The global printed and flexible electronics market is experiencing rapid growth driven by increasing demand for wearable devices, IoT applications, and flexible displays. This comprehensive report provides detailed analysis of the entire ecosystem from materials and manufacturing to applications and end markets. "The Global Market for Printed and Flexible Electronics 2025-2035" provides comprehensive analysis and forecasting of the rapidly evolving printed and flexible electronics industry. This extensive report covers emerging technologies, applications, materials, manufacturing processes, and market opportunities across multiple sectors including consumer electronics, healthcare, automotive, smart packaging, and e-textiles.
Key Market Segments Covered include:
- Consumer electronics and wearables
- Medical devices and healthcare monitoring
- E-textiles and smart apparel
- Automotive electronics and displays
- Smart packaging and RFID
- Building and construction
- Energy storage and harvesting
- Flexible displays and lighting
- Printed and flexible sensors
The report provides detailed analysis of:
- Manufacturing Technologies:
- Printed electronics processes
- Roll-to-roll (R2R) manufacturing
- In-mold electronics (IME)
- 3D electronics
- Digital and analog printing methods
- Flexible hybrid electronics (FHE)
- Materials and Components:
- Conductive inks (silver, copper, carbon)
- Flexible substrates
- Semiconducting materials
- Component attachment materials
- Flexible ICs and PCBs
- Printable sensing materials
- Energy storage materials
- Applications including:
- Flexible displays and OLED lighting
- Wearable devices and sensors
- Electronic skin patches
- Smart textiles and clothing
- Automotive displays and interfaces
- Smart packaging and labels
- Building-integrated electronics
- Flexible batteries and energy harvesting
- Market sizing and forecasts 2025-2035 (volume and value)
- Technology benchmarking and readiness levels
- Competitive landscape analysis
- Regional market analysis
- Extensive company profiles.
- Manufacturing innovations
- Application roadmaps
Key Topics covered include:
- Consumer Electronics & Wearables:
- Smart watches and fitness trackers
- Hearables and medical wearables
- Gaming and entertainment devices
- Flexible displays and touch interfaces
- Healthcare & Medical:
- Electronic skin patches
- Remote patient monitoring
- Smart bandages and wound care
- Drug delivery devices
- Continuous glucose monitoring
- Cardiovascular monitoring
- E-textiles & Smart Apparel:
- Smart clothing and accessories
- Performance sportswear
- Healthcare monitoring garments
- Military and protective wear
- Manufacturing processes
- Integration methods
- Automotive Applications:
- Flexible displays and lighting
- Touch controls and interfaces
- Seat occupancy sensors
- Heated surfaces
- Structural electronics
- Smart Packaging:
- RFID and NFC integration
- Time-temperature indicators
- Freshness monitoring
- Anti-counterfeiting
- Smart labels and tags
- Energy Applications:
- Flexible batteries
- Printed supercapacitors
- Solar cells
- Energy harvesting
- Wireless charging
- Display Technologies:
- OLED displays
- E-paper displays
- Micro-LED
- Quantum dot displays
- Automotive displays
- Transparent displays
- Company Profiles: Comprehensive profiles of 1,000+ companies including:
- Major electronics manufacturers
- Materials suppliers
- Equipment providers
- Technology developers
- Start-ups and innovators
