鈉離子電池(SIB)技術發展趨勢及市場預測(至2035年)
市場調查報告書
商品編碼
1419615

鈉離子電池(SIB)技術發展趨勢及市場預測(至2035年)

<2024> SIBs Technology Development Trends and Market Forecast (~2035)

出版日期: | 出版商: SNE Research | 英文 201 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

2022年,碳酸鋰的交易價格為每噸60萬元人民幣(約1.11億韓元)。考慮到去年鋰的平均售價約為11萬元人民幣(約2,000萬韓元),這是一個顯著的成長。如上所述,價格不穩定的鋰價格飆升,正在增加鈉離子電池的重要性。

SIB(鈉離子電池)是中國最大的電池企業CATL於2021年研發生產的新一代電池。 SIB是在以鋰離子電池(LIB)為主流的二次電池市場中具有價格競爭力的新一代電池。雖然其能量密度不如LIB,但具有較高的電化學穩定性、較高的低溫容量維持率以及較高的充放電性能。

鈉和鋰具有相似的化學和電化學性質。因此,SIB製造流程的優點是可以轉移到LIB製造。因此,它正在成長為一個有吸引力的行業,並以中國市場為起點,全面進軍市場。

在中國,使用SIB的摩托車和電動車已經開始販售。然而,當2023年電動車市場進入全面調整期時,SIB的退款銷售價格截至2024年1月跌至8.6萬元/噸。原物料價格的下跌使得SIB的低成本競爭力變得不再重要,這加劇了許多計劃在2022年競爭後進行量產的SIB供應商的擔憂。

本報告分析了全球鈉離子電池(SIB)的技術和市場趨勢。在技□□術分析中,我們探討了目前主要零件(正極(正極)、負極(負極)、電解液、隔膜)的主要製造方法和核心技術,以及未來的發展方向。此外,市場分析還調查並預測了與LFP(磷酸鐵鋰)電池相比的價格競爭力前景、行業內滲透率的趨勢以及每種產品的需求和市場規模。

本報告的優點

1.技術

  • 最新技術趨勢與公司/技術趨勢:依材料劃分的 SIB 材料
  • 合成製程:依材料分類
  • 各公司核心專利技術:依材料分類
  • SNE 研究的技術知識(問題與發展方向)

2.市場

  • 計算原型和批量生產階段的 BOM(物料清單)成本
  • 價格競爭分析:磷酸鋰鐵電池價格預測情境比較
  • 透過市場滲透率/產業分析和特定領域滲透率分析來分析需求和市場規模
  • SIB 材料和電池供應預測(截至 2035 年)
  • 全球33家鈉離子電池相關企業趨勢調查

目錄

第一章簡介

  • 電池發展史
    • 二次電池概述
    • 鉛酸電池
    • 鎳氫電池
    • 鎳鎘電池
    • 鋰離子電池
  • 鋰離子電池問題

第 2 章鈉離子電池(SIB)

  • SIB的定義與特徵
    • SIB 的定義
    • SIB的特點
    • LIB和SIB的性能和特點比較
  • SIB的優勢
  • SIB 的缺點和局限性
  • SIB 製造流程

第3章SIB正極材料

  • 正極材料的特性
  • 正極材料的種類
    • 層狀氧化物
    • 聚陰離子化合物
    • 普魯士藍類似物 (PBA)
    • 普魯士白 (PW)
  • 正極材料合成方法
    • 層狀氧化物
      • 固體方法
      • 溶膠凝膠法
      • 油包水(W/I/O)乳液乾燥法
    • 聚陰離子化合物
      • 固體方法
      • 溶膠凝膠法
      • 水熱合成
      • 有機酸溶解
      • 機械化學合成
    • 普魯士藍類似物 (PBA)
      • 共沉澱法
      • 電鍍法
  • 正極材料主要專利:依類型
  • 正極材料最新趨勢
    • 層狀氧化物
    • 聚陰離子化合物
    • 普魯士藍類似物 (PBA)

