封面
市場調查報告書
商品編碼
1198559

合成氣衍生物市場 - COVID-19 的增長、趨勢、影響和預測 (2023-2028)

Syngas Derivatives Market - Growth, Trends, and Forecasts (2023 - 2028)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

在預測期內,合成氣衍生品市場的複合年增長率預計將超過 9%。

COVID-19 疫情讓全球合成氣和衍生品市場倖免於難。 由於燃料需求下降,許多合成氣和衍生物生產單位因供應鏈中斷而中斷。 此外,對塑料的需求不斷增長,尤其是在醫療保健領域和個人防護設備領域,推動了化工行業對合成氣和衍生物市場的需求。

主要亮點

  • 短期內,環境限制的增加和清潔技術的出現可能會推動對合成氣和衍生物的需求增加。 由於全球污染水平很高,許多政府都鼓勵其公民採用清潔技術。 這些概念和活動有望促進全球市場的蓬勃發展。 合成氣及衍生物的研發活動也有望推動該業務的發展。 公司大量投資於研發以增加收入。 預計大量投資將長期推動全球市場發展,並在預測期內推動市場增長。
  • 但是,限制合成氣和衍生物市場增長的因素包括資本成本高以及使用最先進的氣化技術建造運營工廠所需的時間。
  • 但是,快速城市化、基礎設施發展、石油和天然氣行業的發現等是減緩整個行業增長的關鍵因素,並在預測期內賦予其巨大潛力。
  • 就收入和預測而言,預計亞太地區將在預測期內主導全球市場,在全球合成氣衍生品市場中佔據最高市場份額。

合成氣衍生物的市場趨勢

運輸燃料佔據重要市場份額

  • 在預測期內,運輸燃料領域預計將以 10.3% 的複合年增長率增長。 隨著航空業從化石能源向可持續能源過渡,可將溫室氣體排放量減少高達 100% 的電轉液 (PtL) 燃料可能成為一種可行的選擇。
  • 鉑液化燃料由兩個基本過程製成:燃料合成和甲醇到噴氣的轉化。 兩者都需要生產“合成氣”,一種一氧化碳和氫氣的混合物。
  • 可使用共電解和逆向水煤氣變換來生產合成氣。 共電解不需要單獨生產氫氣。 RWGS需要可再生氫或低碳氫作為生成合成氣的先決條件,而共電解可以在單一過程中生成合成氣。
  • 如果共電解作為合成氣生產的一個階段成熟。 如果是這樣,它應該比 RWGS 有一些優勢,例如由於氫氣和合成氣合成階段的成本節省而降低了燃料生產成本。 通過與熱回收和燃料合成階段相結合,共電解有可能成為更高效的過程。 除了這兩種方法之外,還有幾家公司正在試驗新的可能改變遊戲規則的技術。
  • 低碳、可再生氫氣生產方面的進步對於鉑族價值鏈的成熟也至關重要。 將氫氣的標準化成本降低至低於 1 美元/千克(包括可再生能源輸入,不包括運輸和配送)將導致鉑金成本為每噸 1,200-1,800 美元,具體取決於碳源,到 2030 年,平均價格將下降 40%。 這仍然比化石噴氣燃料貴,但比替代 SAF 更實惠。
  • 低碳氫,稱為“藍色”,主要通過碳捕獲和儲存從天然氣中獲得,而從可再生能源中獲得的“綠色”氫是從可再生能源中獲得的。 低碳氫目前比可再生氫更便宜,可以用作加速 PtL 縮放的過渡技術。
  • 雖然低碳氫的生產成本有所下降,但生產鉑族金屬需要在製氫過程和燃料合成階段兩次吸收二氧化碳。 這是低效的,因此可再生氫可能是長期鉑族生產的首選。
  • 要將鉑金解決方案的投入價格保持在每兆瓦時 15-20 美元以下,就需要並且將需要快速研究和開發可再生能源以及超出預期的成本降低。 鉑族噴氣燃料的年產量預計將從 2025 年的約 10 萬噸擴大到 2035 年的 10-1.05 億噸,有可能在 10 年內增長 1000 倍以上。 為滿足對液態鉑的需求,2022 年至 2050 年間可能需要 3 萬億至 4 萬億美元的重大資本投資。 由於鉑族金屬屬於資本密集型,投資者無疑將在擴大生產中發揮關鍵作用。
  • 根據英國石油公司 (BP) 的數據,2021 年全球石油消費量達到每天 9410 萬桶。 這比前一年高出 6% 以上,當時由於大流行導致的旅行限制減少了對運輸燃料的需求,全球石油消費量下降。
  • 上述所有因素都可能在未來幾年支持所研究市場的需求。

