4680電池技術發展趨勢及前景
市場調查報告書
商品編碼
1419616

4680電池技術發展趨勢及前景

4680 Battery Technology Development Trend and Outlook

出版日期: | 出版商: SNE Research | 英文 330 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

Tesla收購了 Maxwell Technologies,這是一種乾電極製程 (DBE),用於生產 4680 等大型圓柱形電池。乾電極製程的特點是乾燥能耗低、乾燥過程所需廠房面積小、生產成本低。如果乾電極製程應用於兩個電極,則可以顯著節省成本,並為電動車製造商和生產公司創造雙贏的局面。乾電極製程是Tesla 4,680電池採用的製造技術之一,各種技術在4680生產中的實施預計將促使整體成本降低56%。

Tesla目前在德克薩斯州奧斯汀的超級工廠生產帶有乾塗層電極的 4680 電池,該工廠也是 Model Y 和 Cybertruck 的生產地。根據現有消息,Tesla尚未完成快速生產 4680 電池所需規模的乾塗工藝,以實現生產目標。不過,Panasonic、LG、CATL、EVE、BAK、SVOLT等多家公司已進入4,680電池的研發和量產。4680趨勢在全球愈演愈烈,BMW、Daimler、Apple、Lucid、Rivian、Xiaopeng、NIO、FAW、JAC Motors等都宣佈採用4680電池。

xEV 的 4680 電池需求預計到 2025 年將達到約 72GWh,到 2030 年將達到約 650GWh。預計到2025年Tesla將擁有約80GWh,BMW約59GWh,其他公司至2025年約44GWh。

儘管乾式塗佈過程面臨課題,但採用 4680 電池的原因有很多。以下是4680電芯的突出優點。

(1)能量密度高

4680電池的容量是2170電池的五倍,僅外部尺寸變化。此外,透過使用Si/C(矽/碳)負極,能量密度可提高10%。此外,透過使用Si/C負極,能量密度可提高高達20%,超過300Wh/kg。

(2)安全

其 "圓柱形" 設計被認為是解決熱失控的最強解決方案,熱失控是與電池組內熱傳導相關的關鍵安全問題。近年來發生的所有電池事故都是由於Pack內特定電芯發生熱失控,產生大量熱量加熱周圍電芯,導致熱失控傳播。

但由於圓柱電池的電芯容量較小,單一電池因熱失控釋放的能量比稜柱形或袋形電池低,熱失控傳播的可能性也較低。圓柱形設計是彎曲的,這在一定程度上限制了電池之間的熱傳遞。這意味著,儘管圓柱形電池由於其彎曲表面而完全接觸,但仍存在很大的間隙,這在一定程度上限制了電池之間的熱傳遞。

(3)快速充電性能

4680電池修改了結構,提高充電速度,並適應材料系統的快速充電要求。此外,它還採用了全旗設計,進一步有助於加快充電速度。

(4)生產效率高→成本低

圓柱電池是最早實現商業化的鋰離子電池,生產過程最為成熟。與稜柱形或袋形電池相比,這反映在更高的組裝效率上。4680目前的生產效率尚不清楚,但同心捲繞設計的圓柱電池的特性決定了其生產率。儘管大型圓柱形電池的生產率低於小型電池,但它們比稜柱形或軟包電池快得多。1865/2170 電池的生產率通常約為 200PPM(每分鐘 200 個電池)。另一方面,容量小於200Ah的方形電池的充電量約為10至12PPM,容量大於200Ah的大型方形電池的充電量約為10PPM。軟包電池的生產效率更低。

(5) 規模化→降低BMS複雜度

以Tesla為例,圓柱電池容量極小,需要大量的電池才能達到給定的功率效能。例如,18650型至少需要7,000個電池,2170型至少需要4,000個電池。如此大量的電池為電池系統的熱管理帶來了重大課題。基於這個原因,許多汽車製造商都避免使用圓柱形電池。然而,隨著4680時代的到來,所需的電池單元數量已減少至960至1,360單元之間。電池數量的減少意味著電池組內的空間利用率更高,並大大簡化了所需的電池管理系統(BMS),解決了大型圓柱形電池的散熱問題。

