封面
市場調查報告書
商品編碼
1668164

先進陶瓷市場 - 全球產業規模、佔有率、趨勢、機會和預測,按材料、類別、最終用戶、地區和競爭進行細分,2020-2030 年預測

Advanced Ceramics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented, By Material, By Class, By End-User, By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 188 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2024 年全球先進陶瓷市場價值為 802.7 億美元,預計到 2030 年將達到 1,058.4 億美元,預測期內複合年成長率為 4.56%。先進陶瓷市場是指生產和應用比傳統陶瓷具有更優異性能的高性能陶瓷材料的領域。這些材料具有高耐磨性、耐腐蝕性、耐熱性和導電性,非常適合廣泛的工業、商業和消費應用。先進陶瓷,通常稱為技術陶瓷,專為特定功能而設計,包含氧化物、碳化物、氮化物和硼化物等各種元素,以實現增強的機械、電氣和熱性能。市場涵蓋多種產品,包括用於汽車、航太、電子、醫療設備、能源和國防工業的陶瓷零件。

市場概況
預測期 2026-2030
2024 年市場規模 802.7 億美元
2030 年市場規模 1058.4 億美元
2025-2030 年複合年成長率 4.56%
成長最快的領域 鋯石
最大的市場 北美洲

主要市場促進因素

技術進步與創新

主要市場挑戰

生產成本高,製造流程複雜

主要市場趨勢

電子和半導體產業對先進陶瓷的需求不斷成長

目錄

第 1 章:產品概述

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:顧客之聲

第5章:全球先進陶瓷市場展望

  • 市場規模和預測
    • 按價值
  • 市場佔有率和預測
    • 依材料(氧化鋁、氧化鋯、矽、鈦酸鹽等)
    • 按類別(單片陶瓷、陶瓷塗層和陶瓷基複合材料)
    • 按最終用戶(電氣和電子、運輸、醫療和其他)
    • 按地區
  • 按公司分類(2024)
  • 市場地圖

第6章:北美先進陶瓷市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 北美:國家分析
    • 加拿大
    • 墨西哥

第7章:歐洲先進陶瓷市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 歐洲:國家分析
    • 英國
    • 義大利
    • 法國
    • 西班牙

第 8 章:亞太先進陶瓷市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 亞太地區:國家分析
    • 印度
    • 日本
    • 韓國
    • 澳洲

第9章:南美洲先進陶瓷市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 南美洲:國家分析
    • 阿根廷
    • 哥倫比亞

第 10 章:中東和非洲先進陶瓷市場展望

  • 市場規模和預測
  • 市場佔有率和預測
  • 中東和非洲:國家分析
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 科威特
    • 土耳其

第 11 章:市場動態

  • 驅動程式
  • 挑戰

第 12 章:市場趨勢與發展

第 13 章:公司簡介

  • Kyocera Corporation
  • CeramTec GmbH
  • CoorsTek Inc.
  • Saint-Gobain
  • Morgan Advanced Materials Plc
  • 3M Company
  • Rauschert Steinbach GmbH
  • Dyson Advanced Ceramics Ltd
  • Superior Advanced Ceramics
  • NGK Spark Plug Co. Ltd.

第 14 章:策略建議

第15章 關於出版商,免責事項

簡介目錄
Product Code: 2647

Global Advanced Ceramics Market was valued at USD 80.27 billion in 2024 and is expected to reach USD 105.84 billion by 2030 with a CAGR of 4.56% during the forecast period. The advanced ceramics market refers to the sector involved in the production and application of high-performance ceramic materials that possess superior properties compared to traditional ceramics. These materials are characterized by their high resistance to wear, corrosion, heat, and electrical conductivity, making them ideal for a wide range of industrial, commercial, and consumer applications. Advanced ceramics, often referred to as technical ceramics, are engineered for specific functionalities, incorporating various elements such as oxides, carbides, nitrides, and borides to achieve enhanced mechanical, electrical, and thermal properties. The market encompasses a diverse range of products, including ceramic components used in automotive, aerospace, electronics, medical devices, energy, and defense industries.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 80.27 Billion
Market Size 2030USD 105.84 Billion
CAGR 2025-20304.56%
Fastest Growing SegmentZirconia
Largest MarketNorth America