第4章SIB負極材料

  • 負極材料的特性
  • 負極材料的種類
    • 插入型
    • 有機化合物
    • 轉化/反應類型
    • 合金型
    • 轉化/合金化類型
  • 負極材料的合成方法
    • 插入型
      • 硬碳
      • 參考:硬碳原料種類
      • 軟碳:Hina Battery
      • 軟碳:中石化
      • 鈦氧化物:水熱合成
      • 鈦基氧化物:溶劑熱合成
      • 鈦基固體氧化物
    • 轉化/反應類型
      • 磷化物:機械性粉碎
      • 硫化物:酸熱合成
      • 金屬硒化物:水熱合成
      • 金屬硒化物:氣相鹽化
    • 合金型
      • 更換
    • 轉化/合金化類型
      • 硒化物:溶劑熱合成
      • 硒化物:化學反應
      • 硫化物:溶劑熱合成
      • 硫化物:固體
  • 負極材料核心專利:依類型
  • 負極材料的最新趨勢
    • 插入型
    • 有機化合物
    • 轉化反應
    • 合金材質
    • 轉換合金材料

第五章SIB電解質

  • 電解質的特性
  • 電解質的類型
    • 有機電解質
    • 離子液體電解質
    • 水電解質
    • 無機固體電解質
    • 凝膠聚合物電解質
    • 混合電解質
  • 電解質的合成方法
    • 液體電解質的合成方法
    • 固態電解質的合成方法
  • 電解質溶劑
  • 電解質核心專利:依材料分類
  • 電解質的最新趨勢
    • 離子液體電解質
    • 無機固體電解質
    • 凝膠聚合物電解質

第 6 章 SIB 分隔符號

  • 分離器特性
  • 分隔符號的類型
    • 聚烯烴複合隔板
    • 不織布隔板
  • 分離器合成方法
    • 聚烯烴複合隔板
    • 不織布隔板
  • 分離器核心專利:依材料分類
  • 分離器的最新趨勢

第 7 章 SNE 分析:技術

  • SIB 問題:依材料分類
    • 正極材料的問題
      • 層狀氧化物
      • PBA
      • 聚陰離子化合物
    • 陽極材料的問題
      • 插入型
      • 有機材料
      • 轉化/合金化類型
    • 電解質問題
    • 分隔符號問題
  • SIB的發展方向

第 8 章 SIB 價格預測

  • SIB 成本分析
    • 原型階段的 BOM 成本
    • 量產階段的BOM成本
  • SIB 價格預測
  • 價格競爭力分析

第九章SIB市場現況及預測

  • 二次電池市場預測
    • 全球二次電池市場中長期預測(產能)
  • SIB產業滲透率分析
    • 電動車需求分析
    • 電動車滲透率分析
      • 保守情景
      • 樂觀情景
    • LEV(輕型電動車)滲透率分析
      • 保守情景
      • 樂觀情景
    • ESS普及率分析
      • ESS 市場預測:依地區劃分
      • 保守情景
      • 樂觀情景
  • SIB 需求預測:依場景劃分
    • SIB 需求預測:基於保守情境的預測
    • SIB 市場規模預測:基於保守情境的預測
    • SIB 需求預測:基於樂觀情境的預測
    • SIB 市場規模預測:基於樂觀情境的預測
  • 產業鏈概要
  • 產業鏈:電池製造商
    • SIB產能
    • SIB 供應場景
  • 產業鏈:正極材料
    • SIB正極材料及主要企業特性:依類型
    • SIB正極材料產能預測
  • 產業鏈:負極材料
    • SIB正極材料及主要企業特性:依類型
    • SIB正極材料產能預測
  • 產業鏈:電解液
    • SIB正極材料及主要企業特性:依類型
    • SIB正極材料產能預測

第10章SIB發展狀況:依公司劃分

  • 中國
    • CATL
    • Hina Battery
    • Huayang Energy
    • ZOOLNASM
    • Lifun
    • Malion
    • ET
    • Yadi Huayu
    • Transimage (TIC)
    • VEKEN
    • DFD
    • SQ Group
    • BTR
    • Great Power
    • BYD
    • Weifang Energy
    • ZEC
    • Ronbay
    • Shanshan
    • NTEL
    • Tuna Corporation
  • 日本
    • NGK INSULATIORS
    • Kuraray
    • Mitsui Metals
    • Nippon Electric Glass
  • 韓國
    • Aekyung Chemical
    • Energy 11 
  • 英國
    • Faradion
  • 法國
    • Tiamet
  • 瑞典
    • Altris
  • 美國
    • Natron Energy
    • Novasis
  • 印度
    • Indi Energy
簡介目錄
Product Code: 216

In 2022, the price of lithium carbonate was traded at 600,000 yuan (about 111 million won) per ton. Considering that the average lithium sales price in the previous year was about 110,000 yuan (about 20 million won), it was a huge increase of price.

