封面
市場調查報告書
商品編碼
1625301

到 2030 年輻射固化電子和半導體市場預測:按組件、技術、應用、最終用戶和地區進行分析

Radiation Hardened Electronics and Semiconductors Market Forecasts to 2030 - Global Analysis By Component (Semiconductors, Passive Components and Other Components), Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,2024 年全球輻射固化電子和半導體市場規模為 18 億美元,預計在預測期內複合年成長率為 7.7%,到 2030 年將達到 28 億美元。

抗輻射電子產品和半導體旨在承受輻射的有害影響,例如宇宙射線和太陽輻射,這些影響可能會導致標準電子設備的物理損壞或故障。這些設備在太空探索、核能發電廠、軍事行動和高空飛行等應用中至關重要。為了實現輻射耐受性,這些設備經過特定的設計技術、材料選擇和製造過程。

根據衛星產業協會統計,繞地球運行的活躍衛星約7,316顆,與前一年同期比較增加51%,過去五年增加321%。

活性化太空探勘活動

隨著太空探勘的進展,對能夠承受高輻射水平的抗輻射組件的需求不斷增加。 NASA 的 Artemis 計畫、太空望遠鏡、火星探勘等重大任務以及 SpaceX 的 Starship 等私人企業都需要能夠承受宇宙射線和其他太空現象的可靠電子設備。這種市場多元化導致了耐輻射電子產品的廣泛應用,包括衛星通訊、地球觀測、導航和科學探勘,推動了市場成長。

輻射硬化零件高成本

輻射固化半導體的高成本可能會阻止小型組織和新興企業進入太空探勘和國防領域。雖然大型航太機構可以吸收成本,但較小的衛星和航太製造商可能難以購買必要的組件。此外,組件成本的增加可能會導致預算有限的政府和商業太空項目的任務減少、有效載荷減少以及計劃延遲,從而減少科學研究和探勘預算,並阻礙市場發展。

技術進步和小型化

半導體材料、製造技術和電路設計的進步大大提高了抗輻射元件的性能。碳化矽和氮化鎵等新材料正在取代傳統的矽基材料,從而實現更高的性能、更低的消費量和改進的溫度控管。小型化也有助於提高性能。較小的元件具有較短的訊號路徑,減少了輻射引起的錯誤並增強了市場。

提高績效的問題

提高抗輻射電子產品的性能通常需要權衡,例如增加功耗、更大的外形尺寸和增加的熱量產生,這給太空應用帶來了挑戰。在高性能需求與輻射、極端溫度和真空等惡劣條件之間取得平衡是一項複雜的挑戰。製造商努力製造高性能的抗輻射組件,以滿足太空任務的需求,同時保持 SWaP 限制。

COVID-19 的影響

太空和國防領域的供應鏈中斷、生產延誤和計劃受挫。製造能力的下降和物流挑戰影響了衛星、太空任務和國防系統的抗輻射部件的及時交付。然而,疫情加速了先進技術的採用,刺激了對太空探勘和國防的投資,並為市場創造了長期成長機會,因為對可靠耐用組件的需求仍然強勁。

預計半導體領域將在預測期內成為最大的領域

在預測期內,半導體領域由於其在高電離輻射環境(例如外太空、核能發電廠和軍事應用)中的功能可靠性,預計將創下最大的市場佔有率。這些半導體對於太空任務、衛星和航太系統至關重要,由於輻射暴露而導致的故障可能會導致任務失敗、資料遺失和系統劣化。矽等傳統半導體材料對輻射敏感,需要特殊的材料、設計和製程來使輻射固化裝置更具抵抗力。

預計總劑量輻射固化產業在預測期內複合年成長率最高。

由於暴露於電離輻射的太空任務、衛星運作和軍事系統的增加,預計總劑量輻射硬化領域在預測期內將出現良好的成長。火星探勘和深空探勘等長期任務需要全劑量抗輻射組件,以防止因累積輻射而導致性能劣化。因此,太空探勘、科學任務和國防對輻射固化電子元件的需求不斷成長,正在推動全劑量輻射固化半導體市場的發展。

佔比最大的地區:

在預測期內,北美地區預計將佔據最大的市場佔有率,其中美國在太空探勘、衛星通訊和太空基礎設施開發方面處於世界領先地位。主要航太機構需要可靠耐用的組件,能夠承受太空惡劣的輻射環境。 NASA 的深空任務(例如火星和外行星)需要能夠承受長期暴露的抗輻射組件。銥星通訊、Intelsat 和 SES Networks 等商業衛星通訊業者也依賴抗輻射電子設備來實現不間斷的通訊和資料傳輸。