Companies profiled include Profiles of over 750 companies including 1drop, 24M Technologies, Inc., 3DEYES Co., Ltd., 3DOM Inc., ABEye SA, ABeetle Corp., Abbott Laboratories, AC Biode, Accensors, Acurable, Adamant Health Oy, Add Care Ltd., Adapttech, Addionics, AerBetic, Inc, AerNos, AffordSENS Corporation, Agx, Inc., AGFA-Gevaert N.V., AG Texteis, Aidar Health, Aidee, AirMembrane Corporation, AI Silk Corporation, AIDPLEX S.P.P.C., AIQ Smart Clothing, Inc., Alphaclo, AlphaMicron, Inc., Alertgy, Allevion Therapeutics, Alimetry Ltd., Almawave S.p.A., AlmaScience, Altana AG (Heliosonic GmbH), Allterco Robotics, Alva Health, Alvalux Medical SA, Ambiotex GmbH, American Semiconductor Inc, AMO Lab, Ampcera, Inc., Amprius, Inc., Amorepacific Corporation, Anicca Wellness, APB, APDM Wearable Technologies, Inc., AMF Medical, AMSU (Shenzhen) New Technology Co. Ltd., Apollo Neuro, AposHealth, AquilX, Inc., Arcascope, Inc., Ares Materials, Inc., Arkema S.A, Arjowiggins Group, Artemis, Articulate Labs, Arylla, Inc., AshChromics Corporation, Asics, Asahi Kasei, Asiatic Fiber Corporation, Asics, AspiraDAC Pty Ltd., AssistMe, Atheer, Inc., Ateios Systems, Athos, ATtens Co., Ltd., ATT advanced thermal technologies GmbH, Australian Advanced Materials, AU Optronics Corporation, Augmency, Augumenta Ltd., AURA Devices, Avanix srl, Avegant, Avery Dennison, Awarewear, Azalea Vision, AZUL Energy Co., Ltd, B-Secur, Bally Ribbon Mills, Bando Chemical Industries, Ltd., Bare Conductive, BeBop Sensors, BeFC, Beijing BOE Display Technology Co., Ltd., Belun Technology, Bionic Vision Technologies (BVT), Biobeat Technologies Ltd., Biofourmis, Inc., BioIntelliSense, Biolinq, Inc., Bionet Co., Ltd., BioRICS NV, Biorithm Pte Ltd., BioSenseTek Coporation, BioSensics LLC, BioSerenity SAS, BioTelemetry, Inc., Biotricity, biped.ai, Bittium Corporation, Blackstone Resources, BloomerTech, Blue Spark Technologies, Inc., Blue Current, Inc., Blue Solutions, Blue Spark Technologies, Inc., Blulog, Boco, Inc., Bodi, Inc., BOE Technology Group Co., Ltd., BONX, Bodimetrics, Bold Diagnostics, Bonbouton, Borsam Biomedical Instruments Co., Ltd., Bostonclub Co., Ltd., BotFactory, BrainQ Technologies, BrainStem Biometrics, Inc., Brewer Science, Brilliant Matters, Cambridge Touch Technologies, C2 Sense, Inc., C3Nano, CAEN RFID, Cala Health, Canatu Oy, CardiacSense, CardieX, CareWear Corporation, Cari Health, Inc., Cellid, Inc., CeQur Corporation, Chasm Advanced Materials, Charco Neurotech, Chromatic Technologies Inc (CTI), Chronolife SAS, Cionic, Inc., Cipher Skin, Clim8, CondAlign AS, Coachwhisperer GmbH, C-mo Medical Solutions, CollectID, Cognito Therapeutics, Cogwear, Corsano Health, Cortrium APS, Cosinuss, Comftech srl, Conductive Transfers, Continental AG, Creact International Corporation, CREAL SA, CTS Denmark A/S, CurveSYS GmbH, CuteCircuit, Cyrcadia Asia, Cymbet, DaVinci Wearables, Datwyler, Descente Ltd., Directa Plus, dorsaVi Ltd., Debiotech S.A., Deep Nordic ApS, Dexcom, Inc., Diabeloop, DiaMonTech AG, Dispelix Oy, Doccla, dorsaVi Ltd., Dracula Technologies, DuPont Advanced Materials, Durak Tekstil, DyAnsys Inc., Dynocardia, E Ink Holdings, Inc., Earable Neuroscience, EarSwitch, Eccrine Systems, Inc., Ectosense, Eeonyx Corporation, Elastimed, ElastiSense Sensor Technology, Element Science, Inc., Elephantech, Inc., Elevre Medical Limited, Electroninks, Eleksen, Elidah, Elitac B.V., EMBEGA S.Coop., Emberion Oy, K and more....
The report provides critical insights for:
- Electronics manufacturers
- Material suppliers
- Equipment makers
- Technology developers
- Investment firms
- R&D organizations
- Government agencies
Key Features:
- Market forecasts (volume and value)
- Technology assessment
- Competitive analysis
- Strategic recommendations
- Investment opportunities
- Patent landscape
- Company profiles
This report is essential for understanding:
- Market opportunities and challenges
- Technology trends and developments
- Competitive landscape
- Investment potential
- Manufacturing innovations
- Application roadmaps
With extensive primary research and analysis, the report offers valuable insights for companies looking to:
- Identify market opportunities
- Evaluate technologies
- Assess competition
- Plan strategic investments
- Develop new products
- Establish partnerships
- Enter new markets
The report includes detailed market forecasts, technology assessments, and strategic analysis essential for companies participating in or planning to enter the printed and flexible electronics market.
