封面
市場調查報告書
商品編碼
1611276

太空抗輻射電子市場:依製造技術、零件分類 - 全球預測 2025-2030

Radiation-Hardened Electronics for Space Application Market by Manufacturing Technique (Radiation Hardening by Design, Radiation Hardening by Process ), Component - Global Forecast 2025-2030

出版日期: | 出版商: 360iResearch | 英文 190 Pages | 商品交期: 最快1-2個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

2023年,耐空間輻射電子市場價值為9.3489億美元,預計到2024年將達到9.6292億美元,複合年成長率為6.03%,到2030年將達到14.0923億美元。

抗輻射電子設備對於太空任務的成功至關重要,可以承受宇宙射線和太陽耀斑的極端輻射水平,確保關鍵系統的穩定性和功能。這項技術是必要的,因為它能夠防止地球保護大氣層以外的衛星、太空船和航空電子設備故障。主要應用是商業、民用、軍事和國家安全太空操作。最終用途包括通訊、地球觀測、深空探勘和國防,這些應用依賴在惡劣環境下運作的可靠電子設備。太空探勘活動的活性化、政府和私人對衛星技術的投資以及航太領域的進步正在推動市場成長。政府航太機構和私人公司之間建立夥伴關係可以促進創新和新系統的部署。處理器、儲存設備和積體電路等輻射固化組件的開發機會比比皆是,特別是隨著對能夠承受惡劣條件的高性能、耐用系統的需求迅速增加。然而,市場開拓面臨製造成本高、測試要求嚴格、開發時間長等挑戰,限制了廣泛採用。此外,國際競爭和嚴格的監管可能會給新參與企業設置進入障礙。永續成長可以利用材料科學的進步,例如新型複合材料和半導體技術,並建議投資研究和開發,以較低的成本提高輻射耐受性。與研究機構密切合作並利用人工智慧最佳化設計流程可以加速創新。對小型衛星和商業太空旅行不斷成長的需求為這些高可靠性電子產品創造了新的市場。儘管面臨挑戰,但必須在不犧牲性能的情況下關注小型化和成本效益,以滿足​​不斷發展的航太業對敏捷、可靠解決方案不斷成長的需求。

主要市場統計
基準年[2023] 93489萬美元
預測年份 [2024] 96292萬美元
預測年份 [2030] 1,409.23 百萬美元
複合年成長率(%) 6.03%

市場動態:快速發展的空間耐輻射電子市場的關鍵市場洞察

供需的動態交互作用正在改變太空輻射硬化電子市場。了解這些不斷變化的市場動態可以幫助企業做出明智的投資決策、策略決策並抓住新的商機。全面了解這些趨勢可以幫助企業降低政治、地理、技術、社會和經濟領域的風險,同時消費行為及其對製造成本的影響以及對採購趨勢的影響。

  • 市場促進因素
    • 全球監測、情報和偵察(ISR)活動的增加
    • 衛星發射和深空活動增加
  • 市場限制因素
    • 可輻射固化電子元件的開發設計成本較高
  • 市場機會
    • 活性化對抗輻射電子技術進步的研究
    • 增加空間活動的投資和資金籌措
  • 市場問題
    • 測試抗輻射電子產品的困難

波特五力:駕馭太空抗輻射電子市場的策略工具

波特的五力框架是了解市場競爭格局的重要工具。波特的五力框架描述了評估公司競爭和探索策略機會的清晰方法。該框架可幫助公司評估市場動態並確定新業務的盈利。這些見解使公司能夠利用自己的優勢、解決弱點並避免潛在的挑戰,以確保更強大的市場地位。

PESTLE分析:了解外部對空間輻射加強電子市場的影響

外部宏觀環境因素在塑造耐空間輻射電子市場的性能動態發揮著至關重要的作用。對政治、經濟、社會、技術、法律和環境因素的分析提供了應對這些影響所需的資訊。透過調查 PESTLE 因素,公司可以更了解潛在的風險和機會。這種分析可以幫助公司預測法規、消費者偏好和經濟趨勢的變化,並為他們做出積極主動的決策做好準備。