複合年成長率最高的地區:

亞太地區預計在預測期內將以最高複合年成長率成長,因為該地區是全球半導體製造的領導者,擁有台積電、三星電子和英特爾等先進代工廠。隨著抗輻射電子產品在太空、國防和航太領域變得越來越重要,這些國家正在投資抗輻射組件的開發和製造。台灣是半導體製造領域的世界領導者,正在投資先進材料和製程技術,以提高耐輻射性,推動該地區的市場成長。

免費客製化服務:

訂閱此報告的客戶可以存取以下免費自訂選項之一:

  • 公司簡介
    • 其他市場公司的綜合分析(最多 3 家公司)
    • 主要企業SWOT分析(最多3家企業)
  • 區域分割
    • 根據客戶興趣對主要國家的市場估計、預測和複合年成長率(註:基於可行性檢查)
  • 競爭標基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 研究資訊來源
    • 主要研究資訊來源
    • 二次研究資訊來源
    • 先決條件

第3章市場趨勢分析

  • 促進因素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19 的影響

第4章波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第5章全球輻射固化電子與半導體市場:依組成部分

  • 半導體
    • 電晶體
    • 二極體
    • 積體電路(IC)
    • 微處理器和微控制器
    • 光耦合器
  • 被動元件
    • 電阻器
    • 電容器
    • 電感器
  • 其他組件

第6章全球輻射固化電子與半導體市場:依技術分類

  • 總劑量輻射抗性
  • 單粒子效應 (SEE) 保護
  • 抗輻射設計(RHBD)
  • 包裝解決方案
  • 其他技術

第7章全球輻射固化電子與半導體市場:依應用分類

  • 太空和衛星
  • 核能發電廠
  • 醫療設備
  • 高能物理
  • 其他用途

第8章全球輻射固化電子和半導體市場:依最終用戶分類

  • 軍事/國防
  • 汽車/交通
  • 政府/航太
  • 其他最終用戶

第9章全球輻射固化電子和半導體市場:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東/非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲

第10章 主要進展

  • 合約、夥伴關係、合作和合資企業
  • 收購和合併
  • 新產品發布
  • 業務拓展
  • 其他關鍵策略

第11章 公司概況

  • 3D Plus
  • Analog Devices
  • Atmel Corporation
  • BAE Systems
  • Cobham Limited
  • Honeywell Aerospace
  • Infineon Technologies
  • Intersil Corporation
  • Linear Technology Corporation
  • Maxwell Technologies
  • Microchip Technology
  • Micropac Industries
  • Microsemi Corporation
  • PSemi Corporation
  • Renesas Electronics
  • ST Microelectronics
  • Teledyne E2V Semiconductors
  • Texas Instruments
  • The Boeing Company
  • Xilinx Incorporation
Product Code: SMRC28256

According to Stratistics MRC, the Global Radiation Hardened Electronics and Semiconductors Market is accounted for $1.8 billion in 2024 and is expected to reach $2.8 billion by 2030 growing at a CAGR of 7.7% during the forecast period. Radiation-hardened electronics and semiconductors are designed to withstand the harmful effects of radiation, such as cosmic rays and solar radiation, which can cause physical damage or malfunction in standard electronic devices. These devices are crucial in applications like space exploration, nuclear power plants, military operations, and high-altitude flights. To achieve radiation hardness, these devices undergo specific design techniques, material selections, and manufacturing processes.

According to the Satellite Industry Association approximately 7,316 active satellites were orbiting the Earth, marking a 51% increase from the previous year and a 321% increase over the past five years.

Market Dynamics:

Driver:

Increasing space exploration activities

As space exploration continues, there is a growing demand for rad-hard components that can withstand high radiation levels. Key missions like NASA's Artemis program, space telescopes, Mars rovers, and private ventures like SpaceX's Starship require reliable electronics that can withstand cosmic rays and other space phenomena. This diversification leads to a broader spectrum of applications for rad-hard electronics, including satellite communication, earth observation, navigation, and scientific exploration boosting the market growth.

Restraint:

High cost of radiation-hardened components

The high cost of radiation-hardened semiconductors can hinder smaller organizations and startups from entering the space exploration or defense sectors. Large space agencies can absorb the cost, but smaller satellite or aerospace players may struggle to afford the required components. Moreover increased component costs can lead to fewer missions, smaller payloads, or delayed projects for government and private space programs with limited budgets resulting in more limited budgets for scientific research and exploration hampering the market.

