封面
市場調查報告書
商品編碼
1534969

MLOps 市場:現況分析與預測(2024-2032)

MLOps Market: Current Analysis and Forecast (2024-2032)

出版日期: | 出版商: UnivDatos Market Insights Pvt Ltd | 英文 134 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

MLOps 市場有可能呈指數級成長,在預測期內年複合成長率為 41%。企業其組織中成功應用人工智慧/機器學習理念,以建立競爭優勢並提高組織價值。 MLOps 有助於實施機器學習模型。這意味著可以更輕鬆地將模型部署到生產中。此外,醫療保健、金融和電信業在資料安全、隱私和模型可解釋性方面受到嚴格的監管標準。透過這種方式,MLOps 確保組織滿足機器學習過程每個階段治理的可聽性和可追溯性等方面的監管要求。

基於組成 MLOps 市場的組件的細分包括平台和服務。2023年,平台細分市場引領市場。 MLOps 市場中的解決方案包括強大的平台和組織創建、處理和擴展機器學習模型的方法。例如,Amazon Web Services 的SageMaker 是一個通用 ML 平台,可根據全球各產業的需求啟用並支援從標籤到模型部署的所有內容。

依產業劃分,MLOps 市場分為 BFSI、製造業、IT/電信、零售/電子商務、能源/公用事業、醫療保健、媒體/娛樂等。2023年,IT 和通訊產業引領 MLOps 市場。 IT 和通訊是在使用 MLOps 進行網路管理、網路安全和客戶價值方面最先進的行業。例如,西班牙 Telefonica 透過 MLOps 應用技術來提高網路效能和維護水準,並確保客戶的可靠連接。

為了了解全球 MLOps 產業市場,該市場分為北美、歐洲、亞太地區、歐洲其他地區、中國、日本、印度、亞太地區其他地區和世界其他地區。2023年,該市場將以北美為主導,佔據最大的市場佔有率。北美地區保持高利潤的主要原因是該地區的大多數組織從一開始就仍然堅持人工智慧,大多數科技巨頭都在投資優秀的MLOps 解決方案。在這種情況下,Google、微軟和 IBM 等科技巨頭是致力於在 MLOps 發展方面發揮區域領導作用的關鍵參與者,透過各個部門促進經濟發展。

進入市場的主要公司包括Akira AI(XenonStack)、Alteryx Inc.、Amazon Web Services Inc.、Dataiku Inc.、Datarobot Inc.、Domino Data Lab Inc.、Google LLC(Alphabet Inc.)、H2O.ai、Hewlett Packard Enterprise Development LP。

目錄

第1章 市場介紹

  • 市場定義
  • 主要目的
  • 利害關係人
  • 限制

第2章 研究方法或前提

  • 調查過程
  • 調查方法
  • 受訪者簡介

第3章 執行摘要

  • 行業概況
  • 依細分市場進行預測
    • 市場成長強度
  • 區域展望

第4章 市場動態

  • 促進因素
  • 機會
  • 抑制因素
  • 趨勢
  • PESTEL 分析
  • 需求方分析
  • 供給面分析
    • 併購
    • 投資場景
    • 產業洞察:主要新創公司及其獨特策略

第5章 價格分析

  • 區域價格分析
  • 影響價格的因素

第6章 2022-2032年全球 MLOps 市場收入

第7章 依組件劃分的市場分析

  • 平台
  • 服務

第8章 產業市場分析

  • BFSI
  • 製造業
  • IT/通信
  • 零售/電子商務
  • 能源/公用事業
  • 醫療保健
  • 媒體娛樂
  • 其他

第9章 依地區劃分的市場分析

  • 北美
    • 美國
    • 加拿大
    • 其他北美地區
  • 歐洲
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙
    • 其他歐洲地區
  • 亞太地區
    • 中國
    • 日本
    • 印度
    • 其他亞太地區
  • 世界其他地區

第10章 價值鏈分析

  • 主要成分分析
  • 進入市場的公司名單

第11章 競爭態勢

  • 競爭儀表板
  • 競爭市場定位分析
  • 波特五力分析

第12章 公司簡介

  • Akira AI(XenonStack)
  • Alteryx Inc.
  • Amazon Web Services Inc.
  • Dataiku Inc.
  • Datarobot Inc.
  • Domino Data Lab Inc.
  • Google LLC(Alphabet Inc.)
  • H2O.ai
  • Hewlett Packard Enterprise Development LP
  • International Business Machines Corporation

第13章 縮寫與先決條件

第14章 附錄

簡介目錄
Product Code: UMTI212968

MLOps is the operation of machine learning from the development of the model to the operations of the final product. The last one refers to the process of development, deployment, management, and automation of machine learning development to meet a scalable output of high-quality machine learning models.

The MLOps Market holds a promising Potential for Exponential Speedup with a CAGR of 41% for the forecast period. Businesses are applying artificial intelligence/machine learning ideas successfully in their organizations to build competitive advantages and add more value to their organizations. MLOps helps to operationalize machine learning models meaning that it makes it easier to put the models into the production environment. Further, the healthcare, finance, and telecommunications industries come under strict regulatory standards concerning data security, privacy, and model explainability. This way, MLOps ensures that an organization meets regulatory requirements on aspects such as governance audibility and traceability at each stage in the machine learning process.