Table of Contents
1. EXECUTIVE SUMMARY
- 1.1. The evolution of electronics
- 1.2. Markets for printed and flexible electronics
- 1.2.1. Macro-trends
- 1.2.2. Healthcare and wellness
- 1.2.3. Automotive
- 1.2.4. Buildings and construction
- 1.2.5. Energy storage and harvesting
- 1.2.6. E-Textiles
- 1.2.7. Consumer electronics
- 1.2.8. Smart packaging and logistics
- 1.3. The wearables revolution
- 1.4. The wearable tech market in 2024
- 1.5. Continuous monitoring
- 1.6. Market map for printed and flexible electronics
- 1.7. Wearable market leaders
- 1.8. What is printed/flexible electronics?
- 1.8.1. Motivation for use
- 1.8.2. From rigid to flexible and stretchable
- 1.8.2.1. Stretchable electronics
- 1.8.2.2. Stretchable electronics in wearables
- 1.8.2.3. Stretchable electronics in Medical devices
- 1.8.2.4. Stretchable electronics in sensors
- 1.8.2.5. Stretchable electronics in energy harvesting
- 1.8.2.6. Stretchable artificial skin
- 1.9. Role in the metaverse
- 1.10. Wearable electronics in the textiles industry
- 1.11. New conductive materials
- 1.12. Entertainment
- 1.13. Growth in flexible and stretchable electronics market
- 1.13.1. Recent growth in Printed, flexible and hyrbid products
- 1.13.2. Future growth
- 1.13.3. Advanced materials as a market driver
- 1.13.4. Growth in remote health monitoring and diagnostics
- 1.14. Innovations at CES 2021-2024 xxx
- 1.15. Investment funding and buy-outs 2019-2024
- 1.16. Flexible hybrid electronics (FHE)
- 1.17. Sustainability in flexible electronics
- 1.18. Global market revenues, 2018-2035
- 1.18.1. Consumer electronics
- 1.18.2. Medical & healthcare
- 1.18.3. E-textiles and smart apparel
- 1.18.4. Displays
- 1.18.5. Automotive
- 1.18.6. Smart buildings
- 1.18.7. Smart packaging
2. MANUFACTURING METHODS
- 2.1. Comparative analysis
- 2.2. Printed electronics
- 2.2.1. Technology description
- 2.2.2. SWOT analysis
- 2.3. 3D electronics
- 2.3.1. Technology description
- 2.3.2. SWOT analysis
- 2.4. Analogue printing
- 2.4.1. Technology description
- 2.4.2. SWOT analysis
- 2.5. Digital printing
- 2.5.1. Technology description
- 2.5.2. SWOT analysis
- 2.6. In-mold electronics (IME)
- 2.6.1. Technology description
- 2.6.2. SWOT analysis
- 2.7. Roll-to-roll (R2R)
- 2.7.1. Technology description
- 2.7.2. SWOT analysis
3. MATERIALS AND COMPONENTS
- 3.1. Component attachment materials
- 3.1.1. Conductive adhesives
- 3.1.2. Biodegradable adhesives
- 3.1.3. Magnets
- 3.1.4. Bio-based solders
- 3.1.5. Bio-derived solders
- 3.1.6. Recycled plastics
- 3.1.7. Nano adhesives
- 3.1.8. Shape memory polymers
- 3.1.9. Photo-reversible polymers
- 3.1.10. Conductive biopolymers
- 3.1.11. Traditional thermal processing methods
- 3.1.12. Low temperature solder
- 3.1.13. Reflow soldering
- 3.1.14. Induction soldering
- 3.1.15. UV curing
- 3.1.16. Near-infrared (NIR) radiation curing
- 3.1.17. Photonic sintering/curing
- 3.1.18. Hybrid integration
- 3.2. Conductive inks
- 3.2.1. Metal-based conductive inks
- 3.2.2. Nanoparticle inks
- 3.2.3. Silver inks
- 3.2.4. Particle-Free conductive ink
- 3.2.5. Copper inks
- 3.2.6. Gold (Au) ink
- 3.2.7. Conductive polymer inks
- 3.2.8. Liquid metals
- 3.2.9. Companies
- 3.3. Printable semiconductors