亞太地區主導市場

  • 合成氣衍生品市場在市場份額和市場收入方面以亞太地區為主。 預計該地區將在預測期內保持主導地位。
  • 城市化進程加快、基礎設施建設、石油和天然氣工業的發現以及豐富的煤炭和天然氣儲量預計將使亞太地區在未來幾年保持領先地位。
  • 根據 CHEManager (Chemdata International) 的數據,中國將在 2021 年成為世界第三大化學品出口國,按價值計算佔全球化學品出口的 9.6%。
  • 根據美國地質調查局的數據,2021 年全球氨產量約為 1.5 億噸。 東亞合成氨產量最大,約6460萬噸。 中國是世界上最大的合成氨生產國。 預計到 2021 年,該亞洲國家的氨產量將超過 3900 萬噸含氮氨。 其次是俄羅斯、美國和印度,產量都在1000萬噸以上。
  • 根據國別國際貿易統計年鑑 (HS),2021 年商品類別 290511“Methanol(甲醇)”的進口值為 38.6 億美元。 產品類別290511“Methanol(甲醇)”的銷售額增加了11.7億美元。 2020年我國商品組290511進口額折合26.8億美元。
  • 中國目前是世界上最重要的氫氣生產國,年產量超過 3300 萬噸。 2022 年 3 月 23 日,隨著政府努力實現碳峰值中和目標,中國當局宣布了 2021-2035 年的氫能增長計劃。
  • 根據國家發改委和國家能源局聯合公佈的規劃,到 2025 年,我國將形成較為完備的氫能產業發展體系。 大幅提升創新能力,基本掌握核心技術和製造工藝。
  • 預計到 2025 年,可再生能源的年產氫量將達到 100,000 至 200,000 噸,成為新氫能源消耗的重要因素,每年產生 1 至 200 萬噸二氧化碳,從而減少排放。
  • 中國的目標是到 2030 年實現可接受且有序的工業架構,並推廣可再生氫能發電,堅定支持碳達峰目標。
  • 根據該計劃,到 2035 年,可再生能源生產的氫氣在終端能源消耗中的份額將大幅增加,從而支持國家的綠色能源革命。
  • 氫氣通常是二次能源,需要輸入一次能源才能大規模生產。 根據來源不同,氫氣分為三種類型:灰色、藍色和綠色,而綠色氫氣是唯一一種以氣候穩定的方式生產並具有減少排放潛力的形式。
  • 因此,由於上述所有原因,預計未來亞太地區對合成氣衍生品市場的需求將會增加。

合成氣衍生物市場競爭對手分析

合成氣衍生品市場本質上是部分分散的。 市場上的主要製造商包括 BASF SE、CF Industries Holdings, Inc、Dow Inc、Shell PLC、SynGas Technology, LLC 等(排名不分先後)。

其他好處

  • Excel 格式的市場預測 (ME) 表
  • 三個月的分析師支持

內容

第1章介紹

  • 調查先決條件
  • 調查範圍

第2章研究方法論

第 3 章執行摘要

第4章市場動態

  • 司機
    • 環境法規和清潔技術的興起
    • 致力於合成氣及衍生物的研發
  • 約束因素
    • 建造一個採用最先進氣化技術的工作工廠需要大量的資本成本和時間
    • 其他約束
  • 工業價值鏈分析
  • 行業吸引力 - 波特五力分析
    • 供應商的議價能力
    • 買家的議價能力
    • 新進入者的威脅
    • 替代品的威脅
    • 競爭程度

第 5 章市場細分

  • 主要組成部分
    • 甲醇
    • 二甲醚
    • 含氧化學品
    • 氫氣
  • 導數
    • 甲醛
    • 甲醇-烯烴 (MTO)/甲醇-丙烯 (MTP)
    • 甲基叔丁基醚 (MTBE)/叔戊基甲基醚 (TAME)
    • 對苯二甲酸二甲酯 (DMT)
    • 醋酸
    • 二甲醚
    • 甲基丙烯酸甲酯 (MMA)
  • 用法
    • 氣霧劑產品
    • 液化石油氣混合物
    • 發電燃料
    • 運輸燃料
    • 丙烯酸酯
    • 乙二醇醚
    • 醋酸纖維
    • 潤滑劑
    • 樹脂
    • 其他用途
  • 最終用戶行業
    • 農業部門
    • 纖維
    • 礦業
    • 醫藥
    • 冰雪奇緣
    • 化學品
    • 交通
    • 能量
    • 細化
    • 焊接和金屬加工
    • 其他最終用戶行業
  • 按地區
    • 亞太地區
      • 中國
      • 印度
      • 日本
      • 韓國
      • 其他亞太地區
    • 北美
      • 美國
      • 加拿大
      • 墨西哥
    • 歐洲
      • 德國
      • 英國
      • 法國
      • 意大利
      • 其他歐洲
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲
    • 中東
      • 南非
      • 沙特阿拉伯
      • 其他中東地區

