全球LFP電池的技術趨勢與市場預測
市場調查報告書
商品編碼
1581324

全球LFP電池的技術趨勢與市場預測

<2024> Global LFP Battery Technology Trend and Market Outlook

出版日期: | 出版商: SNE Research | 英文 200 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

近年來,磷酸鐵鋰 (LFP) 電池在電動車 (EV) 市場,尤其是中國,表現出驚人的發展勢頭。磷酸鐵鋰電池正迅速成為電動車電池創新的核心,包括特斯拉在內的全球汽車製造商對其的興趣日益濃厚。

為什麼磷酸鋰電池正在興起

  • 成本競爭力:磷酸鐵鋰電池不使用昂貴的鈷,可大幅降低生產成本。近期原物料價格的上漲,進一步凸顯了磷酸鐵鋰電池的成本優勢。
  • 安全:磷酸鐵鋰電池即使在高溫和過度充電的情況下也能保持穩定的性能,大大降低火災風險。
  • 使用壽命長:更長的生命週期意味著電池更換間隔時間更長,從而提供更大的價值。
  • 專利到期:主要專利到期,不再需要許可費,進一步降低製造成本。

LFP電池的優點和缺點

優點 缺點
低的生產成本 因為能量密度低有續航距離變得短的可能性
高(貴)的安全性 低功率高性能EV有適sa沒有的可能性
長的壽命 在寒冷地區的性能降低
工廠的自由度

LFP電池的今後的發展

  • 能量密度的提高:錳LMFP電池的研究前進,能量密度提高。
  • 為了輸出的提高:急速充電和對應高功率的技術創新被要求。
  • 為了發揮低溫性能的提高:寒冷地區也穩定了的性能的改良被發展。

市場展望

考慮到成本效率和安全性,磷酸鐵鋰電池預計將擴大其在電動車市場的作用,特別是在低成本汽車和商用車領域。這一趨勢顯示磷酸鐵鋰電池的採用是有前景的。

結論

磷酸鐵鋰電池正快速崛起,成為大規模採用電動車的基礎技術。具有成本效益、安全且長壽命的磷酸鐵鋰電池預計將繼續發展,並不斷開發以解決其限制。

本報告研究和分析了全球磷酸鐵鋰電池市場,提供製造技術、市場規模和成長預測、主要製造商概況和應用等資訊。

目錄

第1章 LFP市場預測

  • 全球EV市場預測
  • 全球xEV電池市場預測
  • 電池市場預測:各xEV類型
  • LFP電池市場預測:各地區
    • 中國
    • 歐洲
    • 北美
    • 其他
  • 全球LFP電池需求預測:各OEM
    • TESLA
    • VW
    • HKMC
    • TOYOTA
    • Renault-Nissan
    • Stellantis
    • GM
    • Ford
    • BMW
    • Mercedes-Benz
    • Geely
  • ESS·LFP電池市場預測
    • 全球ESS市場預測
    • 全球ESS電池市場預測
  • 面向EV/ESSLFP電池的市場預測

第2章 LFP的SCM的分析

  • 全球LFP正極材料的供需分析
    • 北美的LFP正極材料的供需分析
  • LFP正極材料的價格的預測
  • LFP電池製造商供應鏈分析
    • 電池製造商與正極製造商之間的合作狀況(2023年)
    • 電池製造商與正極製造商之間的合作狀況(2024年)
  • 中國的鋰電池價值鏈趨勢
  • LFP正極材料製造商現狀
    • Dynanonic
    • Guoxuan Hightech
    • LBM (Lopal technology)
    • Hunan Yuneng
    • Hubei Wanrun
    • BYD
    • Xiamen Tungsten (XTC)

第3章 LFP和NCM的成本分析

  • 中國的LFP成本趨勢
  • 中國的NCM(523)成本趨勢
  • 韓國的NCM(523)成本趨勢
  • 中國的LFP和韓國的NCM523成本的比較
  • LFP和NCM523電池單元的成本結構的比較

第4章 與韓國的電池製造商LFP線的擴張生產預測

  • LGES
  • SDI
  • SK On

第5章 LFP生產預測:韓國的正極各製造廠商

  • Ecopro BM,L&F,Posco Future M,LGC

第6章 LFP電池的檢討

  • LFP正極材料的基本特性
  • LMFP正極材料的基本特性
  • LFP的導電性情上的相關調查結果
  • LFP/LMFP結構,電化學特性和安全性
    • LFP/LMFP結構,電化學性質
    • LFP/LMFP的熱安全性
  • LFP相關專利糾紛概要
  • LFP和NCM的優點與缺點的比較
  • 巴士相關法的影響
  • LFP的應用案例
    • 電力巴士
    • 電力船
    • ESS
    • UPS
  • LFP電池(CTP)的設計和模組的標準化
    • 最適合的LFP電池組設計趨勢
    • LFP電池組的價格資訊