- 3.3.1. Technology overview
- 3.3.2. Advantages and disadvantages
- 3.3.3. SWOT analysis
- 3.4. Printable sensing materials
- 3.4.1. Overview
- 3.4.2. Types
- 3.4.3. SWOT analysis
- 3.5. Flexible Substrates
- 3.5.1. Flexible plastic substrates
- 3.5.1.1. Types of materials
- 3.5.1.2. Flexible (bio) polyimide PCBs
- 3.5.2. Paper substrates
- 3.5.3. Glass substrates
- 3.5.4. Textile substrates
- 3.6. Flexible ICs
- 3.6.1. Description
- 3.6.2. Flexible metal oxide ICs
- 3.6.3. Comparison of flexible integrated circuit technologies
- 3.6.4. SWOT analysis
- 3.7. Printed PCBs
- 3.7.1. Description
- 3.7.2. High-Speed PCBs
- 3.7.3. Flexible PCBs
- 3.7.4. 3D Printed PCBs
- 3.7.5. Sustainable PCBs
- 3.8. Thin film batteries
- 3.8.1. Technology description
- 3.8.2. SWOT analysis
- 3.9. Energy harvesting
- 3.9.1. Approaches
- 3.9.2. Perovskite photovoltaics
- 3.9.3. Applications
- 3.9.4. SWOT analysis
4. PRINTED AND FLEXIBLE CONSUMER ELECTRONICS
- 4.1. Macro-trends
- 4.2. Market drivers
- 4.3. SWOT analysis
- 4.4. Wearable sensors
- 4.5. Wearable actuators
- 4.6. Recent market developments
- 4.7. Wrist-worn wearables
- 4.7.1. Overview
- 4.7.2. Sports-watches, smart-watches and fitness trackers
- 4.7.2.1. Sensing
- 4.7.2.2. Actuating
- 4.7.3. SWOT analysis
- 4.7.4. Health monitoring
- 4.7.5. Energy harvesting for powering smartwatches
- 4.7.6. Main producers and products
- 4.8. Sports and fitness
- 4.8.1. Overview
- 4.8.2. Wearable devices and apparel
- 4.8.3. Skin patches
- 4.8.4. Products
- 4.9. Hearables
- 4.9.1. Technology overview
- 4.9.2. Assistive Hearables
- 4.9.2.1 Biometric Monitoring
- 4.9.3. SWOT analysis
- 4.9.4. Health & Fitness Hearables
- 4.9.5. Multimedia Hearables
- 4.9.6. Artificial Intelligence (AI)
- 4.9.7. Companies and products
- 4.10. Sleep trackers and wearable monitors
- 4.10.1. Built in function in smart watches and fitness trackers
- 4.10.2. Smart rings
- 4.10.3. Headbands
- 4.10.4. Sleep monitoring devices
- 4.10.4.1. Companies and products
- 4.11. Pet and animal wearables
- 4.12. Military wearables
- 4.13. Industrial and workplace monitoring
- 4.14. Global market forecasts
- 4.14.1. Volume
- 4.14.2. Revenues
- 4.15. Market challenges
- 4.16. Companies
5. PRINTED AND FLEXIBLE MEDICAL AND HEALTHCARE/WELLNESS ELECTRONICS
- 5.1. Macro-trends
- 5.2. Market drivers
- 5.3. SWOT analysis
- 5.4. Current state of the art
- 5.4.1. Electrochemical biosensors
- 5.4.2. Skin patches for continuous monitoring
- 5.4.3. Printed pH sensors
- 5.4.4. Wearable medical device products
- 5.4.5. Temperature and respiratory rate monitoring
- 5.5. Wearable and health monitoring and rehabilitation
- 5.5.1. Market overview
- 5.5.2. Companies and products
- 5.6. Electronic skin patches
- 5.6.1. Electronic skin sensors
- 5.6.2. Conductive hydrogels for soft and flexible electronics
- 5.6.3. Nanomaterials-based devices
- 5.6.4. Liquid metal alloys
- 5.6.5. Conductive hydrogels for soft and flexible electronics
- 5.6.6. Printed batteries
- 5.6.7. Materials
- 5.6.7.1. Summary of advanced materials
- 5.6.8. SWOT analysis
- 5.6.9. Temperature and respiratory rate monitoring
- 5.6.9.1. Market overview
- 5.6.9.2. Companies and products
- 5.6.10. Continuous glucose monitoring (CGM)