本報告調查了4680電池技術,並提供了發展趨勢、生產前景、市場規模和成長率、材料和技術分析等。

目錄

第一章 4680圓柱電池概述

  • Tesla Battery Day分析
  • Battery Day總結和主要發現
  • Tesla電池設計
  • Tesla電池製造工藝
  • Tesla的矽負極
  • Tesla的Hi-Ni正極
  • Tesla Cell 車輛集成
  • Tesla的電池成本改善
  • Tesla 4680電池開發
  • 46xx電池路線圖
    • 全新 46xx 電池設計
    • 生產新型 46xx 電池

第二章 4680電池的發展趨勢

  • 降低成本和提高效率的需求日益增長
  • 嚴格的安全要求
  • 快充成為未來趨勢
  • 電池製造商進入市場的競爭
  • Tesla發展趨勢
  • 全球OEM佈局加速
  • 46xx 電池的詳細規格:依製造商提供

第三章 4680電池詳細技術

  • 正極
  • 負極
  • 其他電池材料
  • 生產流程

第四章 Tesla 4680電池組拆解

  • 概述
  • 電池拆解與分析
  • Tesla 4680 電池的電芯、電池組和工程分析

第五章 Tesla 4680電芯拆解及特點

  • 概括
  • 概述
  • 過去的研究
  • 詳細分析
  • 具體實驗
  • 結果與討論
  • 結論

第六章 4680電池成功的技術

  • 多標籤技術
  • 極耳焊接技術
  • 冷卻技術

第七章 提高4680電池能量密度、降低成本

  • 概述
  • 能量密度(向上箭頭)/快速充電(向上箭頭)/成本(向下箭頭)
  • 採用高濃度電解液
  • 4680 電解液主要公司

第八章 4680電池發熱問題的預測及緩解措施

  • 實驗總結
  • 實驗方法
  • 傳熱模型方程
  • 實驗結果與討論
  • 實驗結論

第 9 章 圓柱形鋰離子電池的設計、特性與製造

  • 概述
  • 實驗材料與方法
  • 實驗結果與討論
  • 實驗結論

第 10 章 電池尺寸、外殼材質及其對無鉛圓柱形鋰離子電池的影響

  • 整體概覽
  • 實驗
  • 實驗結果與討論
  • 實驗結論

第十一章 4,680電池廠商及汽車整車廠現狀

  • Tesla
  • Panasonic
  • LGES
  • SDI
  • EVE
  • BAK
  • CATL
  • Guoxuan Hi-TECH
  • SVOLT
  • CALB
  • Envision AESC
  • LISHEN
  • Easpring
  • Kumyang
  • BMW
  • Rimac

第十二章 Tesla 4680電池專利解析

  • 表電極電池 (PTC/US2019/059691)
  • 表式儲能設備及其製作方法(PTC/US2021/050992)
  • 乾式專利1(含顆粒狀非纖維黏合劑:US11545666 B2)
  • 乾式專利2(電極黏合劑鈍化的組合物與方法:US11545667 B2)

第13章 4680電池市場前景

  • 整體市場展望
  • 4680關鍵材料市場展望
  • 4680需求展望及產能展望

第14章 Tesla 4680電池產量展望

  • 顧問公司對4680的展望
  • Tesla/BMW4680需求展望
  • Tesla Cybertruck 4680電池產量展望
簡介目錄
Product Code: 215

Tesla acquired Maxwell Technologies for the dry battery electrode process (DBE) used in the production of large cylindrical batteries like the 4680. The dry electrode process is characterized by low energy requirements for drying, a smaller factory footprint for the drying process, and lower production costs. If the dry coating process is applied to both electrodes, it could lead to significant cost reductions, creating a win-win situation for EV manufacturers and production companies. The dry electrode process is one of the manufacturing technologies employed by Tesla for the 4680 battery, and with the implementation of various technologies for 4680 production, an overall cost reduction of 56% is anticipated.