第7章 LFP電池的製造流程

  • 二次鋰電池的開發趨勢
    • LFP製造趨勢
    • 磷酸前驅體製造流程:合成法
    • LFP的有代表性的量產方法
    • 前驅體製造流程:固體法
    • 前驅體製造流程:共沉澱法
    • 前驅體製造流程:液體共沉澱法
    • 草酸鐵法(固體)
    • 磷酸法(固體)收穫率法
    • LFP製造預測
    • 氧化鐵法(固體)
    • 水熱合成法(液體)
    • LFP製造設施

第8章 LFP電池的專利

  • 固體反應
    • LG Chem
  • 前驅體法
    • Korea Research Institute of Chemical Technology
    • Korea National University of Transportation
    • Korea Research Institute of Chemical Technology
  • 冷凍乾燥
    • Hyundai Motor
  • 球磨機
    • Korea Polytechnic University
  • 導電性聚合物種子披衣
    • Ajou University
  • Fe(NO3)3法
    • Korea National University of Transportation
簡介目錄
Product Code: 241

In recent years, Lithium Iron Phosphate (LFP) batteries have gained remarkable momentum in the electric vehicle (EV) market, especially with significant uptake in China. With global automakers, including Tesla, showing increasing interest in LFP batteries, they are quickly becoming a central focus in EV battery innovation.

Why LFP Batteries Are Rising

  • Cost Competitiveness: LFP batteries omit costly cobalt, reducing production costs significantly. Recent raw material price hikes have further highlighted their cost advantage.
  • Safety: LFP batteries maintain stable performance at high temperatures and during overcharging, significantly lowering the risk of fires.
  • Longevity: Their long life cycle extends battery replacement intervals, offering greater value.
  • Patent Expiration: With key patents expiring, production costs are further reduced due to the lack of licensing fees.

Advantages and Drawbacks of LFP Batteries

AdvantagesDrawbacks
Low production costLow energy density may reduce range
High safetyLower output might not suit high-performance EVs
Long lifespanReduced performance in colder conditions
Plant freedom 

Future Development of LFP Batteries

  • Energy Density Improvement: Research on manganese-infused LMFP batteries is advancing to improve energy density.
  • Enhanced Output: Innovations are needed to support fast charging and high power output.
  • Improved Low-Temperature Performance: Enhancements to ensure stable performance in colder climates are underway.

Market Outlook

Given their cost efficiency and safety, LFP batteries are poised for a growing role in the EV market, especially in budget-friendly and commercial vehicle segments. This trend suggests a promising trajectory for LFP battery adoption.

Conclusion

LFP batteries are rapidly emerging as a cornerstone technology for EV mass adoption. With their cost efficiency, safety, and longevity, LFP batteries are expected to continue advancing as ongoing development efforts address their limitations.

In-Depth Analysis Topics Covered:

  • Electrochemical background of LFP batteries
  • LFP battery manufacturing process technology
  • Market size and growth projections
  • Profiles of leading LFP battery manufacturers
  • Overview of LFP battery applications

Key Strengths of This Report:

  • 1. Technical Expertise: Provides an in-depth explanation of lithium iron phosphate and other lithium-ion cathode materials to enhance understanding of battery technology.
  • 2. Material Comparison Analysis: Compares LFP materials with NMC materials, clearly highlighting each material's strengths and weaknesses.
  • 3. Latest Technology Trends: Summarizes LFP manufacturing advancements and current technological developments, helping track industry shifts and future outlook.
  • 4. Company Production Capabilities and Forecasts: Offers insights into production capacities of key players and future market outlook, aiding in competitive analysis and strategic planning.
  • 5. Practical Insights: Equips companies and individuals entering the LFP market or initiating related research with essential information to identify business opportunities and guide R&D directions.

We believe this report will be a valuable resource for stakeholders in the EV industry.