- 5.6.10.1. Market overview
- 5.6.11. Minimally-invasive CGM sensors
- 5.6.12 Non-invasive CGM sensors
- 5.6.12.1. Commercial devices
- 5.6.12.2. Companies and products
- 5.6.13. Cardiovascular monitoring
- 5.6.13.1. Market overview
- 5.6.13.2. ECG sensors
- 5.6.13.2.1. Companies and products
- 5.6.13.3. PPG sensors
- 5.6.13.3.1. Companies and products
- 5.6.14. Pregnancy and newborn monitoring
- 5.6.14.1. Market overview
- 5.6.14.2. Companies and products
- 5.6.15. Hydration sensors
- 5.6.15.1. Market overview
- 5.6.15.2. Companies and products
- 5.6.16. Wearable sweat sensors (medical and sports)
- 5.6.16.1. Market overview
- 5.6.16.2. Companies and products
- 5.7. Wearable drug delivery
- 5.7.1. Companies and products
- 5.8. Cosmetics patches
- 5.8.1. Companies and products
- 5.9. Femtech devices
- 5.9.1. Companies and products
- 5.10. Smart footwear for health monitoring
- 5.10.1. Companies and products
- 5.11. Smart contact lenses and smart glasses for visually impaired
- 5.11.1. Companies and products
- 5.12. Smart woundcare
- 5.12.1. Companies and products
- 5.13. Smart diapers
- 5.13.1. Companies and products
- 5.14. Wearable robotics-exo-skeletons, bionic prostheses, exo-suits, and body worn collaborative robots
- 5.14.1. Companies and products
- 5.15. Global market forecasts
- 5.15.1. Volume
- 5.15.2. Revenues
- 5.16. Market challenges
6. ELECTRONIC TEXTILES (E-TEXTILES) AND SMART APPAREL
- 6.1. Macro-trends
- 6.2. Market drivers
- 6.3. SWOT analysis
- 6.4. Performance requirements for E-textiles
- 6.5. Growth prospects for electronic textiles
- 6.6. Textiles in the Internet of Things
- 6.7. Types of E-Textile products
- 6.7.1. Embedded e-textiles
- 6.7.2. Laminated e-textiles
- 6.8. Materials and components
- 6.8.1. Integrating electronics for E-Textiles
- 6.8.1.1. Textile-adapted
- 6.8.1.2. Textile-integrated
- 6.8.1.3. Textile-based
- 6.8.2. Manufacturing of E-textiles
- 6.8.2.1. Integration of conductive polymers and inks
- 6.8.2.2. Integration of conductive yarns and conductive filament fibers
- 6.8.2.3. Integration of conductive sheets
- 6.8.3. Flexible and stretchable electronics in E-textiles
- 6.8.4. E-textiles materials and components
- 6.8.4.1. Conductive and stretchable fibers and yarns
- 6.8.4.1.1. Production
- 6.8.4.1.2. Metals
- 6.8.4.1.3. Carbon materials and nanofibers
- 6.8.4.1.3.1. Graphene
- 6.8.4.1.3.2. Carbon nanotubes
- 6.8.4.1.3.3. Nanofibers
- 6.8.4.2. Mxenes
- 6.8.4.3. Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)
- 6.8.4.4. Conductive polymers
- 6.8.4.4.1. PDMS
- 6.8.4.4.2. PEDOT: PSS
- 6.8.4.4.3. Polypyrrole (PPy)
- 6.8.4.4.4. Conductive polymer composites
- 6.8.4.4.5. Ionic conductive polymers
- 6.8.4.5. Conductive inks
- 6.8.4.5.1. Aqueous-Based Ink
- 6.8.4.5.2. Solvent-Based Ink
- 6.8.4.5.3. Oil-Based Ink
- 6.8.4.5.4. Hot-Melt Ink
- 6.8.4.5.5. UV-Curable Ink
- 6.8.4.5.6. Metal-based conductive inks
- 6.8.4.5.6.1. Nanoparticle ink
- 6.8.4.5.6.2. Silver inks
- 6.8.4.5.6.3. Copper inks
- 6.8.4.5.6.4. Gold (Au) ink
- 6.8.4.5.7. Carbon-based conductive inks
- 6.8.4.5.7.1. Carbon nanotubes
- 6.8.4.5.7.2. Single-walled carbon nanotubes
- 6.8.4.5.7.3. Graphene
- 6.8.4.5.8. Liquid metals
- 6.8.4.6. Electronic filaments