第6章競爭格局

  • 併購、合資企業、合作、合同
  • 市場排名分析
  • 主要參與者的策略
  • 公司簡介
    • Air Liquide Global E&C Solutions
    • Air Products and Chemicals, Inc.
    • BASF SE
    • CF Industries Holdings, Inc.
    • Chiyoda Corporation
    • Dow Inc.
    • General Electric Company
    • Haldor Topsoe A/S
    • Linde AG(The Linde Group)
    • Methanex Corporation
    • Nutrien Ltd.
    • Sasol Limited
    • Shell PLC
    • Siemens AG
    • SynGas Technology, LLC
    • Synthesis Energy Systems, Inc
    • TechnipFMC PLC

第7章市場機會與未來趨勢

  • 快速城市化、基礎設施發展、石油和天然氣工業的發現
簡介目錄
Product Code: 93443

The Syngas Derivatives market is anticipated to register a CAGR of over 9% during the forecast period. The COVID-19 epidemic spared the syngas and derivatives market across the globe. The number of syngas and derivatives production units was disrupted due to interruptions in the supply chain caused by low fuel demand. Furthermore, the need for plastic expanded, particularly in the healthcare sector and personal protection equipment, raising the demand for the chemical sector's syngas and derivatives market.

Key Highlights

  • Over the short term, growing environmental constraints and the emergence of clean technologies can be attributed to the increased demand for syngas and derivatives. Because of the high pollution levels worldwide, governments in many nations are encouraging citizens to embrace clean technologies. These concepts and activities will likely contribute to the global market's bright future in terms of growth. R&D initiatives in syngas and derivatives are also expected to help the business develop. Businesses invest considerably in R&D to increase their income. Massive investments will likely boost the global market in the long run and drive market growth during the forecast period.
  • However, some impediments to syngas and derivatives market growth include substantial capital costs and the time required to build an operating plant with cutting-edge gasification techniques.
  • Nevertheless, rapid urbanization, infrastructure development, and discoveries in the oil & gas industry are some significant factors contributing to cushioning overall industry growth and giving substantial potential in the forecast period.
  • Regarding revenue, Asia-Pacific is expected to dominate the global market during the forecast period and includes the highest market share in the worldwide syngas derivatives market.

Syngas Derivatives Market Trends

Transportation Fuel include a Substantial Market Share

  • During the forecast period, the transportation fuel segment is expected to rise at a CAGR of 10.3%. Power-to-liquid (PtL) fuel may emerge as a practical option as aviation moves from fossil to sustainable energies, with up to 100% reductions in greenhouse gas emissions.
  • PtL fuels are created by two fundamental processes: fuel synthesis and methanol to jet. Both need synthesis gas generation, sometimes known as "syngas," a mixture of carbon monoxide and hydrogen.
  • Co-electrolysis or reverse water gas shift can be used to produce syngas. The co-electrolysis process eliminates the need for separate hydrogen production. It generates syngas in a single step, whereas RWGS requires renewable or low-carbon hydrogen as a prerequisite for generating syngas.
  • Suppose co-electrolysis can mature as a syngas-generation phase. In that case, it will have several advantages over RWGS, including lower levelized fuel production costs due to cost savings from the combined hydrogen and syngas production phases. Co-electrolysis include the potential to be a more efficient process due to heat recovery and integration with the fuel synthesis stage. Aside from these two approaches, several companies are experimenting with novel and potentially game-changing technology.
  • Low-carbon and renewable hydrogen generation advances will also be crucial to the PtL value chain maturation. Lowering the levelized hydrogen cost to less than USD 1 per kg (including renewable energy input but excluding transport and distribution) would reduce the cost of PtL to USD 1,200 to USD 1,800 per ton, depending on the carbon source, resulting in a 40% reduction in average price by 2030. While this is still more expensive than fossil jet fuel, it is more affordable than alternative SAFs.
  • Low-carbon hydrogen, often known as "blue," is mainly derived from natural gas through carbon capture and storage, whereas renewable or "green" hydrogen is derived from renewable energy. Low-carbon hydrogen is now less expensive than renewable hydrogen and can be used as a transition technology to speed up PtL scaling.
  • Even though low-carbon hydrogen lowered the production costs, generating PtL requires absorbing CO2 twice: once during the hydrogen generation process and again during the fuel synthesis stage. Renewable hydrogen can be prioritized for long-term PtL production because this is inefficient.
  • Rapid R&D and faster-than-anticipated cost declines for renewable energy are required today and in the future to reduce PtL input prices to less than USD 15 to USD 20 per MWh. Annual PtL jet fuel output is predicted to expand from roughly 100,000 tons announced through 2025 to ten million to 105 million tons by 2035, representing a potential thousand-fold increase within a decade. Significant capital will be necessary to meet PtL demand-possibly USD 3 trillion to USD 4 trillion between 2022 and 2050. Because of the capital intensity of PtL, investors will undoubtedly play a significant role in production expansion.
  • According to British Petroleum (BP), in 2021, global oil consumption reached 94.1 million barrels per day. There was an increase of more than 6% over the previous year when worldwide oil consumption fell due to pandemic-enforced mobility limitations, which reduced transportation fuel demand.
  • All the above factors will likely support the demand for the studied market in the coming years.

