROWTH PROSPECT MAPPING FOR NORTH AMERICA
    • 4.4.2. GROWTH PROSPECT MAPPING FOR EUROPE
    • 4.4.3. GROWTH PROSPECT MAPPING FOR ASIA-PACIFIC
    • 4.4.4. GROWTH PROSPECT MAPPING FOR REST OF WORLD
  • 4.5. MARKET MATURITY ANALYSIS
  • 4.6. MARKET CONCENTRATION ANALYSIS
  • 4.7. VALUE CHAIN ANALYSIS
    • 4.7.1. RAW MATERIAL PROCUREMENT
    • 4.7.2. FUEL CELL MANUFACTURING
    • 4.7.3. FUEL CELL USAGE
    • 4.7.4. END-OF-LIFE MANAGEMENT
    • 4.7.5. DISMANTLING & RECYCLING
    • 4.7.6. SECONDARY MARKET AND REUSE
    • 4.7.7. DISPOSAL OF NON-RECYCLABLE MATERIALS
  • 4.8. KEY BUYING CRITERIA
    • 4.8.1. COST EFFECTIVENESS
    • 4.8.2. ENVIRONMENTAL IMPACT
    • 4.8.3. REGULATORY COMPLIANCE
    • 4.8.4. TECHNOLOGY AND PROCESS EFFICIENCY
    • 4.8.5. RELIABILITY AND CONSISTENCY
  • 4.9. FUEL CELL STACK RECYCLING AND REUSE MARKET REGULATORY FRAMEWORK

5. MARKET BY TYPE

  • 5.1. PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS)
    • 5.1.1. MARKET FORECAST FIGURE
    • 5.1.2. SEGMENT ANALYSIS
  • 5.2. SOLID OXIDE FUEL CELLS (SOFCS)
    • 5.2.1. MARKET FORECAST FIGURE
    • 5.2.2. SEGMENT ANALYSIS
  • 5.3. MOLTEN CARBONATE FUEL CELLS (MCFCS)
    • 5.3.1. MARKET FORECAST FIGURE
    • 5.3.2. SEGMENT ANALYSIS
  • 5.4. PHOSPHORIC ACID FUEL CELLS (PAFCS)
    • 5.4.1. MARKET FORECAST FIGURE
    • 5.4.2. SEGMENT ANALYSIS
  • 5.5. OTHER TYPES
    • 5.5.1. MARKET FORECAST FIGURE
    • 5.5.2. SEGMENT ANALYSIS

6. MARKET BY RECYCLING PROCESS

  • 6.1. PYROMETALLURGICAL RECYCLING
    • 6.1.1. MARKET FORECAST FIGURE
    • 6.1.2. SEGMENT ANALYSIS
  • 6.2. HYDROMETALLURGICAL RECYCLING
    • 6.2.1. MARKET FORECAST FIGURE
    • 6.2.2. SEGMENT ANALYSIS
  • 6.3. MECHANICAL RECYCLING
    • 6.3.1. MARKET FORECAST FIGURE
    • 6.3.2. SEGMENT ANALYSIS
  • 6.4. OTHER RECYCLING PROCESSES
    • 6.4.1. MARKET FORECAST FIGURE
    • 6.4.2. SEGMENT ANALYSIS

7. MARKET BY END USE INDUSTRY

  • 7.1. TRANSPORTATION
    • 7.1.1. MARKET FORECAST FIGURE
    • 7.1.2. SEGMENT ANALYSIS
  • 7.2. STATIONARY POWER GENERATION
    • 7.2.1. MARKET FORECAST FIGURE
    • 7.2.2. SEGMENT ANALYSIS
  • 7.3. PORTABLE POWER GENERATION
    • 7.3.1. MARKET FORECAST FIGURE
    • 7.3.2. SEGMENT ANALYSIS