Tesla is currently producing 4680 cells with dry-coated electrodes at the Gigafactory in Texas Austin, where Model Y and Cybertruck are being manufactured. According to available information, Tesla has not yet completed the dry coating process on the scale required to rapidly produce 4680 cells to meet production targets. However, several companies, including Panasonic, LG, CATL, EVE, BAK, SVOLT, and others, have entered the development and mass production of 4680 cells. The 4680 trend is gaining momentum globally, with announcements from BMW, Daimler, Apple, Lucid, Rivian, Xiaopeng, NIO, FAW, JAC Motors, and others regarding the adoption of 4680 batteries.

According to the forecasts from SNE Research, the demand for xEV 4680 cells is projected to be approximately 72 GWh by the year 2025 and around 650 GWh by the year 2030. For Tesla, it is estimated to be around 80 GWh by the year 2025, for BMW around 59 GWh, and for other companies, approximately 44 GWh by the year 2025.

Despite the challenges of the dry coating process, there are several reasons for the adoption of the 4680 cells. Below are listed the outstanding advantages of the 4680 cells:

  • (1)High energy density: The capacity of the 4680 cells is five times that of the 2170 cells, with only a change in external dimensions. Additionally, by utilizing a Si/C (Silicon/Carbon) anode, it is possible to achieve a 10% increase in energy density. Furthermore, with the use of a Si/C anode, the energy density can be further increased by up to 20%, reaching beyond 300 Wh/kg.
  • (2)Safety: The "cylindrical" design is considered the most robust solution for thermal runaway, a critical safety issue associated with heat propagation within battery packs. Recent battery incidents have all been attributed to thermal runaway in specific battery cells within the pack, leading to the generation of a significant amount of heat that, in turn, heats up surrounding battery cells, resulting in the propagation of thermal runaway.

However, cylindrical batteries have a smaller cell capacity, and the energy released due to thermal runaway in a single battery is lower, reducing the likelihood of propagation compared to prismatic and pouch-shaped batteries. The curvature of the cylindrical design somewhat limits the heat transfer between batteries. In other words, even when cylindrical batteries are in complete contact due to their curved surfaces, there is still a significant gap, which somewhat restricts the heat transfer between batteries.

  • (3)Rapid charging performance: The 4680 battery undergoes structural changes to enhance its charging speed, adapting to the high-speed charging requirements of the material system. Additionally, it incorporates an "All flag" design, further contributing to the acceleration of charging speeds.

(4)High production efficiency -> Low cost

Cylindrical batteries were the first commercially available lithium-ion batteries and have the most mature production processes. This is reflected in higher assembly efficiency compared to prismatic and pouch-shaped batteries. While the current production efficiency of the 4680 is unknown, the characteristics of cylindrical batteries, with their concentric winding design, determine the production speed. Despite larger cylindrical batteries having a lower production speed than smaller ones, they are still much faster than prismatic and pouch-shaped batteries. The production rate for 1865/2170 batteries is typically around 200PPM (200 batteries /minute). Meanwhile, for prismatic batteries with a capacity below 200Ah, the rate is around 10-12PPM, and for larger prismatic batteries with a capacity exceeding 200Ah, it's around 10PPM. The production efficiency of pouch-shaped batteries is even lower.

(5)Scaling up -> Reduced BMS complexity

For Tesla, the predominantly smaller capacity of cylindrical battery cells meant that achieving specific power performance required an enormous total number of cells. For instance, 7000+ cells of the 18650 type or 4000+ cells of the 2170 type were needed. This high cell count posed significant challenges in terms of thermal management for the battery system. Consequently, many automakers were discouraged from adopting cylindrical batteries. However, with the advent of the 4680 era, the required number of battery cells has decreased to 960-1360 cells. The reduced cell count implies improved space utilization in the pack and a substantial simplification of the required Battery Management System (BMS), addressing issues related to heat dissipation in large cylindrical batteries.