Asia-Pacific Region to Dominate the Market

  • Asia-Pacific dominates the syngas derivatives market in terms of market share and market revenue. The region is set to continue its dominance over the forecast period.
  • Due to the significant availability of coal and natural gas reserves, as well as expanding urbanization, infrastructure development, and discoveries in the oil and gas industry, Asia Pacific will likely maintain its leadership position in the following years.
  • According to CHEManager (Chemdata International), China was the world's third-largest chemical exporting nation in 2021, accounting for 9.6% of worldwide chemical exports in terms of value.
  • According to US Geological Survey, the global ammonia output in 2021 is around 150 million metric tons. East Asia produced the most ammonia, with about 64.6 million metric tons. China is the world's biggest ammonia producer. The Asian country's ammonia production was anticipated to be over 39 million metric tons of contained nitrogen in 2021. It was followed by Russia, the United States, and India, all of which produced more than 10 million tons.
  • According to Annual International Trade Statistics by Country (HS), the value of imports of commodity category 290511, "Methanol (methyl alcohol)," totaled USD 3.86 billion in 2021. Sales of commodity category 290511 "Methanol (methyl alcohol)" increased by USD 1.17 billion. In 2020, the value of commodity group 290511 imports to China equaled USD 2.68 billion.
  • China is currently the world's most significant hydrogen producer, with an annual output of over 33 million metric tons. On 23 March 2022, Chinese authorities issued a plan for the growth of hydrogen energy for 2021-2035 as the government works toward its carbon peaking and neutrality goals.
  • According to a plan jointly released by the National Development and Reform Commission and the National Energy Administration, China will implement a relatively complete hydrogen energy industry development system by 2025. It is combined with the innovation capability significantly improved, and the core technologies and manufacturing processes essentially mastered.
  • Annual hydrogen production from renewable energy is estimated to reach 100,000 to 200,000 metric tons by 2025, becoming a significant element of new hydrogen energy consumption and allowing for a 1 million to 2 million metric tons decrease in carbon dioxide emissions annually.
  • China is aiming for an acceptable and orderly industrial architecture by 2030, as well as widespread usage of hydrogen generation from renewable energy, to provide firm support for the carbon peaking goal.
  • According to the plan, by 2035, the share of hydrogen produced from renewable energy in terminal energy consumption will have increased dramatically, supporting the country's green energy revolution.
  • Hydrogen is a secondary energy source that usually requires primary energy input to be created on a large scale. Hydrogen can be gray, blue, or green depending on its source, and green hydrogen is the only form created in a climate-neutral manner that could cut emissions.
  • As a result, all the causes above are projected to increase demand for the syngas derivatives market in the Asia-Pacific region in the future.

Syngas Derivatives Market Competitor Analysis

The Syngas Derivatives Market is partially fragmented in nature. Some major manufacturers in the market include BASF SE, CF Industries Holdings, Inc., Dow Inc., Shell PLC, SynGas Technology, LLC, and others (in no particular order).