- 6.8.4.7. Phase change materials
- 6.8.4.7.1. Temperature controlled fabrics
- 6.8.4.8. Shape memory materials
- 6.8.4.9. Metal halide perovskites
- 6.8.4.10. Nanocoatings in smart textiles
- 6.8.4.11. 3D printing
- 6.8.4.11.1. Fused Deposition Modeling (FDM)
- 6.8.4.11.2. Selective Laser Sintering (SLS)
- 6.8.4.11.3. Products
- 6.8.5. E-textiles components
- 6.8.5.1. Sensors and actuators
- 6.8.5.1.1. Physiological sensors
- 6.8.5.1.2. Environmental sensors
- 6.8.5.1.3. Pressure sensors
- 6.8.5.1.3.1. Flexible capacitive sensors
- 6.8.5.1.3.2. Flexible piezoresistive sensors
- 6.8.5.1.3.3. Flexible piezoelectric sensors
- 6.8.5.1.4. Activity sensors
- 6.8.5.1.5. Strain sensors
- 6.8.5.1.5.1. Resistive sensors
- 6.8.5.1.5.2. Capacitive strain sensors
- 6.8.5.1.6. Temperature sensors
- 6.8.5.1.7. Inertial measurement units (IMUs)
- 6.8.5.2. Electrodes
- 6.8.5.3. Connectors
- 6.9. Applications, markets and products
- 6.9.1. Temperature monitoring and regulation
- 6.9.1.1. Heated clothing
- 6.9.1.2. Heated gloves
- 6.9.1.3. Heated insoles
- 6.9.1.4. Heated jacket and clothing products
- 6.9.1.5. Materials used in flexible heaters and applications
- 6.9.2. Stretchable E-fabrics
- 6.9.3. Therapeutic products
- 6.9.4. Sport & fitness
- 6.9.5. Smart footwear
- 6.9.5.1. Companies and products
- 6.9.6. Wearable displays
- 6.9.7. Military
- 6.9.8. Textile-based lighting
- 6.9.9. Smart gloves
- 6.9.10. Powering E-textiles
- 6.9.10.1. Advantages and disadvantages of main battery types for E-textiles
- 6.9.10.2. Bio-batteries
- 6.9.10.3. Challenges for battery integration in smart textiles
- 6.9.10.4. Textile supercapacitors
- 6.9.10.5. Energy harvesting
- 6.9.10.5.1. Photovoltaic solar textiles
- 6.9.10.5.2. Energy harvesting nanogenerators
- 6.9.10.5.2.1. TENGs
- 6.9.10.5.2.2. PENGs
- 6.9.10.5.3. Radio frequency (RF) energy harvesting
- 6.9.11. Motion capture for AR/VR
- 6.10. Global market forecasts
- 6.10.1. Volume
- 6.10.2. Revenues
- 6.11. Market challenges
- 6.12. Companies
7. PRINTED AND FLEXIBLE ENERGY STORAGE AND HARVESTING
- 7.1. Macro-trends
- 7.2. Market drivers
- 7.3. SWOT analysis
- 7.4. Applications of printed and flexible electronics
- 7.5. Flexible and stretchable batteries for electronics
- 7.6. Approaches to flexibility
- 7.7. Flexible Battery Technologies
- 7.7.1. Thin-film Lithium-ion Batteries
- 7.7.1.1. Types of Flexible/stretchable LIBs
- 7.7.1.1.1. Flexible planar LiBs
- 7.7.1.1.2. Flexible Fiber LiBs
- 7.7.1.1.3. Flexible micro-LiBs
- 7.7.1.1.4. Stretchable lithium-ion batteries
- 7.7.1.1.5. Origami and kirigami lithium-ion batteries
- 7.7.1.2. Flexible Li/S batteries
- 7.7.1.3. Flexible lithium-manganese dioxide (Li-MnO2) batteries
- 7.7.2. Printed Batteries
- 7.7.2.1. Technical specifications
- 7.7.2.2. Components
- 7.7.2.3. Design
- 7.7.2.4. Key features
- 7.7.2.4.1. Printable current collectors
- 7.7.2.4.2. Printable electrodes
- 7.7.2.4.3. Materials
- 7.7.2.4.4. Applications
- 7.7.2.4.5. Printing techniques
- 7.7.2.4.6. Lithium-ion (LIB) printed batteries
- 7.7.2.4.7. Zinc-based printed batteries
- 7.7.2.4.8. 3D Printed batteries
- 7.7.2.4.8.1. Materials for 3D printed batteries
- 7.7.3. Thin-Film Solid-state Batteries
- 7.7.3.1. Solid-state electrolytes