In this report, SNE Research systematically organizes information from various sources, including presentations from each company related to the 4680, scattered data from disassembly and performance tests, and reviews of key papers. Through this comprehensive approach, the report analyzes the practical effects and performance improvements of the 4680 introduction. Furthermore, by referencing data from external research institutions, our report aims to assist readers in understanding the outlook and scale of the large cylindrical battery market.

Additionally, we provides an overview of the current status and key products of 4680 manufacturers. It also highlights the scale of Gigafactory facilities and indicates the correlation between the production volume and quantity of Cybertruck, offering intriguing insights into the manufacturability of the 4680. The goal is to provide comprehensive insights to researchers and individuals interested in this field.

The Strong Point of this report is as below:

  • 1. Summarizing the developmental trends and information related to the 4680 for an overall understanding and ease of comprehension.
  • 2. In-depth analysis and summarization of the disassembly reports for 4680 cells and packs to enhance understanding.
  • 3. Assessing the market and production outlook for 4680 batteries to understand market size and growth rates.
  • 4. Detailed analysis of materials and technologies applied to the 4680 through the examination of academic papers.

Table of Contents

1. 4680 Cylindrical Battery Overview

  • 1.1. Tesla Battery Day Analysis
  • 1.2. Battery Day Summary and Key Findings
  • 1.3. Tesla Battery Cell Design
  • 1.4. Tesla Battery Cell Manufacturing Process
    • 1.4.1. Coating
    • 1.4.2. Winding
    • 1.4.3. Assembly
    • 1.4.4. Formation
  • 1.5. Tesla Si-anode
  • 1.6. Tesla Hi-Ni Cathode
  • 1.7. Tesla Cell - Vehicle Integration
  • 1.8. Tesla Cell Cost Improvement
  • 1.9. Tesla 4680 Battery Development
    • 1.9.1. Development History
    • 1.9.2. Battery Specification
    • 1.9.3. Battery-adopted Tesla EV
    • 1.9.4. Battery Supplier
    • 1.9.5. Battery Production Timing
  • 1.10. 46xx Battery Roadmap
    • 1.10.1. New 46xx Cell Design
    • 1.10.2. New 46xx Cell Production

2. 4680 Battery Development Trend

  • 2.1. Increased Demand for Cost Reduction and Efficiency
  • 2.2. Demanding Safety Requirements
  • 2.3. Fast Charing as Future Trend
  • 2.4. Battery Makers Competition for Market Entrance
  • 2.5. Tesla Development Trend
    • 2.5.1. 4680 Sales Volume and Production Capacity
    • 2.5.2. 4680 Demand Calculation
  • 2.6. Global OEMs' Layout Acceleration
  • 2.7. 46xx Battery Detailed Specification by Maker

3. 4680 Battery Detailed Technology

  • 3.1. Cathode
    • 3.1.1. Application of Ultra High Nickel
    • 3.1.2. Establishment of Production Capacity
    • 3.1.3. Upgrade of Production Technology
  • 3.2. Anode
    • 3.2.1. Silicon-based Development
    • 3.2.2. Silicon-based Development Timeline
    • 3.2.3. Si-anode Modification
    • 3.2.4. Acceleration of Si-anode Industrialization
  • 3.3. Other Battery Materials
    • 3.3.1. SWCNT Conductive Material
    • 3.3.2. Steel Battery Can
    • 3.3.3. Al Battery Can
      • 3.3.3.1. Al housing Cell Design Concept
      • 3.3.3.2. 46xx Large-size Cylindrical Cell
      • 3.3.3.3. 46xx Jelly Roll Concept
      • 3.3.3.4. 46xx Jelly Roll Heat Transfer and Distribution
      • 3.3.3.5. 46xx Jelly Roll Heat Simulation
      • 3.3.3.6. 46xx Jelly Roll Cooling Improvement
  • 3.4. Production Process
    • 3.4.1. 4680 Battery Production Process Technology
    • 3.4.2. 4680 Production Process Differentiation
      • 3.4.2.1. Dry Electrode Coating
      • 3.4.2.2. Dry Process Examples
      • 3.4.2.3. Electrode and Tab Integrated Cutting
      • 3.4.2.4. Difficulty of Laser Welding
      • 3.4.2.5. Integrated Die casting and CTC