市場佔有率分析:了解太空抗輻射電子市場的競爭格局

對耐空間輻射電子市場的詳細市場佔有率分析可以對供應商績效進行全面評估。公司可以透過比較收益、客戶群和成長率等關鍵指標來揭示其競爭地位。該分析揭示了市場集中、細分和整合的趨勢,為供應商提供了製定策略決策所需的洞察力,使他們能夠在日益激烈的競爭中佔有一席之地。

FPNV 定位矩陣:耐空間輻射電子市場供應商的績效評估

FPNV 定位矩陣是評估耐空間輻射電子市場供應商的重要工具。此矩陣允許業務組織根據商務策略和產品滿意度評估供應商,從而做出與其目標相符的明智決策。這四個象限使您能夠清晰、準確地分類供應商,並確定最能滿足您的策略目標的合作夥伴和解決方案。

策略分析與建議:在耐空間輻射電子市場中開闢成功之路

對於旨在加強在全球市場的影響力的公司來說,對太空抗輻射電子市場的策略分析至關重要。透過審查關鍵資源、能力和績效指標,公司可以識別成長機會並努力改進。這種方法使您能夠克服競爭格局中的挑戰,利用新的商機並取得長期成功。

該報告對涵蓋關鍵焦點細分市場的市場進行了全面分析。

1. 市場滲透率:詳細檢視當前市場環境,主要企業的廣泛資料,評估其在市場中的影響力和整體影響力。

2. 市場開拓:辨識新興市場的成長機會,評估現有細分市場的擴張潛力,並提供未來成長的策略藍圖。

3. 市場多元化:分析近期產品發布、開拓地區、主要產業進展、塑造市場的策略投資。

4. 競爭評估與情報:徹底分析競爭格局,檢驗市場佔有率、業務策略、產品系列、認證、監理核准、專利趨勢、主要企業的技術進步等。

5. 產品開發與創新:重點在於有望推動未來市場成長的最尖端科技、研發活動和產品創新。

我們也回答重要問題,以幫助相關人員做出明智的決策。

1.目前的市場規模和未來的成長預測是多少?

2. 哪些產品和地區提供最佳投資機會?

3.塑造市場的關鍵技術趨勢和監管影響是什麼?

4.主要廠商的市場佔有率和競爭地位如何?

5. 推動供應商市場進入和退出策略的收益來源和策略機會是什麼?

目錄

第1章 前言

第2章調查方法

第3章執行摘要

第4章市場概況

第5章市場洞察

  • 市場動態
    • 促進因素
      • 全球監控、情報收集和偵察 (ISR) 活動增加
      • 衛星發射和深空活動增加
    • 抑制因素
      • 與抗輻射電子元件相關的高成本開發與設計
    • 機會
      • 對抗輻射電子產品進展的深入研究
      • 太空活動的投資和籌資活動增加
    • 任務
      • 電子設備抗輻射測試的困難點
  • 市場區隔分析
  • 波特五力分析
  • PESTEL分析
    • 政治
    • 經濟
    • 社會
    • 科技
    • 法律
    • 環境

第6章 空間輻射加強電子市場:依製造技術分類

  • 介紹
  • 抗輻射設計 (RHBD)
  • 依製程進行輻射硬化 (RHBP)

第7章 空間輻射加強電子市場:依組成部分

  • 介紹
  • 記憶
  • 電源管理
  • 處理器和控制器

第8章北美和南美的太空輻射加強電子市場

  • 介紹
  • 阿根廷
  • 巴西
  • 加拿大
  • 墨西哥
  • 美國

第9章亞太空間抗輻射電子市場

  • 介紹
  • 澳洲
  • 中國
  • 印度
  • 印尼
  • 日本
  • 馬來西亞
  • 菲律賓
  • 新加坡
  • 韓國
  • 台灣
  • 泰國
  • 越南