As such, the surge in lithium prices with high price instability has added weight to the emergence of sodium-ion batteries. SIBs were announced for development and production as the next-generation battery by China's largest battery company, CATL, back in 2021.

SIBs are the next-generation batteries that are currently trying to commercialize their price competitiveness as weapons in the secondary battery market, where lithium-ion batteries (LIBs) are the mainstream. It is a battery using sodium as a raw material instead of lithium. Although its energy density is lower than that of LIB, it has high electrochemical stability, high capacity retention rate at low temperature and high charging / discharging performance.

Sodium is a metal located in Group 1 of the Periodic Table with lithium and has similar chemical / electrochemical properties. Therefore, the manufacturing process of SIBs has the advantage of being designed to be convertible into LIBs manufacturing. As such, the entry into the SIBs industry shows the unity of the fundamental activities (operation, marketing, service) and support activities (technology development, manpower). So it is growing into an attractive industry and is preparing for full-scale market penetration starting with Chinese market.

China has already begun the launch of two-wheeled vehicles and electric vehicles using SIBs. Yadi, China's leading electric motorcycle company, established its subsidiary company Huayu and launched the electric motorcycle model 'Ji Na No.1' in late 2023. And in January 2024, the Chinese electric vehicle brand JAC began selling Huaxianzi electric vehicles using 32140 cylindrical sodium ion battery of Hina Battery.

However, as EV market entered the chasm section in earnest in 2023, it fell to 86,000 yuan per ton as of January 2024. The drop in raw material prices has made the low-cost competitiveness of sodium-ion batteries meaningless, adding to the concerns of many sodium-ion battery suppliers who planned to mass-produce them following CATL in 2022.

This report covers the current status and prospects of sodium-ion batteries based on 2023 battery market, where raw material prices have bottomed out.

First, the technology part deals with a development direction, synthesis method, and core patents of the four major materials (Cathode, Anode, Electrolyte, Separator) of companies and predicts future technology direction through insight of SNE Research.

In the market analysis, the forecast of price, which is the most important part, was compared with LFP to analyze future competitiveness, and the battery industry forecast, which is the core data of SNE research, was applied to the penetration industry to understand the demand and market size of each product.

Through this report, you can look at the latest trends in sodium-ion batteries and see if there is any investment value that can be another layout for manufacturers to expand product positioning in the future battery market.

The strong point of this report:

1. Technology

  • The latest technological trends and corporate technology trends by materials of SIBs
  • Synthesis process by materials
  • Core patent technology of companies by materials
  • Technical insights of SNE Research (problems and development directions)

2. Market

  • The cost BOM calculation of the pilot step and mass production step
  • Analysis of price competitiveness comparing the price forecast of LFP batteries across scenarios.
  • Analysis of demand and market size through market penetration industry analysis and sector-by-sector penetration rate analysis
  • Supply forecast of SIBs' material and battery (~2035)
  • Understanding trends of 33 global companies related to sodium-ion batteries

The above contents are divided into 10 chapters, and the approximate contents of each item are as shown in the table of contents below. (201 page in total)

Table of Contents

1. Introduction

  • 1.1. History of Battery Development
    • 1.1.1. Introduction of Secondary Batteries
    • 1.1.2. Lead-Acid Battery
    • 1.1.3. Ni-MH Battery
    • 1.1.4. Nickel Cadmium Battery
    • 1.1.5. Li-ion Battery
  • 1.2. Problems of Lithium-ion Batteries

2. Sodium-ion Batteries (SIBs)

  • 2.1. Definition and Characteristics of SIBs
    • 2.1.1. Definition of SIBs
    • 2.1.2. Characteristics of SIBs
    • 2.1.3. Comparison of performance characteristics of LIBs vs SIBs
  • 2.2. Advantages of SIBs
  • 2.3. Disadvantages and Limits of SIBs
  • 2.4. Manufacturing Process of SIBs