Opportunity:

Technological advancements and miniaturization

Advancements in semiconductor materials, fabrication techniques, and circuit designs have significantly improved the performance of radiation-hardened components. New materials like silicon carbide and gallium nitride are being used to replace traditional silicon-based materials, resulting in higher performance, reduced energy consumption, and better thermal management. Miniaturization also contributes to improved performance, as smaller components have shorter signal paths, reducing radiation-induced errors enhancing the market.

Threat:

Challenges in achieving high performance

High performance in rad-hard electronics often involves trade-offs like higher power consumption, larger form factors, or increased heat generation, which can be challenging for space applications. Balancing high-performance requirements with harsh conditions like radiation, temperature extremes, and vacuum becomes a complex challenge. Manufacturers struggle to create high-performance rad-hard components that meet space missions' demands while maintaining SWaP constraints.

Covid-19 Impact

Supply chain disruptions, delays in production, and project setbacks in the space and defense sectors. Reduced manufacturing capacity and logistical challenges affected the timely delivery of radiation-hardened components for satellites, space missions, and defense systems. However, the pandemic also accelerated the adoption of advanced technologies and spurred investment in space exploration and defense, creating long-term growth opportunities for the market as demand for reliable, durable components remained strong.

The semiconductors segment is expected to be the largest during the forecast period

During the forecast period, the semiconductors segment is anticipated to register the largest market share owing to their function reliability in environments with high levels of ionizing radiation, such as outer space, nuclear power plants, and military applications. These semiconductors are crucial for space missions, satellites, and aerospace systems, where failure due to radiation exposure can lead to mission failure, data loss, or system degradation. Traditional semiconductor materials like silicon are more vulnerable to radiation-induced effects, requiring specialized materials, designs, and processes to enhance the resilience of rad-hard devices.

The total dose radiation hardening segment is expected to have the highest CAGR during the forecast period

The total dose radiation hardening segment is expected to register lucrative growth during the estimation period due to the increasing number of space missions, satellite operations, and military systems exposed to ionizing radiation. For extended missions, such as Mars missions or deep-space probes, total dose radiation -hardened components are needed to prevent performance degradation from accumulated radiation. This growing demand for radiation-hardened electronics in space exploration, scientific missions, and national defense drives the market for total dose radiation -hardened semiconductors.

Region with largest share:

During the estimation period, the North America region is expected to capture the largest market share owing to the United States, which is a global leader in space exploration, satellite communications, and space infrastructure development. Major space agencies require reliable and durable components to withstand harsh radiation environments in space. NASA's deep-space missions, such as Mars and outer planets, require radiation-hardened components for prolonged exposure. Commercial satellite operators like Iridium Communications, Intelsat, and SES Networks also rely on radiation-hardened electronics for uninterrupted communications and data transmission.

Region with highest CAGR:

The Asia Pacific region is expected to grow at the highest CAGR over the forecast period owing to leading global semiconductor manufacturing, with advanced foundries like TSMC, Samsung Electronics, and Intel. As radiation-hardened electronics become crucial for space, defense, and aerospace sectors, these countries are investing in developing and manufacturing rad-hard components. Taiwan, a global leader in semiconductor manufacturing, is investing in advanced materials and process technologies to enhance radiation resistance encouraging the regions market growth.

Key players in the market

Some of the key players in Radiation Hardened Electronics and Semiconductors market include 3D Plus, Analog Devices, Atmel Corporation, BAE Systems, Cobham Limited, Honeywell Aerospace, Infineon Technologies, Intersil Corporation, Linear Technology Corporation, Maxwell Technologies, Microchip Technology, Micropac Industries, Microsemi Corporation, PSemi Corporation, Renesas Electronics, ST Microelectronics, Teledyne E2V Semiconductors, Texas Instruments, The Boeing Company and Xilinx Incorporation

Key Developments:

In December 2024, Australian and UK Governments have announced a significant milestone between the Australian Submarine Agency (ASA) and industry partners that will support the delivery of the SSN AUKUS fleet of conventionally armed, nuclear-powered submarines for the Royal Australian Navy.

In December 2024, BAE Systems, Leonardo, and Japan Aircraft Industrial Enhancement Co Ltd (JAIEC), have reached an agreement to form a new company under a business joint venture for the Global Combat Air Programme (GCAP), subject to regulatory approvals.

In December 2024, Honeywell announced that it has signed a memorandum of understanding (MoU) with Sino Jet at the Middle East and North Africa Business Aviation Association (MEBAA) show.