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Drivers
    • 4.1.1 Growing Environmental Constraints, as well as the Emergence of Clean Technologies
    • 4.1.2 Initiatives in Syngas and Derivatives R&D
  • 4.2 Restraints
    • 4.2.1 Substantial Capital Costs and the Time Required to Build an Operating Plant with Cutting-Edge Gasification Techniques
    • 4.2.2 Other Restraints
  • 4.3 Industry Value-Chain Analysis
  • 4.4 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.4.1 Bargaining Power of Suppliers
    • 4.4.2 Bargaining Power of Buyers
    • 4.4.3 Threat of New Entrants
    • 4.4.4 Threat of Substitute Products and Services
    • 4.4.5 Degree of Competition

5 MARKET SEGMENTATION

  • 5.1 Primary Constituents
    • 5.1.1 Methanol
    • 5.1.2 Dimethyl Ether
    • 5.1.3 Ammonia
    • 5.1.4 Oxo Chemicals
    • 5.1.5 Hydrogen
  • 5.2 Derivatives
    • 5.2.1 Formaldehyde
    • 5.2.2 Methanol-to-olefins (MTO)/Methanol-to-Propylene (MTP)
    • 5.2.3 Methyl Tert-butyl Ether (MTBE)/ Tertiary Amyl Methyl Ether (TAME)
    • 5.2.4 Dimethyl Terephthalate (DMT)
    • 5.2.5 Acetic Acid
    • 5.2.6 Dimethyl Ether (DME)
    • 5.2.7 Methyl Methacrylate (MMA)
  • 5.3 Application
    • 5.3.1 Aerosol Products
    • 5.3.2 LPG Blending
    • 5.3.3 Power Generation
    • 5.3.4 Transportation Fuel
    • 5.3.5 Acrylates
    • 5.3.6 Glycol Ethers
    • 5.3.7 Acetates
    • 5.3.8 Lubes
    • 5.3.9 Resins
    • 5.3.10 Other Applications
  • 5.4 End-User Industry
    • 5.4.1 Agriculture
    • 5.4.2 Textiles
    • 5.4.3 Mining
    • 5.4.4 Pharmaceutical
    • 5.4.5 Refrigeration
    • 5.4.6 Chemicals
    • 5.4.7 Transportation
    • 5.4.8 Energy
    • 5.4.9 Refining
    • 5.4.10 Welding and Metal Fabrication
    • 5.4.11 Other End-User Industries
  • 5.5 Geography
    • 5.5.1 Asia-Pacific
      • 5.5.1.1 China
      • 5.5.1.2 India
      • 5.5.1.3 Japan
      • 5.5.1.4 South Korea
      • 5.5.1.5 Rest of Asia-Pacific
    • 5.5.2 North America
      • 5.5.2.1 United States
      • 5.5.2.2 Canada
      • 5.5.2.3 Mexico
    • 5.5.3 Europe
      • 5.5.3.1 Germany
      • 5.5.3.2 United Kingdom
      • 5.5.3.3 France
      • 5.5.3.4 Italy
      • 5.5.3.5 Rest of Europe
    • 5.5.4 South America
      • 5.5.4.1 Brazil
      • 5.5.4.2 Argentina
      • 5.5.4.3 Rest of South America
    • 5.5.5 Middle-East
      • 5.5.5.1 South Africa
      • 5.5.5.2 Saudi Arabia
      • 5.5.5.3 Rest of Middle-East

6 COMPETITIVE LANDSCAPE

  • 6.1 Mergers and Acquisitions, Joint Ventures, Collaborations, and Agreements
  • 6.2 Market Ranking Analysis
  • 6.3 Strategies Adopted By Leading Players
  • 6.4 Company Profiles
    • 6.4.1 Air Liquide Global E&C Solutions
    • 6.4.2 Air Products and Chemicals, Inc.
    • 6.4.3 BASF SE
    • 6.4.4 CF Industries Holdings, Inc.
    • 6.4.5 Chiyoda Corporation
    • 6.4.6 Dow Inc.
    • 6.4.7 General Electric Company
    • 6.4.8 Haldor Topsoe A/S
    • 6.4.9 Linde AG (The Linde Group)
    • 6.4.10 Methanex Corporation
    • 6.4.11 Nutrien Ltd.
    • 6.4.12 Sasol Limited
    • 6.4.13 Shell PLC
    • 6.4.14 Siemens AG
    • 6.4.15 SynGas Technology, LLC
    • 6.4.16 Synthesis Energy Systems, Inc
    • 6.4.17 TechnipFMC PLC

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

  • 7.1 Rapid Urbanization, Infrastructure Development, and Discoveries in the Oil & Gas Industry