8. GEOGRAPHICAL ANALYSIS

  • 8.1. NORTH AMERICA
    • 8.1.1. MARKET SIZE & ESTIMATES
    • 8.1.2. NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.1.3. NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.1.4. KEY PLAYERS IN NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.1.5. COUNTRY ANALYSIS
      • 8.1.5.1. UNITED STATES
      • 8.1.5.1.1. UNITED STATES FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.1.5.2. CANADA
      • 8.1.5.2.1. CANADA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.2. EUROPE
    • 8.2.1. MARKET SIZE & ESTIMATES
    • 8.2.2. EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.2.3. EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.2.4. KEY PLAYERS IN EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.2.5. COUNTRY ANALYSIS
      • 8.2.5.1. GERMANY
      • 8.2.5.1.1. GERMANY FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.2. UNITED KINGDOM
      • 8.2.5.2.1. UNITED KINGDOM FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.3. FRANCE
      • 8.2.5.3.1. FRANCE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.4. ITALY
      • 8.2.5.4.1. ITALY FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.5. SPAIN
      • 8.2.5.5.1. SPAIN FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.6. POLAND
      • 8.2.5.6.1. POLAND FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.7. BELGIUM
      • 8.2.5.7.1. BELGIUM FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.8. REST OF EUROPE
      • 8.2.5.8.1. REST OF EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.3. ASIA-PACIFIC
    • 8.3.1. MARKET SIZE & ESTIMATES
    • 8.3.2. ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.3.3. ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.3.4. KEY PLAYERS IN ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.3.5. COUNTRY ANALYSIS
      • 8.3.5.1. CHINA
      • 8.3.5.1.1. CHINA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.2. JAPAN
      • 8.3.5.2.1. JAPAN FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.3. SOUTH KOREA
      • 8.3.5.3.1. SOUTH KOREA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.4. AUSTRALIA & NEW ZEALAND
      • 8.3.5.4.1. AUSTRALIA & NEW ZEALAND FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.5. INDIA
      • 8.3.5.5.1. INDIA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.6. SINGAPORE
      • 8.3.5.6.1. SINGAPORE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.7. MALAYSIA
      • 8.3.5.7.1. MALAYSIA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.8. REST OF ASIA-PACIFIC
      • 8.3.5.8.1. REST OF ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.4. REST OF WORLD
    • 8.4.1. MARKET SIZE & ESTIMATES
    • 8.4.2. REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.4.3. REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.4.4. KEY PLAYERS IN REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.4.5. REGIONAL ANALYSIS
      • 8.4.5.1. LATIN AMERICA
      • 8.4.5.1.1. LATIN AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.4.5.2. MIDDLE EAST & AFRICA
      • 8.4.5.2.1. MIDDLE EAST & AFRICA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES

9. COMPETITIVE LANDSCAPE

  • 9.1. KEY STRATEGIC DEVELOPMENTS
    • 9.1.1. MERGERS & ACQUISITIONS
    • 9.1.2. PRODUCT LAUNCHES & DEVELOPMENTS
    • 9.1.3. PARTNERSHIPS & AGREEMENTS
    • 9.1.4. BUSINESS EXPANSIONS & DIVESTITURES
  • 9.2. COMPANY PROFILES
    • 9.2.1. BALLARD POWER
      • 9.2.1.1. COMPANY OVERVIEW
      • 9.2.1.2. PRODUCTS
      • 9.2.1.3. STRENGTHS & CHALLENGES
    • 9.2.2. BLOOM ENERGY
      • 9.2.2.1. COMPANY OVERVIEW
      • 9.2.2.2. PRODUCTS
      • 9.2.2.3. STRENGTHS & CHALLENGES
    • 9.2.3. CUMINS INC
      • 9.2.3.1. COMPANY OVERVIEW
      • 9.2.3.2. PRODUCTS
      • 9.2.3.3. STRENGTHS & CHALLENGES
    • 9.2.4. DOOSAN CORPORATION
      • 9.2.4.1. COMPANY OVERVIEW
      • 9.2.4.2. PRODUCTS
      • 9.2.4.3. STRENGTHS & CHALLENGES
    • 9.2.5. GANNON & SCOTT
      • 9.2.5.1. COMPANY OVERVIEW
      • 9.2.5.2. PRODUCTS
      • 9.2.5.3. STRENGTHS & CHALLENGES
    • 9.2.6. HENSEL RECYCLING
      • 9.2.6.1. COMPANY OVERVIEW
      • 9.2.6.2. PRODUCTS
      • 9.2.6.3. STRENGTHS & CHALLENGES
    • 9.2.7. JOHNSON MATTHEY
      • 9.2.7.1. COMPANY OVERVIEW
      • 9.2.7.2. PRODUCTS
      • 9.2.7.3. STRENGTHS & CHALLENGES
    • 9.2.8. NEDSTACK FUEL CELL TECHNOLOGY BV
      • 9.2.8.1. COMPANY OVERVIEW
      • 9.2.8.2. PRODUCTS
      • 9.2.8.3. STRENGTHS & CHALLENGES
    • 9.2.9. PLUG POWER INC
      • 9.2.9.1. COMPANY OVERVIEW
      • 9.2.9.2. PRODUCTS
      • 9.2.9.3. STRENGTHS & CHALLENGES
    • 9.2.10. ROBERT BOSCH GMBH
      • 9.2.10.1. COMPANY OVERVIEW
      • 9.2.10.2. PRODUCTS
      • 9.2.10.3. STRENGTHS & CHALLENGES