Components Covered:

  • Semiconductors
  • Passive Components
  • Other Components

Technologies Covered:

  • Total Dose Radiation Hardening
  • Single Event Effects (SEE) Protection
  • Radiation Hardened by Design (RHBD)
  • Packaging Solutions
  • Other Technologies

Applications Covered:

  • Space & Satellite
  • Nuclear Power Plants
  • Medical Equipment
  • High-Energy Physics
  • Other Applications

End Users Covered:

  • Military & Defense
  • Automotive & Transportation
  • Government & Aerospace
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Radiation Hardened Electronics and Semiconductors Market, By Component

  • 5.1 Introduction
  • 5.2 Semiconductors
    • 5.2.1 Transistors
    • 5.2.2 Diodes
    • 5.2.3 Integrated Circuits (ICs)
    • 5.2.4 Microprocessors & Microcontrollers
    • 5.2.5 Optocouplers
  • 5.3 Passive Components
    • 5.3.1 Resistors
    • 5.3.2 Capacitors
    • 5.3.3 Inductors
  • 5.4 Other Components

6 Global Radiation Hardened Electronics and Semiconductors Market, By Technology

  • 6.1 Introduction
  • 6.2 Total Dose Radiation Hardening
  • 6.3 Single Event Effects (SEE) Protection
  • 6.4 Radiation Hardened by Design (RHBD)
  • 6.5 Packaging Solutions
  • 6.6 Other Technologies

7 Global Radiation Hardened Electronics and Semiconductors Market, By Application

  • 7.1 Introduction
  • 7.2 Space & Satellite
  • 7.3 Nuclear Power Plants
  • 7.4 Medical Equipment
  • 7.5 High-Energy Physics
  • 7.6 Other Applications

8 Global Radiation Hardened Electronics and Semiconductors Market, By End User

  • 8.1 Introduction
  • 8.2 Military & Defense
  • 8.3 Automotive & Transportation
  • 8.4 Government & Aerospace
  • 8.5 Other End Users

9 Global Radiation Hardened Electronics and Semiconductors Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 3D Plus
  • 11.2 Analog Devices
  • 11.3 Atmel Corporation
  • 11.4 BAE Systems
  • 11.5 Cobham Limited
  • 11.6 Honeywell Aerospace
  • 11.7 Infineon Technologies
  • 11.8 Intersil Corporation
  • 11.9 Linear Technology Corporation
  • 11.10 Maxwell Technologies
  • 11.11 Microchip Technology
  • 11.12 Micropac Industries
  • 11.13 Microsemi Corporation
  • 11.14 PSemi Corporation
  • 11.15 Renesas Electronics
  • 11.16 ST Microelectronics
  • 11.17 Teledyne E2V Semiconductors
  • 11.18 Texas Instruments
  • 11.19 The Boeing Company
  • 11.20 Xilinx Incorporation

List of Tables

  • Table 1 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Component (2022-2030) ($MN)
  • Table 3 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Semiconductors (2022-2030) ($MN)
  • Table 4 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Transistors (2022-2030) ($MN)
  • Table 5 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Diodes (2022-2030) ($MN)
  • Table 6 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Integrated Circuits (ICs) (2022-2030) ($MN)
  • Table 7 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Microprocessors & Microcontrollers (2022-2030) ($MN)
  • Table 8 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Optocouplers (2022-2030) ($MN)
  • Table 9 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Passive Components (2022-2030) ($MN)
  • Table 10 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Resistors (2022-2030) ($MN)
  • Table 11 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Capacitors (2022-2030) ($MN)
  • Table 12 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Inductors (2022-2030) ($MN)
  • Table 13 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 14 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Technology (2022-2030) ($MN)
  • Table 15 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Total Dose Radiation Hardening (2022-2030) ($MN)
  • Table 16 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Single Event Effects (SEE) Protection (2022-2030) ($MN)
  • Table 17 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Radiation Hardened by Design (RHBD) (2022-2030) ($MN)
  • Table 18 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Packaging Solutions (2022-2030) ($MN)
  • Table 19 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Other Technologies (2022-2030) ($MN)
  • Table 20 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Application (2022-2030) ($MN)
  • Table 21 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Space & Satellite (2022-2030) ($MN)
  • Table 22 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Nuclear Power Plants (2022-2030) ($MN)
  • Table 23 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Medical Equipment (2022-2030) ($MN)
  • Table 24 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By High-Energy Physics (2022-2030) ($MN)
  • Table 25 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 26 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By End User (2022-2030) ($MN)
  • Table 27 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Military & Defense (2022-2030) ($MN)
  • Table 28 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
  • Table 29 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Government & Aerospace (2022-2030) ($MN)
  • Table 30 Global Radiation Hardened Electronics and Semiconductors Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.