3. Cathode Materials of SIBs

  • 3.1. Characteristics of Cathode Materials
    • 3.1.1. Research Direction of Cathode Materials
  • 3.2. Types of Cathode Materials
    • 3.2.1. Layered Oxides
    • 3.2.2. Polyanion Compounds
    • 3.2.3. Prussian Blue Analogues (PBAs)
    • 3.2.4. Prussian White (PW)
  • 3.3. Synthesis Method of Cathode Materials
    • 3.3.1. Layered Oxides
      • Solid-state method
      • Sol-gel method
      • Water-in-oil type emulsion-drying method
    • 3.3.2. Polyanion Compounds
      • Solid-state method
      • Sol-gel method
      • Hydrothermal synthesis
      • Organic acid dissolution
      • Mechanochemical synthesis
    • 3.3.3. Prussian Blue Analogues (PBAs)
      • Co-precipitation method
      • Electrodeposition method
  • 3.4. Core Patents by Types of Cathode Materials
  • 3.5. Latest Trends of Cathode Materials
    • 3.5.1. Layered Oxides
    • 3.5.2. Polyanion Compounds
    • 3.5.3. Prussian Blue Analogues (PBAs)

4. Anode Materials of SIBs

  • 4.1. Characteristics of Anode Materials
  • 4.2. Types of Anode Materials
    • 4.2.1. Intercalation Type
    • 4.2.2. Organic Compounds
    • 4.2.3. Conversion Reaction Type
    • 4.2.4. Alloying Type
    • 4.2.5. Conversion-Alloying Type
  • 4.3. Synthesis Method of Anode Materials
    • 4.3.1. Intercalation Type
      • Hard Carbon
      • Reference. Raw Material Types of Hard Carbon
      • Soft Carbon-Hina Battery
      • Soft Carbon-Sinopec
      • Ti-based Oxides-Hydrothermal
      • Ti-based Oxides-Solvothermal
      • Ti-based Oxides-Solid-state
    • 4.3.2. Conversion Reaction Type
      • Phosphides-Mechanical Milling
      • Sulfides-Hydrothermal
      • Metal Selenides-Hydrothermal
      • Metal Selenides-Gas-phase salinization
    • 4.3.3. Alloying type
      • Replacement
    • 4.3.4. Conversion-Alloying type
      • Selenides-Solvothermal
      • Selenides-Chemical reaction
      • Sulfides-Solvothermal
      • Sulfides-Solid-state
  • 4.4. Core Patent by Types of Anode Materials
  • 4.5. Latest Trends of Anode Materials
    • 4.5.1. Intercalation Type
    • 4.5.2. Organic Compound
    • 4.5.3. Conversion Reaction
    • 4.5.4. Alloying Materials
    • 4.5.5. Conversion-Alloying Materials

5. Electrolytes of SIBs

  • 5.1. Characteristics of Electrolytes
    • 5.1.1. Role of Electrolytes
    • 5.1.2. Key Assessment Factors of Electrolytes
  • 5.2. Types of Electrolytes
    • 5.2.1. Organic Electrolytes
    • 5.2.2. Ionic Liquids Electrolytes
    • 5.2.3. Aqueous Electrolytes
    • 5.2.4. Inorganic Solid Electrolytes
    • 5.2.5. Gel Polymer Electrolytes
    • 5.2.6. Hybrid Electrolytes
  • 5.3. Synthesis Methods of Electrolytes
    • 5.3.1. Synthesis Methods of Liquid Electrolytes
    • 5.3.2. Synthesis Methods of Solid Electrolytes
  • 5.4. Solvents of Electrolytes
  • 5.5. Core Patent by Material Types of Electrolytes
  • 5.6. Latest Trends of Electrolytes
    • 5.6.1. Ionic Liquids Electrolytes
    • 5.6.2. Inorganic Solid Electrolytes
    • 5.6.3. Gel Polymer Electrolytes

6. Separators of SIBs

  • 6.1. Characteristics of Separators
  • 6.2. Types of Separators
    • 6.2.1. Polyolefin Composite Separators
    • 6.2.2. Nonwoven Separators
  • 6.3. Synthesis Methods of Separators
    • 6.3.1. Polyolefin Composite Separators
    • 6.3.2. Nonwoven Separators
  • 6.4. Core Patents by Materials of Separators
  • 6.5. Latest Trends of Separators

