鋰離子電容以及其他的電池超級電容混合:市場·技術 (2025-2045年)
市場調查報告書
商品編碼
1615494

鋰離子電容以及其他的電池超級電容混合:市場·技術 (2025-2045年)

Lithium-ion Capacitors and Other Battery Supercapacitor Hybrids: Markets, Technology, 2025-2045

出版日期: | 出版商: Zhar Research | 英文 476 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

熱核反應器、電磁武器、土木工程設備和智慧電錶有什麼共通點?所有這些都使用鋰離子電容器(LIC)。它們介於超級電容器和電池之間,通常兼具兩全其美的優點。

這一點的重要性經常被混合超級電容器和超級電池等令人困惑的術語所忽視,但世界正在朝著LIC 的方向發展,例如強調功率和可靠性的AI 數據中心,一個例子就是它已經成為了。這裡,LIC用作不間斷電源,更安全、壽命更長、運作和恢復更快。儘管LIC的市場規模預計不會達到金屬離子電池的規模,但相信LIC將超越超級電容器。包括其他電池超級電容器混合動力車(BSH)在內​​,預計20年內銷售額將每年超過100億美元。

本報告提供鋰離子電容 (LIC) 以及其他的電池超級電容混合 (BSH) 的市場及技術,技術類型和概要調查,彙整市場需求和變化,市場影響因素的分析,技術藍圖·研究開發趨勢,各用途的展望,用途·各技術的市場預測,主要企業的分析等資訊。

目錄

第1章 摘要整理·結論

  • 本報告的目的
  • 此分析的研究方法
  • 定義
  • 儲能工具包
  • 13 個主要結論:包括 LIC 在內的 BSH 市場
  • 資訊圖表:最具影響力的市場需求
  • 資訊圖表:BSH 和贗電容器的相對商業重要性
  • EDLC 和 BSH(包括 LIC)的價值和應用
  • EDLC 和 BSH 技術的使用範例:應用領域
  • 大型設備用LIC和EDLC的供應和潛力分析
  • 18 主要結論:技術與製造商
  • 資訊圖表:能量密度、功率密度、壽命、尺寸和重量折衷方案
  • 減少儲存容量的策略會增加採用 BSH 的可能性
  • 需要改變研究方向:5 列、7 行
  • 2024 年 BSH 和 EDLC 研究活動:按國家和技術分類
  • SWOT 評估/路線圖
  • 市場驅動的博西家電活動路線圖:技術、產業、市場
  • 電池超級電容器混合動力:30條線預測

第2章 電池超級電容混合 (BSH):需求,Toolkit,製造概要

  • 儲能工具包
  • 儲能市場
  • 技術優化與技術競爭問題:簡介
  • LIC、鋰離子電池、超級電容器:比較34個參數
  • LIC 格式與相鄰技術的比較
  • 了解更多

第3章 未來的鋰離子電容器的設計和競爭上的地位

  • 概要
  • 設計上的問題
  • 研究的進步的分析
  • 專利範例
  • 並且讀

第4章 其他的金屬離子電容器的設計和進步:鉛離子,鎳離子,鉀離子,鈉離子,鋅離子電容器

  • 概要
  • 鉛離子電容器:歷史,原理,研究
  • 鎳離子電容器:2024年的進步
  • 鉀離子電容器:2024年的進步
  • 鈉離子電容器:2024年的進步
  • 鋅離子電容器:2024年的進步

第5章 適合電池超級電容混合儲存的其他的新的化學物質

  • 概要
  • 根據
  • 研究開發平台(管線)

第6章 用研究開發平台分析所使用的新興材料

  • 摘要
  • 影響超級電容器主要參數並推動銷售的因素
  • 一般材料選擇
  • 超級電容器改良策略
  • 石墨烯在超級電容器及其變體中的重要性
  • 超級電容器的其他二維及相關材料和研究實例
  • 超級電容器電極材料與結構研究
  • 之前的重要範例
  • 超級電容器及其變體的電解質
  • 膜的難度和用途以及建議的材料
  • 減少自放電:需求大,研究很少

第7章 新興BSH市場:能源、汽車、航太、軍事、電子等產業基本趨勢與最佳前景比較

  • 對市場的影響
  • 摘要
  • 超級電容器的相對商業重要性
  • 最有前途的超級電容器系列的價值主張
  • 市場潛力與製造規模不匹配
  • 大型設備供應及潛力分析