Key Market Drivers

Technological Advancements and Innovation

The rapid advancements in material science and engineering are a significant driver for the growth of the advanced ceramics market. Technological innovations in the development of advanced ceramics have enabled their use in a wide range of industries, including automotive, electronics, aerospace, medical, and defense. For example, the development of high-performance ceramics with enhanced mechanical, thermal, and electrical properties has expanded the scope of their applications, making them suitable for use in extreme conditions. In the automotive industry, advanced ceramics are being increasingly utilized for components such as sensors, igniters, and bearings due to their ability to withstand high temperatures and harsh environments. In electronics, advanced ceramics are integral in the production of capacitors, insulators, and semiconductors, with the ongoing miniaturization of electronic devices driving further demand. The aerospace and defense sectors are also contributing to market growth as advanced ceramics are utilized for components requiring high strength-to-weight ratios, such as turbine blades, armor materials, and heat shields. Innovations in additive manufacturing, where advanced ceramics can be 3D printed with greater precision and speed, are opening new doors for creating customized, complex geometries for specific applications. Moreover, advancements in material design are leading to the creation of functionally graded ceramics, which offer tailored properties for specific industrial applications. The continued pursuit of innovation in ceramic materials ensures that advanced ceramics remain at the forefront of technological development across various industries, driving sustained growth in the market.

Key Market Challenges

High Production Costs and Complex Manufacturing Processes

One of the primary challenges facing the advanced ceramics market is the high production costs associated with manufacturing these materials. Advanced ceramics, such as piezoelectric, bioceramics, and ceramic composites, are often produced using specialized processes like sintering, chemical vapor deposition, and sol-gel techniques. These processes require precise control of temperature, atmosphere, and chemical reactions, making the manufacturing process both time-consuming and resource-intensive. Additionally, the raw materials used to produce advanced ceramics are often rare, expensive, and difficult to source, further contributing to high material costs. For example, materials like zirconia, alumina, and silicon carbide are critical for producing high-performance ceramics, but their procurement involves significant cost implications. The need for specialized equipment and skilled labor to operate these processes also increases production costs. As a result, manufacturers face difficulties in offering competitive prices for advanced ceramics, especially when compared to alternative materials that are easier to produce and cost-effective.

This cost factor presents a significant barrier, particularly for small and medium-sized enterprises (SMEs) that may struggle to invest in the required technology and infrastructure. Furthermore, the high production costs can deter potential customers in industries such as automotive, electronics, and healthcare from adopting advanced ceramics, limiting market growth opportunities. Consequently, manufacturers are under pressure to develop more efficient production methods, explore cost-effective material alternatives, and scale up production to improve cost efficiency and meet market demand.

Key Market Trends

Growing Demand for Advanced Ceramics in Electronics and Semiconductor Industries

The demand for advanced ceramics in the electronics and semiconductor industries is a significant trend driving the growth of the market. As electronic devices become more sophisticated and miniaturized, the need for high-performance materials has increased, and advanced ceramics are perfectly suited for this purpose. Advanced ceramics are utilized in a variety of applications, such as insulators, capacitors, semiconductors, and sensors, due to their excellent electrical, thermal, and mechanical properties. In particular, the growth of the semiconductor industry has spurred the use of ceramics in components like insulators and substrates, which are integral to the functioning of modern electronic devices. The trend towards smaller, more efficient, and more powerful electronic devices has led to the development of high-performance ceramics that can withstand extreme conditions such as high temperatures and pressure, providing essential durability and reliability. The rise of technologies like 5G, IoT, and wearable devices further amplifies the demand for advanced ceramics in electronic applications. As consumer demand for these devices continues to grow, the need for advanced ceramics in the electronics and semiconductor industries is expected to expand rapidly, fostering innovations in ceramic materials and their applications.

Key Market Players

  • Kyocera Corporation
  • CeramTec GmbH
  • CoorsTek Inc.
  • Saint-Gobain
  • Morgan Advanced Materials Plc
  • 3M Company
  • Rauschert Steinbach GmbH
  • Dyson Advanced Ceramics Ltd
  • Superior Advanced Ceramics
  • NGK Spark Plug Co. Ltd.

Report Scope:

In this report, the Global Advanced Ceramics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Advanced Ceramics Market, By Material:

  • Alumina
  • Zirconia
  • Silicon
  • Titanate
  • Others

Advanced Ceramics Market, By Class:

  • Monolithic Ceramics
  • Ceramic Coatings
  • Ceramic Matrix Composites

Advanced Ceramics Market, By End-User:

  • Electrical & Electronics
  • Transportation
  • Medical
  • Others

Advanced Ceramics Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Advanced Ceramics Market.