4. Tesla 4680 Battery Pack Disassembly

  • 4.1. Overview
  • 4.2. Battery Disassembly and Analysis
  • 4.3. Tesla 4680 Battery Cell, Pack, and Engineering Analysis
    • 4.3.1. Tesla 4680 Battery Design Data
    • 4.3.2. Pack Structure (Cell Direction)
    • 4.3.3. Electricity Connection with Each Cell
    • 4.3.4. Suggested Pack Assembly Method
    • 4.3.5. Model 3 Pack Analysis
      • 4.3.5.1. Pack Analysis Result (Summary)
      • 4.3.5.2. Details of Heat Release
    • 4.3.6. Model 3 Battery Current Collector

5. Tesla 4680 Battery Cell Disassembly and Characteristics

  • 5.1. Summary
  • 5.2. Overview
  • 5.3. Previous Studies
  • 5.4. Detailed Analysis
  • 5.5. Specific Experiment
    • 5.5.1. Test Cell Overview
    • 5.5.2. Cell Disassembly and Substance Extraction
    • 5.5.3. Structure and Element Analysis
    • 5.5.4. 3 Electrode Analysis
    • 5.5.5. Electrical Characteristics
    • 5.5.6. Thermal investigation
  • 5.6. Result and Consideration
    • 5.6.1. Cell and Jelly roll Structure
    • 5.6.2. Electrode Design
    • 5.6.3. Material Characteristics
    • 5.6.4. 3 Electrode Analysis
    • 5.6.5. Capacity and Impedance Analysis
    • 5.6.6. Similar OCV, DVA and ICA Analysis
    • 5.6.7. HPPC Analysis
    • 5.6.8. Thermal Characteristics Analysis
  • 5.7. Conclusion

6. Technologies for Success of 4680 Battery

  • 6.1. Multi(all) Tab Technology
  • 6.2. Tab Welding Technology
  • 6.3. Cooling Technology

7. 4680 Battery Energy Density Improvement and Cost Down

  • 7.1. Overview
  • 7.2. Energy Density (up arrow)/ Fast Charging (up arrow)/ Cost (down arrow)
    • 7.2.1. Blade Battery / High-Ni Prismatic Battery Comparison
    • 7.2.2. Increase of Fast Charging Rate
    • 7.2.3. Production Improvement and Cost Down with Dry Electrode (DBE)
  • 7.3. High-Concentration Electrolyte Adoption
    • 7.3.1. Decrease of 4680 Electrolyte Q'ty / GWh
    • 7.3.2. High-Concentration Electrolyte and LiFSI Addition
    • 7.3.3. Fluorine FEC Addition
  • 7.4. 4680 Electrolyte Major Players

8. 4680 Battery Heat Problem Prediction and Mitigation Solutions

  • 8.1. Experiment Summary
  • 8.2. Experiment Method
  • 8.3. Heat Transfer Model Equation
  • 8.4. Experiment Result and Discussion
  • 8.5. Experiment Conclusion

9. Cylindrical LIB Cell Design, Characteristics and Manufacturing

  • 9.1. Overview
  • 9.2. Experiment Material and Method
    • 9.2.1. Cell Design
    • 9.2.2. Cell Properties
    • 9.2.3. Cell Energy Density
    • 9.2.4. Cell Impedance
    • 9.2.5. Cell Temperature
  • 9.3. Experiment Result and Consideration
    • 9.3.1. Cylindrical LIB Cell Design
    • 9.3.2. Jelly Roll Design
      • 9.3.2.1. Geometry
    • 9.3.3. Tab Design
    • 9.3.4. Cell Properties
      • 9.3.4.1. Cell Energy Density
      • 9.3.4.2. Cell Resistance
      • 9.3.4.3. Cell Thermal Behavior
    • 9.3.5. Jelly Roll Manufacturing
  • 9.4. Experiment Conclusion