LIST OF TABLES

  • TABLE 1: MARKET SNAPSHOT - FUEL CELL STACK RECYCLING
  • TABLE 2: REGULATORY FRAMEWORK
  • TABLE 3: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TYPE, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 4: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TYPE, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 5: GLOBAL PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 6: GLOBAL PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 7: GLOBAL SOLID OXIDE FUEL CELLS (SOFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 8: GLOBAL SOLID OXIDE FUEL CELLS (SOFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 9: GLOBAL MOLTEN CARBONATE FUEL CELLS (MCFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 10: GLOBAL MOLTEN CARBONATE FUEL CELLS (MCFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 11: GLOBAL PHOSPHORIC ACID FUEL CELLS (PAFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 12: GLOBAL PHOSPHORIC ACID FUEL CELLS (PAFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 13: GLOBAL OTHER TYPES MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 14: GLOBAL OTHER TYPES MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 15: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY RECYCLING PROCESS, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 16: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY RECYCLING PROCESS, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 17: GLOBAL PYROMETALLURGICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 18: GLOBAL PYROMETALLURGICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 19: GLOBAL HYDROMETALLURGICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 20: GLOBAL HYDROMETALLURGICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 21: GLOBAL MECHANICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 22: GLOBAL MECHANICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 23: GLOBAL OTHER RECYCLING PROCESSES MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 24: GLOBAL OTHER RECYCLING PROCESSES MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 25: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY END USE INDUSTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 26: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY END USE INDUSTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 27: GLOBAL TRANSPORTATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 28: GLOBAL TRANSPORTATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 29: GLOBAL STATIONARY POWER GENERATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 30: GLOBAL STATIONARY POWER GENERATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 31: GLOBAL PORTABLE POWER GENERATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 32: GLOBAL PORTABLE POWER GENERATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 33: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY GEOGRAPHY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 34: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY GEOGRAPHY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 35: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 36: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 37: KEY PLAYERS OPERATING IN NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 38: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 39: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2020-2032 (IN $ MILLION)
  • TABLE 40: KEY PLAYERS OPERATING IN EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 41: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 42: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 43: KEY PLAYERS OPERATING IN ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 44: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 45: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 46: KEY PLAYERS OPERATING IN REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 47: LIST OF MERGERS & ACQUISITIONS
  • TABLE 48: LIST OF PRODUCT LAUNCHES & DEVELOPMENTS
  • TABLE 49: LIST OF PARTNERSHIPS & AGREEMENTS
  • TABLE 50: LIST OF BUSINESS EXPANSIONS & DIVESTITURES

LIST OF FIGURES

  • FIGURE 1: KEY MARKET TRENDS
  • FIGURE 2: PORTER'S FIVE FORCES ANALYSIS
  • FIGURE 3: GROWTH PROSPECT MAPPING FOR NORTH AMERICA
  • FIGURE 4: GROWTH PROSPECT MAPPING FOR EUROPE
  • FIGURE 5: GROWTH PROSPECT MAPPING FOR ASIA-PACIFIC
  • FIGURE 6: GROWTH PROSPECT MAPPING FOR REST OF WORLD
  • FIGURE 7: MARKET MATURITY ANALYSIS
  • FIGURE 8: MARKET CONCENTRATION ANALYSIS
  • FIGURE 9: VALUE CHAIN ANALYSIS
  • FIGURE 10: KEY BUYING CRITERIA
  • FIGURE 11: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY TYPE, IN 2023
  • FIGURE 12: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 13: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY SOLID OXIDE FUEL CELLS (SOFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 14: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY MOLTEN CARBONATE FUEL CELLS (MCFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 15: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PHOSPHORIC ACID FUEL CELLS (PAFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 16: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY OTHER TYPES, 2024-2032 (IN $ MILLION)
  • FIGURE 17: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY RECYCLING PROCESS, IN 2023
  • FIGURE 18: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PYROMETALLURGICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 19: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY HYDROMETALLURGICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 20: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY MECHANICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 21: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY OTHER RECYCLING PROCESSES, 2024-2032 (IN $ MILLION)
  • FIGURE 22: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY END USE INDUSTRY, IN 2023
  • FIGURE 23: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TRANSPORTATION, 2024-2032 (IN $ MILLION)
  • FIGURE 24: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY STATIONARY POWER GENERATION, 2024-2032 (IN $ MILLION)
  • FIGURE 25: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PORTABLE POWER GENERATION, 2024-2032 (IN $ MILLION)
  • FIGURE 26: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 27: UNITED STATES FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 28: CANADA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 29: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 30: GERMANY FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 31: UNITED KINGDOM FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 32: FRANCE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 33: ITALY FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 34: SPAIN FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 35: POLAND FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 36: BELGIUM FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 37: REST OF EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 38: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN%)
  • FIGURE 39: CHINA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 40: JAPAN FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 41: SOUTH KOREA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 42: AUSTRALIA & NEW ZEALAND FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 43: INDIA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 44: SINGAPORE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 45: MALAYSIA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 46: REST OF ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 47: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, REGIONAL OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 48: LATIN AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 49: MIDDLE EAST & AFRICA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)