The segments based on the Component that constitute the MLOps Market include Platform and Service. The Platform segment led the market in 2023. Solutions in the MLOps market contain solid platforms and instruments for organizations to create, handle, and scale up machine learning models. For instance, Amazon Web Service's SageMaker is a general ML platform that allows and supports everything from labeling to deployment of the model according to the needs of various industries across the world.

Based on the Industry Vertical, the MLOps Market has been classified into BFSI, Manufacturing, IT and Telecom, Retail and E-commerce, Energy and Utility, Healthcare, Media and Entertainment, and Others. In 2023, the IT and Telecom segment led the MLOps Market. IT and Telecom are the most advanced industries in terms of MLOps usage for the improvement of network management, cybersecurity, and customer value. For instance, through MLOps, Telefonica in Spain applies techniques of enhancing the performance of a network and level of maintenance to guarantee customers reliable connection.

In order to understand the global market of the MLOps industry, the market is divided into global regions including North America, Europe, Asia-Pacific, and the rest of the world where it is spread across the countries, namely U. S., Canada, Rest of North America, Germany, U. K., France, Spain, Italy, Rest of Europe, China, Japan, India, and Rest of Asia-Pacific and Rest of the World. In 2023, the market was led by North America, which accounts for the largest market share. The North American region holds higher revenues mainly because most organizations in this region are still sticking to AI from the starting period, and most of the tech-giants are invested in superior MLOps solutions. In this case, technology powerhouses such as Google, Microsoft, and IBM are some of the key players leaning into the regional leadership in MLOps advancement consequently boosting the economy through the different sectors.

Some of the major players operating in the market include Akira AI (XenonStack), Alteryx Inc., Amazon Web Services Inc., Dataiku Inc., Datarobot Inc., Domino Data Lab Inc., Google LLC (Alphabet Inc.), H2O.ai, and Hewlett Packard Enterprise Development LP.

TABLE OF CONTENTS

1.MARKET INTRODUCTION

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.RESEARCH METHODOLOGY OR ASSUMPTION

  • 2.1. Research Process of the MLOps Market
  • 2.2. Research Methodology of the MLOps Market
  • 2.3. Respondent Profile

3.EXECUTIVE SUMMARY

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
    • 3.2.1. Market Growth Intensity
  • 3.3. Regional Outlook

4.MARKET DYNAMICS

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. PESTEL Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Investment Scenario
    • 4.7.3. Industry Insights: Leading Startups and Their Unique Strategies

5.PRICING ANALYSIS

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.GLOBAL MLOPS MARKET REVENUE (USD BN), 2022-2032F

7.MARKET INSIGHTS BY COMPONENT

  • 7.1. Platform
  • 7.2. Service

8.MARKET INSIGHTS BY INDUSTRY VERTICAL

  • 8.1. BFSI
  • 8.2. Manufacturing
  • 8.3. IT and Telecom
  • 8.4. Retail and E-commerce
  • 8.5. Energy and Utility
  • 8.6. Healthcare
  • 8.7. Media and Entertainment
  • 8.8. Others

9.MARKET INSIGHTS BY REGION

  • 9.1. North America
    • 9.1.1. U.S.
    • 9.1.2. Canada
    • 9.1.3. Rest of North America
  • 9.2. Europe
    • 9.2.1. Germany
    • 9.2.2. U.K.
    • 9.2.3. France
    • 9.2.4. Italy
    • 9.2.5. Spain
    • 9.2.6. Rest of Europe
  • 9.3. Asia-Pacific
    • 9.3.1. China
    • 9.3.2. Japan
    • 9.3.3. India
    • 9.3.4. Rest of Asia-Pacific
  • 9.4. Rest of World

10.VALUE CHAIN ANALYSIS

  • 10.1. Key Component Analysis
  • 10.2. List of Market Participants

11.COMPETITIVE LANDSCAPE

  • 11.1. Competition Dashboard
  • 11.2. Competitor Market Positioning Analysis
  • 11.3. Porter Five Forces Analysis

12.COMPANY PROFILED

  • 12.1. Akira AI (XenonStack)
    • 12.1.1. Company Overview
    • 12.1.2. Key Financials
    • 12.1.3. SWOT Analysis
    • 12.1.4. Product Portfolio
    • 12.1.5. Recent Developments
  • 12.2. Alteryx Inc.
  • 12.3. Amazon Web Services Inc.
  • 12.4. Dataiku Inc.
  • 12.5. Datarobot Inc.
  • 12.6. Domino Data Lab Inc.
  • 12.7. Google LLC (Alphabet Inc.)
  • 12.8. H2O.ai
  • 12.9. Hewlett Packard Enterprise Development LP
  • 12.10. International Business Machines Corporation

13.ACRONYMS & ASSUMPTION

14.ANNEXURE