第10章 歐洲、中東和非洲的太空抗輻射電子市場

  • 介紹
  • 丹麥
  • 埃及
  • 芬蘭
  • 法國
  • 德國
  • 以色列
  • 義大利
  • 荷蘭
  • 奈及利亞
  • 挪威
  • 波蘭
  • 卡達
  • 俄羅斯
  • 沙烏地阿拉伯
  • 南非
  • 西班牙
  • 瑞典
  • 瑞士
  • 土耳其
  • 阿拉伯聯合大公國
  • 英國

第11章競爭格局

  • 2023 年市場佔有率分析
  • FPNV 定位矩陣,2023
  • 競爭情境分析
  • 戰略分析和建議

公司名單

  • Advanced Micro Devices, Inc.
  • Analog Devices, Inc.
  • Arquimea Group, SA
  • BAE Systems PLC
  • City Labs Inc.
  • Cobham Advanced Electronic Solutions
  • Data Device Corporation by Transdigm Group, Inc.
  • Everspin Technologies Inc.
  • Honeywell International Inc.
  • Infineon Technologies AG
  • Mercury Systems, Inc.
  • Microchip Technology Inc.
  • PCB Piezotronics, Inc.
  • Presto Engineering, Inc.
  • pSemi Corporation by Murata Manufacturing Co., Ltd.
  • Renesas Electronics Corporation
  • Saphyrion Sagl
  • Semiconductor Components Industries, LLC
  • STMicroelectronics International NV
  • Synopsys, Inc.
  • Teledyne Technologies Incorporated
  • Texas Instruments Incorporated
  • TT Electronics PLC
  • TTM Technologies, Inc.
  • VORAGO Technologies
Product Code: MRR-5C6F41F5B017

The Radiation-Hardened Electronics for Space Application Market was valued at USD 934.89 million in 2023, expected to reach USD 962.92 million in 2024, and is projected to grow at a CAGR of 6.03%, to USD 1,409.23 million by 2030.

Radiation-hardened electronics are integral to the successful operation of space missions, where they endure extreme radiation levels from cosmic rays and solar flares, ensuring the stability and functionality of critical systems. This technology is necessary due to its ability to prevent failures in satellites, spacecraft, and avionics beyond the Earth's protective atmosphere. The primary applications are found in commercial, civil, military, and national security space operations. The end-use scope is extensive, including telecommunications, Earth observation, deep-space exploration, and defense applications, which rely on these reliable electronics to function in challenging environments. The market is poised for growth driven by increased space exploration activities, government and private investment in satellite technologies, and advancements in the aerospace sector. Establishing collaborations between government space agencies and private companies enhances innovation and the deployment of newer systems. Notably, opportunities abound in developing radiation-hardened components like processors, memory devices, and integrated circuits, as demand surges for higher-performing, durable systems that can withstand harsh conditions. However, market expansion faces challenges such as high manufacturing costs, stringent testing requirements, and lengthy development timelines, limiting broader adoption. Additionally, international competition and stringent regulations can pose barriers to entry for emerging players. For sustainable growth, it is recommended to invest in research and development to refine radiation tolerance at lower costs, potentially leveraging materials science advancements, such as new composite materials or semiconductor technologies. Collaborating closely with research institutions and using AI to optimize design processes could fuel innovation. Rising demand for small satellites and commercial space tourism presents fresh markets for these high-reliability electronics. Despite the challenges, a focus on miniaturization and improving cost-effectiveness without compromising performance is vital, catering to increasing demand for agile, reliable solutions in the evolving aerospace landscape.