7. SNE Insight-Technology

  • 7.1. Problems by Materials of SIBs
    • 7.1.1. Problems of Cathode Materials
      • Layered oxides
      • PBAs
      • Polyanion Compounds
    • 7.1.2. Problems of Anode Materials
      • Intercalation type
      • Organic Material
      • Conversion&Alloying type
    • 7.1.3. Problems of Electrolytes
    • 7.1.4. Problems of Separators
  • 7.2. Development Direction of SIBs

8. Price Forecast of SIBs

  • 8.1. Cost Analysis of SIBs
    • 8.1.1. Cost BOM of The Pilot Step
    • 8.1.2. Cost BOM of The Mass Production Step
  • 8.2. Price Forecast of SIBs
  • 8.3. Analysis of Price Competitiveness

9. SIBs Market Status and Forecast

  • 9.1. Market Forecast of Secondary Batteries
    • Mid to Long-Term Market Forecast of Global Secondary Battery (Capacity)
  • 9.2. Analysis of SIBs Penetration Industry
    • 9.2.1. Analysis of Electric Vehicle Demand
    • 9.2.2. Analysis of Electric Vehicle Penetration Rate
      • Conservative Scenario
      • Positive Scenario
    • 9.2.3. Analysis of LEV(light ev) Penetration Rate
      • Conservative Scenario
      • Positive Scenario
    • 9.2.4. Analysis of ESS Penetration Rate
      • Market Forecast of ESS by Region
      • Conservative Scenario
      • Positive Scenario
  • 9.3. Demand Forecast by SIBs Scenario
    • 9.3.1. Demand Forecast of SIBs by Conservative Scenario
    • 9.3.2. Market Size Forecast of SIBs by Conservative Scenario
    • 9.3.3. Demand Forecast of SIBs by Positive Scenario
    • 9.3.4. Market Size Forecast of SIBs by Positive Scenario
  • 9.4. Introduction of Industry Chain
  • 9.5. Industry Chain-Battery Manufacturers
    • 9.5.1. Production Capacity of SIBs
    • 9.5.2. Scenario of SIBs Supply
  • 9.6. Industry Chain-Cathode Materials
    • 9.6.1. Characteristics by Types of SIBs Cathode Material and Major Companies
    • 9.6.2. Production Capacity Forecast of SIBs Cathode Materials
  • 9.7. Industry Chain-Anode Materials
    • 9.7.1. Characteristics by Types of SIBs Anode Material and Major Companies
    • 9.7.2. Production Capacity Forecast of SIBs Anode Materials
  • 9.7. Industry Chain-Electrolytes
    • 9.7.1. Characteristics by Types of SIBs Electrolyte and Major Companies
    • 9.7.2. Production Capacity Forecast of SIBs Electrolytes

10. SIBs Development Status of Companies

  • 10.1. China
    • 10.1.1. CATL
    • 10.1.2. Hina Battery
    • 10.1.3. Huayang Energy
    • 10.1.4. ZOOLNASM
    • 10.1.5. Lifun
    • 10.1.6. Malion
    • 10.1.7. ET
    • 10.1.8. Yadi Huayu
    • 10.1.9. Transimage (TIC)
    • 10.1.10. VEKEN
    • 10.1.11. DFD
    • 10.1.12. SQ Group
    • 10.1.13. BTR
    • 10.1.14. Great Power
    • 10.1.15. BYD
    • 10.1.16. Weifang Energy
    • 10.1.17. ZEC
    • 10.1.18. Ronbay
    • 10.1.19. Shanshan
    • 10.1.20. NTEL
    • 10.1.21. Tuna Corporation
  • 10.2. Japan
    • 10.2.1. NGK INSULATIORS
    • 10.2.2. Kuraray
    • 10.2.3. Mitsui Metals
    • 10.2.4. Nippon Electric Glass
  • 10.3. Korea
    • 10.3.1. Aekyung Chemical
    • 10.3.2. Energy 11
  • 10.4. UK
    • Faradion
  • 10.5. France
    • Tiamet
  • 10.6. Sweden
    • Altris
  • 10.7. USA
    • 10.7.1. Natron Energy
    • 10.7.2. Novasis
  • 10.8. India
    • Indi Energy