- 7.7.3.2. Features and advantages
- 7.7.3.3. Technical specifications
- 7.7.3.4. Microbatteries
- 7.7.3.4.1. Introduction
- 7.7.3.4.2. 3D designs
- 7.7.4. Stretchable Batteries
- 7.7.5. Other Emerging Technologies
- 7.7.5.1. Metal-sulfur batteries
- 7.7.5.2. Flexible zinc-based batteries
- 7.7.5.3. Flexible silver-zinc (Ag-Zn) batteries
- 7.7.5.4. Flexible Zn-Air batteries
- 7.7.5.5. Flexible zinc-vanadium batteries
- 7.7.5.6. Fiber-shaped batteries
- 7.7.5.6.1. Carbon nanotubes
- 7.7.5.6.2. Applications
- 7.7.5.6.3. Challenges
- 7.7.5.7. Transparent batteries
- 7.7.5.8. Degradable batteries
- 7.7.5.9. Fiber-shaped batteries
- 7.7.5.9.1. Carbon nanotubes
- 7.7.5.9.2. Types
- 7.7.5.9.3. Applications
- 7.7.5.9.4. Challenges
- 7.8. Key Components of Flexible Batteries
- 7.8.1. Electrodes
- 7.8.1.1. Cable-type batteries
- 7.8.1.2. Batteries-on-wire
- 7.8.2. Electrolytes
- 7.8.3. Separators
- 7.8.4. Current Collectors
- 7.8.5. Packaging
- 7.8.5.1. Flexible Pouch Cells
- 7.8.5.2. Encapsulation Materials
- 7.8.6. Other Manufacturing Techniques
- 7.9. Performance Metrics and Characteristics
- 7.9.1. Energy Density
- 7.9.2. Power Density
- 7.9.3. Cycle Life
- 7.9.4. Flexibility and Bendability
- 7.10. Printed supercapacitors
- 7.10.1. Electrode materials
- 7.10.2. Electrolytes
- 7.11. Photovoltaics
- 7.11.1. Conductive pastes
- 7.11.2. Organic photovoltaics (OPV)
- 7.11.3. Perovskite PV
- 7.11.4. Flexible and stretchable photovoltaics
- 7.11.5. Photovoltaic solar textiles
- 7.11.6. Solar tape
- 7.11.7. Origami-like solar cells
- 7.11.8. Spray-on and stick-on perovskite photovoltaics
- 7.11.9. Photovoltaic solar textiles
- 7.12. Transparent and flexible heaters
- 7.12.1. Technology overview
- 7.12.2. Applications
- 7.12.2.1. Automotive Industry
- 7.12.2.1.1. Defrosting and Defogging Systems
- 7.12.2.1.2. Heated Windshields and Mirrors
- 7.12.2.1.3. Touch Panels and Displays
- 7.12.2.2. Aerospace and Aviation
- 7.12.2.2.1. Aircraft Windows and Canopies
- 7.12.2.2.2. Sensor and Camera Housings
- 7.12.2.3. Consumer Electronics
- 7.12.2.3.1. Smartphones and Tablets
- 7.12.2.3.2. Wearable Devices
- 7.12.2.3.3. Smart Home Appliances
- 7.12.2.4. Building and Architecture
- 7.12.2.4.1. Smart Windows
- 7.12.2.4.2. Heated Glass Facades
- 7.12.2.4.3. Greenhouse and Skylight Applications
- 7.12.2.5. Medical and Healthcare
- 7.12.2.5.1. Incubators and Warming Beds
- 7.12.2.5.2. Surgical Microscopes and Endoscopes
- 7.12.2.5.3. Medical Imaging Equipment
- 7.12.2.6. Display Technologies
- 7.12.2.6.1. LCD Displays
- 7.12.2.6.2. OLED Displays
- 7.12.2.6.3. Flexible and Transparent Displays
- 7.12.2.7. Energy Systems
- 7.12.2.7.1. Solar Panels (De-icing and Efficiency Enhancement)
- 7.12.2.7.2. Fuel Cells
- 7.12.2.7.3. Battery Systems
- 7.13. Thermoelectric energy harvesting
- 7.14. Market challenges
- 7.15. Global market forecasts
- 7.15.1. Volume
- 7.15.2. Revenues
- 7.16. Companies
8. PRINTED AND FLEXIBLE DISPLAYS
- 8.1. Macro-trends
- 8.2. Market drivers
- 8.3. SWOT analysis
- 8.4. Printed and flexible display prototypes and products
- 8.5. Organic LCDs (OLCDs)
- 8.6. Organic light-emitting diodes (OLEDs)
- 8.7. Inorganic LEDs
- 8.8. Flexible AMOLEDs
- 8.9. Flexible PMOLED (Passive Matrix OLED)