KEY MARKET STATISTICS
Base Year [2023] USD 934.89 million
Estimated Year [2024] USD 962.92 million
Forecast Year [2030] USD 1,409.23 million
CAGR (%) 6.03%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Radiation-Hardened Electronics for Space Application Market

The Radiation-Hardened Electronics for Space Application Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing surveillance, intelligence, and reconnaissance (ISR) operations globally
    • Growing satellite launches and deep space activities
  • Market Restraints
    • High cost development and designing associated with radiation-hardened electronic components
  • Market Opportunities
    • Robust research on advancing radiation-hardened electronics
    • Rising investments and funding activities for space activities
  • Market Challenges
    • Difficulties in testing of radiation-hardened electronics

Porter's Five Forces: A Strategic Tool for Navigating the Radiation-Hardened Electronics for Space Application Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Radiation-Hardened Electronics for Space Application Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Radiation-Hardened Electronics for Space Application Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Radiation-Hardened Electronics for Space Application Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Radiation-Hardened Electronics for Space Application Market

A detailed market share analysis in the Radiation-Hardened Electronics for Space Application Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Radiation-Hardened Electronics for Space Application Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Radiation-Hardened Electronics for Space Application Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Radiation-Hardened Electronics for Space Application Market

A strategic analysis of the Radiation-Hardened Electronics for Space Application Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Radiation-Hardened Electronics for Space Application Market, highlighting leading vendors and their innovative profiles. These include Advanced Micro Devices, Inc., Analog Devices, Inc., Arquimea Group, SA, BAE Systems PLC, City Labs Inc., Cobham Advanced Electronic Solutions, Data Device Corporation by Transdigm Group, Inc., Everspin Technologies Inc., Honeywell International Inc., Infineon Technologies AG, Mercury Systems, Inc., Microchip Technology Inc., PCB Piezotronics, Inc., Presto Engineering, Inc., pSemi Corporation by Murata Manufacturing Co., Ltd., Renesas Electronics Corporation, Saphyrion Sagl, Semiconductor Components Industries, LLC, STMicroelectronics International N.V., Synopsys, Inc., Teledyne Technologies Incorporated, Texas Instruments Incorporated, TT Electronics PLC, TTM Technologies, Inc., and VORAGO Technologies.

Market Segmentation & Coverage

This research report categorizes the Radiation-Hardened Electronics for Space Application Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Manufacturing Technique, market is studied across Radiation Hardening by Design (RHBD) and Radiation Hardening by Process (RHBP).
  • Based on Component, market is studied across Memory, Power Management, and Processors & Controllers.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing surveillance, intelligence, and reconnaissance (ISR) operations globally
      • 5.1.1.2. Growing satellite launches and deep space activities
    • 5.1.2. Restraints
      • 5.1.2.1. High cost development and designing associated with radiation-hardened electronic components
    • 5.1.3. Opportunities
      • 5.1.3.1. Robust research on advancing radiation-hardened electronics
      • 5.1.3.2. Rising investments and funding activities for space activities
    • 5.1.4. Challenges
      • 5.1.4.1. Difficulties in testing of radiation-hardened electronics
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Radiation-Hardened Electronics for Space Application Market, by Manufacturing Technique

  • 6.1. Introduction
  • 6.2. Radiation Hardening by Design (RHBD)
  • 6.3. Radiation Hardening by Process (RHBP)

7. Radiation-Hardened Electronics for Space Application Market, by Component

  • 7.1. Introduction
  • 7.2. Memory
  • 7.3. Power Management
  • 7.4. Processors & Controllers

8. Americas Radiation-Hardened Electronics for Space Application Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Radiation-Hardened Electronics for Space Application Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Radiation-Hardened Electronics for Space Application Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Advanced Micro Devices, Inc.
  • 2. Analog Devices, Inc.
  • 3. Arquimea Group, SA
  • 4. BAE Systems PLC
  • 5. City Labs Inc.
  • 6. Cobham Advanced Electronic Solutions
  • 7. Data Device Corporation by Transdigm Group, Inc.
  • 8. Everspin Technologies Inc.
  • 9. Honeywell International Inc.
  • 10. Infineon Technologies AG
  • 11. Mercury Systems, Inc.
  • 12. Microchip Technology Inc.
  • 13. PCB Piezotronics, Inc.
  • 14. Presto Engineering, Inc.
  • 15. pSemi Corporation by Murata Manufacturing Co., Ltd.
  • 16. Renesas Electronics Corporation
  • 17. Saphyrion Sagl
  • 18. Semiconductor Components Industries, LLC
  • 19. STMicroelectronics International N.V.
  • 20. Synopsys, Inc.
  • 21. Teledyne Technologies Incorporated
  • 22. Texas Instruments Incorporated
  • 23. TT Electronics PLC
  • 24. TTM Technologies, Inc.
  • 25. VORAGO Technologies