Available Customizations:

Global Advanced Ceramics Market report with the given Market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Advanced Ceramics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Material (Alumina, Zirconia, Silicon, Titanate and Others)
    • 5.2.2. By Class (Monolithic Ceramics, Ceramic Coatings and Ceramic Matrix Composites)
    • 5.2.3. By End-User (Electrical & Electronics, Transportation, Medical and Others)
    • 5.2.4. By Region
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Advanced Ceramics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Material
    • 6.2.2. By Class
    • 6.2.3. By End-User
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Advanced Ceramics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Material
        • 6.3.1.2.2. By Class
        • 6.3.1.2.3. By End-User
    • 6.3.2. Canada Advanced Ceramics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Material
        • 6.3.2.2.2. By Class
        • 6.3.2.2.3. By End-User
    • 6.3.3. Mexico Advanced Ceramics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Material
        • 6.3.3.2.2. By Class
        • 6.3.3.2.3. By End-User

7. Europe Advanced Ceramics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Material
    • 7.2.2. By Class
    • 7.2.3. By End-User
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Advanced Ceramics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Material
        • 7.3.1.2.2. By Class
        • 7.3.1.2.3. By End-User
    • 7.3.2. United Kingdom Advanced Ceramics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Material
        • 7.3.2.2.2. By Class
        • 7.3.2.2.3. By End-User
    • 7.3.3. Italy Advanced Ceramics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Material
        • 7.3.3.2.2. By Class
        • 7.3.3.2.3. By End-User
    • 7.3.4. France Advanced Ceramics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Material
        • 7.3.4.2.2. By Class
        • 7.3.4.2.3. By End-User
    • 7.3.5. Spain Advanced Ceramics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Material
        • 7.3.5.2.2. By Class
        • 7.3.5.2.3. By End-User

8. Asia-Pacific Advanced Ceramics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Material
    • 8.2.2. By Class
    • 8.2.3. By End-User
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Advanced Ceramics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Material
        • 8.3.1.2.2. By Class
        • 8.3.1.2.3. By End-User
    • 8.3.2. India Advanced Ceramics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Material
        • 8.3.2.2.2. By Class
        • 8.3.2.2.3. By End-User
    • 8.3.3. Japan Advanced Ceramics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Material
        • 8.3.3.2.2. By Class
        • 8.3.3.2.3. By End-User
    • 8.3.4. South Korea Advanced Ceramics Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Material
        • 8.3.4.2.2. By Class
        • 8.3.4.2.3. By End-User
    • 8.3.5. Australia Advanced Ceramics Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Material
        • 8.3.5.2.2. By Class
        • 8.3.5.2.3. By End-User

9. South America Advanced Ceramics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Material
    • 9.2.2. By Class
    • 9.2.3. By End-User
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Advanced Ceramics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Material
        • 9.3.1.2.2. By Class
        • 9.3.1.2.3. By End-User
    • 9.3.2. Argentina Advanced Ceramics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Material
        • 9.3.2.2.2. By Class
        • 9.3.2.2.3. By End-User
    • 9.3.3. Colombia Advanced Ceramics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Material
        • 9.3.3.2.2. By Class
        • 9.3.3.2.3. By End-User

10. Middle East and Africa Advanced Ceramics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Material
    • 10.2.2. By Class
    • 10.2.3. By End-User
    • 10.2.4. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Advanced Ceramics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Material
        • 10.3.1.2.2. By Class
        • 10.3.1.2.3. By End-User
    • 10.3.2. Saudi Arabia Advanced Ceramics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Material
        • 10.3.2.2.2. By Class
        • 10.3.2.2.3. By End-User
    • 10.3.3. UAE Advanced Ceramics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Material
        • 10.3.3.2.2. By Class
        • 10.3.3.2.3. By End-User
    • 10.3.4. Kuwait Advanced Ceramics Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Material
        • 10.3.4.2.2. By Class
        • 10.3.4.2.3. By End-User
    • 10.3.5. Turkey Advanced Ceramics Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Material
        • 10.3.5.2.2. By Class
        • 10.3.5.2.3. By End-User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

13. Company Profiles

  • 13.1. Kyocera Corporation
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. CeramTec GmbH
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel/Key Contact Person
    • 13.2.5. Key Product/Services Offered
  • 13.3. CoorsTek Inc.
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel/Key Contact Person
    • 13.3.5. Key Product/Services Offered
  • 13.4. Saint-Gobain
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel/Key Contact Person
    • 13.4.5. Key Product/Services Offered
  • 13.5. Morgan Advanced Materials Plc
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel/Key Contact Person
    • 13.5.5. Key Product/Services Offered
  • 13.6. 3M Company
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel/Key Contact Person
    • 13.6.5. Key Product/Services Offered
  • 13.7. Rauschert Steinbach GmbH
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel/Key Contact Person
    • 13.7.5. Key Product/Services Offered
  • 13.8. Dyson Advanced Ceramics Ltd
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel/Key Contact Person
    • 13.8.5. Key Product/Services Offered
  • 13.9. Superior Advanced Ceramics
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel/Key Contact Person
    • 13.9.5. Key Product/Services Offered
  • 13.10. NGK Spark Plug Co. Ltd.
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel/Key Contact Person
    • 13.10.5. Key Product/Services Offered

14. Strategic Recommendations

15. About Us & Disclaimer