第8章 能源領域的新興BSH市場

  • 摘要:2024-2044 年展望
  • 融合發電
  • 減少間歇性電網發電:波浪能、潮流能、高空風力發電
  • 離網超級電容器:新的巨大機遇
  • 水力發電

第9章 陸地車輛與海洋應用的興起:汽車、巴士、卡車列車、越野建築、農業、採礦、林業、物料搬運、船隻

  • 超級電容器在陸上交通的應用概述
  • 道路應用正在下降,但越野應用正在蓬勃發展
  • 陸地車輛中的超級電容器及其衍生產品:從公路到越野的過渡
  • 配備大型超級電容器的新車和相關設計
  • 復興電車和無軌電車並解決架空電線間隙問題
  • 物料搬運(內部物流)超級電容器
  • 大型超級電容器在採礦和採石業的應用
  • 車用大型超級電容器研究
  • 用於火車和軌旁再生的大型超級電容器
  • 海洋利用及大型超級電容器研究管線

第10章 6G通訊,電子產品,小型電子設備的新用途

  • 概要
  • 小型BSH和超級電容器的應用顯著擴展
  • 穿戴式裝置、智慧手錶、智慧型手機和筆記型電腦等裝置中的博西家電和超級電容器
  • 6G 通訊:2030 年博西家電的新市場
  • 資產追蹤成長市場
  • 電池支援和備用電源超級電容器
  • 手持終端BSH和超級電容器
  • 使用物聯網節點、無線感測器、BSH 和超級電容器的能量收集模式
  • 資料傳輸、鎖、螺線管啟動、電子墨水更新和 LED 閃光燈的峰值功率
  • 智慧電錶

第11章 新軍事及航太用途

  • 概要
  • 軍事用途:電動力學武器和電磁武器大的焦點
  • 軍事用途:無人飛機,通訊設備,雷達,飛機,船舶,坦克,衛星,誘導飛彈,彈藥點火設備,電磁裝甲
  • 航太:衛星,飛機電動化 (MEA),其他的成長機會

第12章 BSH(含LIC)、超級電容器、贗電容器、116家CSH公司評估

  • 116企業對比指標分析
  • 116家超級電容器、贗電容器、BSH(包括LIC)製造商
簡介目錄

Summary

What do thermonuclear reactors, electromagnetic weapons, earthmoving machines and smart meters have in common? They all use lithium-ion capacitors LIC, something between a supercapacitor and a battery and often the best of both worlds. The new Zhar Research 476-page report, "Lithium-ion capacitors and other battery supercapacitor hybrids: markets, technology, 2025-2045" explains.

Their importance is often missed by confusing terms like hybrid supercapacitor and superbattery, but the world is going their way, an example being artificial intelligence data centers becoming power and reliability-oriented. Consequently, they appear there as safer, longer lived, uninterrupted power supplies that act and recover faster. While they will not match the market size of metal ion batteries, they will overtake supercapacitors. Include other battery-supercapacitor hybrids BSH and the analysis predicts over $10 billion yearly sales within 20 years.

Here are some of the questions answered:

  • Gaps in the market?
  • Next winners and losers?
  • Full list of technology options?
  • SWOT appraisals by technology?
  • Evolving market needs 2025-2045?
  • Where should research be redirected?
  • Market forecasts by technology 2025-2045?
  • Deep analysis of research advances in 2024?
  • What follows LIC of the BSH choices and why?
  • Technology readiness and potential improvement?
  • Market drivers and forecasts of background parameters?
  • Potential winners and losers by company and technology?
  • Detailed technology parameter comparisons with comment?
  • Detailed appraisal of all the leading proponents and their strategies?
  • New applications and technology milestones in roadmaps by year 2025-2045?

This commercially-oriented report is both lucid and thorough, involving:

6 SWOT appraisals, 12 Chapters, 30 Forecast lines 2025-2045, 30 Key conclusions, 107 New infograms, over 116 Companies and 153 best research papers from 2023/4 reviewed.

The Executive summary and conclusions (38 pages) is sufficient in itself including roadmaps and those 30 forecasts. Chapter 2. Covers "Battery supercapacitor hybrids BSH: introduction to need, toolkit and manufacture" in 25 pages putting them in context of all evolving storage with many examples including e-bikes, wind turbines, trains, trams. Learn the chemistry and structure involved in tailoring them to be supercapacitor-like, battery-like or something in-between because there are commercial successes beginning for all of those options.