LIST OF FIGURES

  • FIGURE 1. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET RESEARCH PROCESS
  • FIGURE 2. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, 2023 VS 2030
  • FIGURE 3. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 4. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 5. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 6. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2023 VS 2030 (%)
  • FIGURE 7. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 8. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2023 VS 2030 (%)
  • FIGURE 9. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 10. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 11. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 12. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY STATE, 2023 VS 2030 (%)
  • FIGURE 13. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 14. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 15. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 16. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 17. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 18. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SHARE, BY KEY PLAYER, 2023
  • FIGURE 19. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET, FPNV POSITIONING MATRIX, 2023

LIST OF TABLES

  • TABLE 1. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2023
  • TABLE 3. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, 2018-2030 (USD MILLION)
  • TABLE 4. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 5. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 6. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET DYNAMICS
  • TABLE 7. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 8. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY RADIATION HARDENING BY DESIGN (RHBD), BY REGION, 2018-2030 (USD MILLION)
  • TABLE 9. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY RADIATION HARDENING BY PROCESS (RHBP), BY REGION, 2018-2030 (USD MILLION)
  • TABLE 10. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 11. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MEMORY, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 12. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY POWER MANAGEMENT, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 13. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY PROCESSORS & CONTROLLERS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 14. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 15. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 16. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 17. ARGENTINA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 18. ARGENTINA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 19. BRAZIL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 20. BRAZIL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 21. CANADA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 22. CANADA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 23. MEXICO RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 24. MEXICO RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 25. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 26. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 27. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY STATE, 2018-2030 (USD MILLION)
  • TABLE 28. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 29. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 30. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 31. AUSTRALIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 32. AUSTRALIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 33. CHINA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 34. CHINA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 35. INDIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 36. INDIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 37. INDONESIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 38. INDONESIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 39. JAPAN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 40. JAPAN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 41. MALAYSIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 42. MALAYSIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 43. PHILIPPINES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 44. PHILIPPINES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 45. SINGAPORE RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 46. SINGAPORE RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 47. SOUTH KOREA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 48. SOUTH KOREA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 49. TAIWAN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 50. TAIWAN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 51. THAILAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 52. THAILAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 53. VIETNAM RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 54. VIETNAM RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 55. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 56. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 57. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 58. DENMARK RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 59. DENMARK RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 60. EGYPT RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 61. EGYPT RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 62. FINLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 63. FINLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 64. FRANCE RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 65. FRANCE RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 66. GERMANY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 67. GERMANY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 68. ISRAEL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 69. ISRAEL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 70. ITALY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 71. ITALY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 72. NETHERLANDS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 73. NETHERLANDS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 74. NIGERIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 75. NIGERIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 76. NORWAY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 77. NORWAY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 78. POLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 79. POLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 80. QATAR RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 81. QATAR RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 82. RUSSIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 83. RUSSIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 84. SAUDI ARABIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 85. SAUDI ARABIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 86. SOUTH AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 87. SOUTH AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 88. SPAIN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 89. SPAIN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 90. SWEDEN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 91. SWEDEN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 92. SWITZERLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 93. SWITZERLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 94. TURKEY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 95. TURKEY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 96. UNITED ARAB EMIRATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 97. UNITED ARAB EMIRATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 98. UNITED KINGDOM RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 99. UNITED KINGDOM RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 100. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SHARE, BY KEY PLAYER, 2023
  • TABLE 101. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET, FPNV POSITIONING MATRIX, 2023