10. Cell size and Housing Material and their Influences of Tabless Cylindrical LIB Cell

  • 10.1. Overall Overview
  • 10.2. Experiment
    • 10.2.1. Reference cell
    • 10.2.2. Cell Modeling
      • 10.2.2.1. Cell Size and Geometric Model
      • 10.2.2.2. Jelly Roll Electrode Layer
      • 10.2.2.3. Hollow core
      • 10.2.2.4. Tabless Design
    • 10.2.3. Cell Housing
    • 10.2.4. Thermal - Electrical - Electrochemical Framework
      • 10.2.4.1. Boundary Conditions and Discretization
  • 10.3. Experiment Result and Discussion
    • 10.3.1. Energy Density
      • 10.3.1.1. Influence of Cell Diameter
      • 10.3.1.2. Influence of Cell Height
      • 10.3.1.3. Influence of Housing Material
    • 10.3.2. Fast Charging Performance
      • 10.3.2.1. Realization of Heat Transfer Coefficient Control Algorithm
      • 10.3.2.2. Influence of Cell Height and Housing Material with Axial Cooling
      • 10.3.2.3. Influence of Cell Diameter and Housing Material with Axial Cooling
      • 10.3.2.4. Influence of Tab Design and Scaling of Series Resistance
      • 10.3.2.5. Influence of Cell Size and Housing Material on Fast Charging
  • 10.4. Experiment Conclusion

11. 4680 Cell Maker and Car OEMs Current Status

  • 11.1. Tesla
  • 11.2. Panasonic
  • 11.3. LGES
  • 11.4. SDI
  • 11.5. EVE
  • 11.6. BAK
  • 11.7. CATL
  • 11.8. Guoxuan Hi-TECH
  • 11.9. SVOLT
  • 11.10. CALB
  • 11.11. Envision AESC
  • 11.12. LISHEN
  • 11.13. Easpring
  • 11.14. Kumyang
  • 11.15. BMW
  • 11.16. Rimac

12. Tesla 4680 Battery Patent Analysis

  • 12.1. Tabless Electrode Battery (PTC/US2019/059691)
  • 12.2. Tabless Energy Storage Devices and their Manufacturing Methods (PTC/US2021/050992)
  • 12.3. Dry Process Patent 1(Inclusion of particulate nonfibrification binder: US11545666 B2)
  • 12.4. Dry Process Patent 2 (Compositions and methods for passivation of electrode binders: US11545667 B2)

13. 4680 Battery Market Outlook

  • 13.1. Overall Market Outlook
  • 13.2. 4680 Major Materials Market Outlook
    • 13.2.1. Si-based Anode
    • 13.2.2. Hi-Ni Ternary Cathode
    • 13.2.3. LiFSI
    • 13.2.4. Composite Copper Foil
    • 13.2.5. PVDF Binder
    • 13.2.6. CNT Conductor
    • 13.2.7. Laser Welding Equipment
    • 13.2.8. Housing CAN
    • 13.2.9. Ni plated CAN
  • 13.3. 4680 Demand Outlook and Capacity Outlook

14. Tesla 4680 Cell Production Outlook

  • 14.1. 4680 Outlook by Consulting Company
  • 14.2. Tesla/BMW 4680 Demand Outlook
  • 14.3. Tesla 4680 Cell for Cybertruck Production Outlook
    • 14.3.1. 4680 Giga Texas Production Estimates
    • 14.3.2. 4680 Cell Production Capacity vs. Cybertruck Production Volume (Units)
    • 14.3.3. 4680 Cell Annual Capacity vs. Daily Production Volume
    • 14.3.4. 4680 Cell Production Capacity vs. Production Time Change Trend
    • 14.3.5. Tesla Giga Factory P/P Line Major Processes