Chapter 3. "Future lithium-ion capacitor design and competitive position" takes 25 information-packed pages to reveal these specific constructions from the smallest electronics components to heavy engineering. Here are the issues and new market to be addressed. Chapter 4. "Other metal-ion capacitors design and progress: Lead-ion, nickel-ion, potassium-ion, sodium-ion, zinc-ion capacitors" , in 20 pages clarifies the best research and targetted markets for these with much advance in 2024. Why most work on sodium-ion capacitors? Why is nickel-ion capacitor NIC, particularly with cobalt receiving equal attention? Why considerable work on potassium-ion and zinc-ion capacitors? Involvement of graphene?

15 pages of Chapter 5. "Other emerging chemistries for battery-supercapacitor hybrid storage" concerns wild cards such as Zeolite Ionic Frameworks, MXene and MOFs composites for BSH and the relevance of metal alloys and manganese compounds. After these simpler chapters, you are ready for the dep dive of Chapter 6. "Emerging materials employed with 2024, 2023 research pipeline analysis" going closely into electrodes, electrolytes and membranes in 50 pages with a flood of new research analysed and many infograms clarifying choices and trends.

Because BSH can be tailored to such a wide range of size and performance, the emerging applications and competitive positioning needs careful investigation and that is provided in Chapter 7. Emerging BSH markets : basic trends and best prospects compared between energy, vehicles, aerospace, military, electronics, other. This is 11 pages because many applications have already been covered and more lie ahead.

Chapter 8. Energy sector emerging BSH markets (49 pages) reveals an extraordinary breadth of opportunity from recent adoption for the Japan Tokamak thermonuclear reactor, wind turbines and many uses in grids and microgrids, even electric vehicle fast chargers. This survey also includes supercapacitor applications likely to switch to BSH, initially LIC. Chapter 9. "Emerging land vehicle and marine applications: automotive, bus, truck train, off-road construction, agriculture, mining, forestry, material handling, boats, ships" (50 pages) is equally broad in reach. Chapter 10. Emerging applications in 6G Communications, electronics and small electrics (29 pages) is mainly revealing opportunities for small LIC. Chapter 11, "Emerging military and aerospace applications" (20 pages) often involves hand-held to very large equipment, even aircraft.

Chapter 12. "116 BSH (including LIC), supercapacitor, pseudocapacitor, CSH companies assessed in 10 columns and 112 pages" looks at most supercapacitor manufacturers because they are either making LIC or eyeing that opportunity. With many pictures, parameters and news items, you can see the commercial activities and objectives in detail.

Whether you wish to supply materials, devices or systems incorporating BSH, the report, "Lithium-ion capacitors and other battery supercapacitor hybrids: markets, technology, 2025-2045" is your essential reading.

CAPTION: Diagrammatic illustration of storage option relative potential. Source Zhar Research report, "Lithium-ion capacitors and other battery supercapacitor hybrids: markets, technology, 2025-2045".