Table of Contents

1. LFP Market Outlook

  • 1.1. Global EV Market Outlook
  • 1.2. Global xEV Battery Market Outlook
  • 1.3. Battery Market Outlook by xEV Type
  • 1.4. LFP Battery Market Outlook by Region
    • 1.4.1. China
    • 1.4.2. Europe
    • 1.4.3. North America
    • 1.4.4. Others
  • 1.5. LFP Battery Demand Outlook by Global OEM
    • 1.5.1. TESLA
    • 1.5.2. VW
    • 1.5.3. HKMC
    • 1.5.4. TOYOTA
    • 1.5.5. Renault-Nissan
    • 1.5.6. Stellantis
    • 1.5.7. GM
    • 1.5.8. Ford
    • 1.5.9. BMW
    • 1.5.10. Mercedes-Benz
    • 1.5.11. Geely
  • 1.6. ESS and LFP Battery Market Outlook
    • 1.6.1. Global ESS Market Outlook
    • 1.6.2. Global ESS Battery Market Outlook
  • 1.7. Market Outlook of LFP Battery for EV/ESS

2. LFP SCM Analysis

  • 2.1. Global LFP Cathode Material Supply and Demand Analysis
    • 2.1.1. North American LFP Cathode Material Supply and Demand Analysis
  • 2.2. LFP Cathode Material Price Forecast
  • 2.3. LFP Battery Maker Supply Chain Analysis
    • 2.3.1. 2023 Battery Maker-Cathode Maker Collaboration Status
    • 2.3.2. 2024 Battery Maker-Cathode Maker Collaboration Status
  • 2.4. Trends in China's Lithium Battery Value Chain
  • 2.5. Status of LFP Cathode Material Manufacturers
    • 2.5.1. Dynanonic
    • 2.5.2. Guoxuan Hightech
    • 2.5.3. LBM (Lopal technology)
    • 2.5.4. Hunan Yuneng
    • 2.5.5. Hubei Wanrun
    • 2.5.6. BYD
    • 2.5.7. Xiamen Tungsten(XTC)

3. LFP vs NCM Cost Analysis

  • 3.1. China LFP Cost Trend
  • 3.2. China NCM(523) Cost Trend
  • 3.3. Korea NCM(523) Cost Trend
  • 3.4. Comparison of China LFP& Korea NCM523 Cost
  • 3.5. Comparison of LFP & NCM523 Cell Cost Structure

4. Expansion and Production Outlook of LFP Lines by Korean Battery Makers

  • 4.1. LGES
  • 4.2. SDI
  • 4.3. SK On

5. Production Outlook of LFP by Korean Cathode Makers

  • Ecopro BM, L&F, Posco Future M, LGC

6. LFP Battery Review

  • 6.1. Basic Properties of LFP Cathode Materials
  • 6.2. Basic Properties of LMFP Cathode Materials
  • 6.3. Research Footprint on Improving Electrical Conductivity of LFP
  • 6.4. Structure, Electrochemical Properties and Safety of LFP/LMFP
    • 6.4.1. Structure, Electrochemical Properties of LFP/LMFP
    • 6.4.2. Thermal Safety of LFP/LMFP
  • 6.5. Summary of Patent Disputes on LFP
  • 6.6. Comparison of Advantages and Disadvantages of LFP and NCM
  • 6.7. Impact of Bus-Related Legislation
  • 6.8. LFP Application Cases
    • 6.8.1. Electric Buses
    • 6.8.2. Electric Ships
    • 6.8.3. ESS
    • 6.8.4. UPS
  • 6.9. Design of LFP Battery (CTP) and Module Standardization
    • 6.9.1. Trends in Optimal LFP Battery Pack Design
    • 6.9.2. LFP Battery Pack Price Information

7. LFP Battery Manufacturing Process

  • 7.1. Development Trends in Lithium-Ion Secondary Batteries
    • 7.1.1. LFP Manufacture Trend
    • 7.1.2. Phosphate Precursor Production Process: Synthesis Method
    • 7.1.3. Representative Mass Production Method for LFP
    • 7.1.4. Precursor Production Process: Solid-State Method
    • 7.1.5. Precursor Production Process: Co-precipitation Method
    • 7.1.6. Precursor Production Process: Liquid Co-precipitation Method
    • 7.1.7. Oxalate Iron Method (Solid-State)
    • 7.1.8. Phosphate Method (Solid-State) Yield Method
    • 7.1.9. LFP Manufacture Outlook
    • 7.1.10 Ferric Oxide Method (Solid-State)
    • 7.1.11 Hydrothermal Synthesis Method (Liquid)
    • 7.1.12 LFP Manufacture facilities

8. LFP battery Patents

  • 8.1. Solid-State Reaction
    • 8.1.1. LG Chem
  • 8.2. Precursor Method
    • 8.2.1. Korea Research Institute of Chemical Technology
    • 8.2.2. Korea National University of Transportation
    • 8.2.3. Korea Research Institute of Chemical Technology
  • 8.3. Freeze drying
    • 8.3.1. Hyundai Motor
  • 8.4. Ball Milling
    • 8.4.1. Korea Polytechnic University
  • 8.5. Conductive Polymer Coating Method
    • 8.5.1. Ajou University
  • 8.6. Fe(NO3)3 Method
    • 8.6.1. Korea National University of Transportation