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report
  • 1.2. Methodology of this analysis
  • 1.3. Definitions
  • 1.4. Energy storage toolkit
    • 1.4.1. The basic options
    • 1.4.2. BSH have some of superlatives of a supercapacitor combined with those of a battery
    • 1.4.3. BSH and in particular LIC create some valuable tipping points
    • 1.4.4. The many advantages of lithium-ion capacitors LIC and the energy density choices
    • 1.4.5. How strategies for improving supercapacitors will benefit BSH including LIC
    • 1.4.6. Prioritisation of active electrode-electrolyte pairings
  • 1.5 13 Primary conclusions: BSH markets including LIC
  • 1.6. Infogram: the most impactful market needs
  • 1.7. Infogram: relative commercial significance of BSH and pseudocapacitors 2024-2044
  • 1.8. Some market propositions and uses of EDLC and BSH including LIC 2024-2044
  • 1.9. Technology uses by applicational sector for EDLC vs BSH - examples
  • 1.10. Analysis of supply and potential of LIC and EDLC for large devices
  • 1.11 18 primary conclusions: technologies and manufacturers
  • 1.12. Infogram: the energy density-power density, life, size and weight compromise
  • 1.13. How strategies to require less storage make BSH more adoptable
  • 1.14. How research needs redirecting: 5 columns, 7 lines
  • 1.17. BSH and EDLC research activity by country and technology 2024
  • 1.18. SWOT appraisals and roadmap 2025-2045
    • 1.18.1. SWOT appraisal of supercapacitors and BSH
    • 1.18.2. SWOT appraisal of LIC and other BSH
    • 1.18.3. SWOT appraisal of graphene LIC
    • 1.18.4. SWOT appraisal of batteryless storage technologies generally
  • 1.19. Roadmap of market-moving BSH events - technologies, industry and markets 2025-2045
  • 1.20. Battery supercapacitor hybrids: forecasts by 30 lines 2025-2045
    • 1.20.1. Competitors RFB beyond grid, EDLC, Pseudocapacitor and BSH $ billion 2025-2045
    • 1.20.2. Battery supercapacitor hybrid storage BSH by type: BSH, Non-lithium, LIC, banks $ billion 2025-2045
    • 1.20.3. Battery supercapacitor hybrids BSH value market percent by four regions 2025-2045
    • 1.20.4. BSH value market percent by three performance categories 2025-2045
    • 1.20.5. Battery supercapacitor hybrid BSH value market % by two Wh categories 2025-2045
    • 1.20.6. BSH value market % by three electrode morphologies 2025-2045
    • 1.20.7. BSH product life years and life of equipment to which it is fitted years 2014-2045
    • 1.20.8. Market for seven types of equipment fitting BSH $ billion 2025-2045
    • 1.20.9. Energy storage device market battery vs batteryless $ billion 2025-2045

2. Battery supercapacitor hybrids BSH: introduction to need, toolkit and manufacture

  • 2.1. Energy storage toolkit
    • 2.1.1. The basic options
    • 2.1.2. How BSH will compete with other technologies
    • 2.1.3. Electrochemical vs electrostatic storage
    • 2.1.4. Examples of competition between capacitor, supercapacitor and battery technologies
    • 2.1.5. Supercapacitors and BSH replacing batteries in ebikes
  • 2.2. Energy storage market
    • 2.2.1. Overview
    • 2.2.2. Energy harvesting creates markets for BSH storage
    • 2.2.3. The beyond-grid opportunity for large BSH
    • 2.2.4. Need for conventional BSH formats but also structural electrics and electronics
  • 2.3. Introduction to technology optimisation and technology competition issues
    • 2.3.1. Overview
    • 2.3.2. BSH internal design compared to others
    • 2.3.3. Hot topics include LIB and graphene
    • 2.3.4. BSH voltage, charge retention and ageing issues compared to competition
    • 2.3.5. BSH competitive position on energy density vs power density
    • 2.3.6. Days storage vs rated power return MW for storage technologies
  • 2.4. 34 parameters for LIC, Li-ion battery and supercapacitor compared
  • 2.5. LIC formats compared with adjacent technologies
  • 2.6. Further reading

3. Future lithium-ion capacitor design and competitive position

  • 3.1. Overview
  • 3.2. Design issues
    • 3.2.1. Basic structure
    • 3.2.2. Current applications to optimise
    • 3.2.3. Future applications to optimise
    • 3.2.4. Performance issues being addressed
    • 3.2.5. Lithium-ion capacitor LIC market positioning by energy density spectrum
  • 3.3. Analysis of research advances through 2024
  • 3.4. Examples of patents
  • 3.5. Further reading -Zhar Research report putting LIB in supercapacitor context

4. Other metal-ion capacitors design and progress: Lead-ion, nickel-ion, potassium-ion, sodium-ion, zinc-ion capacitors

  • 4.1. Overview
  • 4.2. Lead ion capacitors: history, rationale , research
  • 4.3. Nickel-ion capacitors: advances in 2024
  • 4.4. Potassium-ion capacitors: advances in 2024
  • 4.5. Sodium-ion capacitors: advances in 2024
  • 4.5. Zinc-ion capacitors: advances in 2024

5. Other emerging chemistries for battery-supercapacitor hybrid storage

  • 5.1. Overview
  • 5.2. Rationale
  • 5.3. Research pipeline
    • 5.3.1. Zeolite Ionic Frameworks for BSH
    • 5.3.2. MXene and MOFs composites for BSH
    • 5.3.2. Metal alloys and manganese compounds in BSH

6. Emerging materials employed with 2024, 2023 research pipeline analysis

  • 6.1. Overview
  • 6.2. Factors influencing key supercapacitor parameters driving sales
  • 6.3. Materials choices in general
  • 6.4. Strategies for improving supercapacitors
    • 6.4.1. General
    • 6.4.2. Prioritisation of active electrode-electrolyte pairings
  • 6.5. Significance of graphene in supercapacitors and variants
    • 6.5.1. Overview
    • 6.5.2. Graphene supercapacitor SWOT appraisal
    • 6.5.3. Vertically-aligned graphene for ac and improved cycle life
    • 6.5.4. Frequency performance improvement with graphene
    • 6.5.5. Graphene textile for supercapacitors and sensors
    • 6.5.6. Eleven graphene supercapacitor material and device developers and manufacturers compared in five columns
  • 6.6. Other 2D and allied materials for supercapacitors with examples of research
    • 6.6.1. MOF and MXene and combinations are the focus
    • 6.6.2. Tantalum carbide MXene hybrid as a biocompatible supercapacitor electrodes
    • 6.6.3. CNT
  • 6.7. Research on supercapacitor electrode materials and structures in 2024
  • 6.8. Research on supercapacitor electrode materials and structures in 2023
  • 6.9. Important examples from earlier
  • 6.10. Electrolytes for supercapacitors and variants
    • 6.10.1. General considerations including organic electrolytes
    • 6.10.2. Supercapacitor electrolyte choices
    • 6.10.3. Focus on aqueous supercapacitor electrolytes
    • 6.10.4. Ionic liquid electrolytes in supercapacitor research
    • 6.10.5. Focus on solid state, semi-solid-state and flexible electrolytes
    • 6.10.6. Hydrogels as electrolytes for semi-solid supercapacitors
    • 6.10.7. Supercapacitor concrete and bricks
  • 6.11. Membrane difficulty levels and materials used and proposed
  • 6.12. Reducing self-discharge: great need, little research

7. Emerging BSH markets : basic trends and best prospects compared between energy, vehicles, aerospace, military, electronics, other

  • 7.1. Implications for the market 2025-2045
  • 7.2. Overview
  • 7.3. Relative commercial significance of supercapacitor variants 2025-2045
  • 7.4. Market propositions of the most-promising supercapacitor families 2025-2045
  • 7.5. Mismatch between market potential and sizes made
  • 7.6. Analysis of supply and potential for large devices
    • 7.6.1. Overview
    • 7.6.2. Largest lithium-ion capacitors offered by manufacturer with parameters and uses
    • 7.6.3. Markets for the largest BSH
    • 7.6.4. Market analysis for the six most important applicational sectors

8. Energy sector emerging BSH markets

  • 8.1. Overview: poor, modest and strong prospects 2024-2044
  • 8.2. Thermonuclear power
    • 8.2.1. Overview
    • 8.3.2. Applications of supercapacitors in fusion research
    • 8.3.3. Other thermonuclear supercapacitors
    • 8.3.4. Hybrid supercapacitor banks for thermonuclear power: Tokyo Tokamak
    • 8.3.5. Helion USA supercapacitor bank
    • 8.3.6. First Light UK supercapacitor bank
  • 8.3. Less-intermittent grid electricity generation: wave, tidal stream, elevated wind
    • 8.3.1. Supercapacitors in utility energy storage for grids and large UPS
    • 8.3.2. 5MW grid measurement supercapacitor
    • 8.3.3. Tidal stream power applications
    • 8.3.4. Wave power applications
    • 8.3.5. Airborne Wind Energy AWE applications
    • 8.3.6. Taller wind turbines tapping less-intermittent wind: protection, smoothing
  • 8.4. Beyond-grid supercapacitors: large emerging opportunity
    • 8.4.1. Overview
    • 8.4.2. Beyond-grid buildings, industrial processes, minigrids, microgrids, other
    • 8.4.3. Beyond-grid electricity production and management
    • 8.4.4. The off-grid megatrend
    • 8.4.5. The solar megatrend
    • 8.4.6. Hydrogen-supercapacitor rural microgrid Tapah, Malaysia
    • 8.4.7. Supercapacitors in other microgrids, solar buildings
    • 8.4.8. Fast charging of electric vehicles including buses and autonomous shuttles
  • 8.5. Hydro power

9. Emerging land vehicle and marine applications: automotive, bus, truck train, off-road construction, agriculture, mining, forestry, material handling, boats, ships

  • 9.1. Overview of supercapacitor use in land transport
  • 9.2. On-road applications face decline but off-road vibrant
  • 9.3. How the value market for supercapacitors and their variants in land vehicles will move from largely on-road to largely off-road
  • 9.4. Emerging vehicle and allied designs with large supercapacitors
    • 9.4.1. Industrial vehicles: Rutronik HESS
    • 9.4.2. Heavy duty powertrains and active suspension
  • 9.5. Tram and trolleybus regeneration and coping with gaps in catenary
  • 9.6. Material handling (intralogistics) supercapacitors
  • 9.7. Mining and quarrying uses for large supercapacitors
    • 9.7.1. Overview and future open pit mine and quarry
    • 9.7.2. Mining and quarrying vehicles go electric
    • 9.7.3. Supercapacitors for electric mining and construction
  • 9.8. Research relevant to large supercapacitors in vehicles
  • 9.9. Large supercapacitors for trains and their trackside regeneration
    • 9.9.1. Overview
    • 9.9.2. Supercapacitor diesel hybrid and hydrogen trains
    • 9.9.3. Supercapacitor regeneration for trains on-board and trackside
    • 9.9.4. Research pipeline relevant to supercapacitors for trains
  • 9.10. Marine use of large supercapacitors and the research pipeline

10. Emerging applications in 6G Communications, electronics and small electrics

  • 10.1. Overview
  • 10.2. Substantial growing applications for small BSH and supercapacitors
  • 10.3. BSH and supercapacitors in wearables, smart watches, smartphones, laptops and similar devices
    • 10.3.1. General
    • 10.3.2. Wearables needing BSH and supercapacitors
  • 10.4. 6G Communications: new BSH market from 2030
    • 10.4.1. Overview with needs
    • 10.4.2. New needs and 5G inadequacies
    • 10.4.3. 6G massive hardware deployment: proliferation but many compromises
    • 10.4.4. Objectives of NTTDoCoMo, Huawei, Samsung and others
    • 10.4.5. Progress from 1G-6G rollouts 1980-2044
    • 10.4.6. 6G underwater and underground
  • 10.5. Asset tracking growth market
  • 10.6. Battery support and back-up power supercapacitors
  • 10.7. Hand-held terminals BSH and supercapacitors
  • 10.8. Internet of Things nodes, wireless sensors and their energy harvesting modes with BSH and supercapacitors
    • 10.8.1. Overview
    • 10.8.2. Sensor inputs and outputs
    • 10.8.3. Ten forms of energy harvesting for sensing and power for sensors
    • 10.8.4. Supercapacitor transpiration electrokinetic harvesting for battery-free sensor power supply
  • 10.9. Peak power for data transmission, locks, solenoid activation, e-ink update, LED flash
  • 10.10. Smart meters
  • 10.11. Spot welding

11. Emerging military and aerospace applications

  • 11.1. Overview
  • 11.2. Military applications: electrodynamic and electromagnetic weapons now a strong focus
    • 11.2.1. Overview: laser weapons, beam energy weapons, microwave weapons, electromagnetic guns
    • 11.2.2. Electrodynamic weapons: coil and rail guns
    • 11.2.3. Electromagnetic weapons disabling electronics or acting as ordnance
    • 11.2.4. Pulsed linear accelerator weapon
  • 11.3. Military applications: unmanned aircraft, communication equipment, radar, plane, ship, tank, satellite, guided missile, munition ignition, electromagnetic armour
    • 11.3.1. CSH sales increasing
    • 11.3.2. Force Field protection
    • 11.3.3. Supercapacitor- diesel hybrid heavy mobility army truck
    • 11.3.4 17 other military applications now emerging
  • 11.4. Aerospace: satellites, More Electric Aircraft MEA and other growth opportunities
    • 11.4.1. Overview: supercapacitor numbers and variety increase
    • 11.4.2. More Electric Aircraft MEA
    • 11.4.3. Better capacitors sought for aircraft

12. 116 BSH (including LIC), supercapacitor, pseudocapacitor, CSH companies assessed in 10 columns and 112 pages

  • 12.1. Analysis of metrics from the comparison of 116 companies
  • 12.2. 116 supercapacitor, pseudocapacitor and BSH (including LIC) manufacturers assessed in 10 columns across 108 pages