- 8.9.1. Printed OLEDs
- 8.9.1.1. Performance
- 8.9.1.2. Challenges
- 8.10. Flexible and foldable microLED
- 8.10.1. Foldable microLED displays
- 8.10.2. Product developers
- 8.11. Flexible QD displays
- 8.12. Smartphones
- 8.13. Laptops, tablets and other displays
- 8.14. Products and prototypes
- 8.15. Flexible lighting
- 8.15.1. OLED lighting
- 8.15.2. Automotive applications
- 8.15.2.1. Commercial activity
- 8.16. FHE for large area lighting
- 8.17. Directly printed LED lighting
- 8.18. Flexible electrophoretic displays
- 8.18.1. Commercial activity
- 8.19. Electrowetting displays
- 8.20. Electrochromic displays
- 8.21. Perovskite light-emitting diodes (PeLEDs)
- 8.21.1. Types
- 8.21.2. Challenges
- 8.21.3. White PeLEDs
- 8.21.4. Printable and flexible electronics
- 8.22. Metamaterials
- 8.22.1. Metasurfaces
- 8.22.1.1. Flexible metasurfaces
- 8.22.1.2. Meta-Lens
- 8.22.1.3. Metasurface holograms
- 8.22.1.4. Stretchable displays
- 8.22.1.5. Soft materials
- 8.23. Transparent displays
- 8.23.1. Product developers
- 8.24. Global market forecasts
- 8.24.1. Volume
- 8.24.2. Revenues
- 8.25. Market challenges
- 8.26. Companies
9. PRINTED AND FLEXIBLE AUTOMOTIVE ELECTRONICS
- 9.1. Macro-trends
- 9.2. Market drivers
- 9.3. SWOT analysis
- 9.4. Applications
- 9.4.1. Electric vehicles
- 9.4.1.1. Applications
- 9.4.1.2. Battery monitoring and heating
- 9.4.1.3. Printed temperature sensors and heaters
- 9.4.2. HMI
- 9.4.3. Automotive displays and lighting
- 9.4.3.1. Interiors
- 9.4.3.1.1. OLED and flexible displays
- 9.4.3.1.2. Passive-matrix OLEDs
- 9.4.3.1.3. Active matrix OLED
- 9.4.3.1.4. Transparent OLED for heads-up displays
- 9.4.3.1.5. LCD displays
- 9.4.3.1.6. Curved displays
- 9.4.3.1.6.1. Overview
- 9.4.3.1.6.2. Automotive applications
- 9.4.3.1.6.3. Companies
- 9.4.3.1.7. Micro-LEDs in automotive displays
- 9.4.3.1.7.1. Head-up display (HUD)
- 9.4.3.1.7.2. Headlamps
- 9.4.3.1.7.3. Product developers
- 9.4.3.2. Exteriors
- 9.4.4. In-Mold Electronics
- 9.4.5. Printed and flexible sensors
- 9.4.5.1. Capacitive sensors
- 9.4.5.2. Flexible and stretchable pressure sensors
- 9.4.5.3. Piezoresistive sensors
- 9.4.5.4. Piezoelectric sensors
- 9.4.5.5. Image sensors
- 9.4.5.5.1. Materials and technologies
- 9.4.6. Printed heaters
- 9.4.6.1. Printed car seat heaters
- 9.4.6.2. Printed/flexible interior heaters
- 9.4.6.3. Printed on-glass heater
- 9.4.6.4. Carbon nanotube transparent conductors
- 9.4.6.5. Metal mesh transparent conductors
- 9.4.6.6. 3D shaped transparent heaters
- 9.4.6.7. Direct heating
- 9.4.6.8. Transparent heaters
- 9.4.7. Transparent antennas
- 9.5. Global market forecasts
- 9.5.1. Volume
- 9.5.2. Revenues
- 9.6. Market challenges
- 9.7. Companies
10. PRINTED AND FLEXIBLE SENSORS
- 10.1. Market overview
- 10.2. Printed piezoresistive sensors
- 10.2.1. Technology overview
- 10.2.2. Applications
- 10.2.2.1. Automotive
- 10.2.2.2. Consumer electronics
- 10.2.2.3. Medical
- 10.2.2.4. Inventory management
- 10.2.2.5. Industrial applications
- 10.3. Printed piezoelectric sensors
- 10.3.1. Technology overview
- 10.3.2. Applications
- 10.4. Printed photodetectors
- 10.4.1. Technology overview
- 10.4.2. Applications
- 10.4.2.1. Image Sensors
- 10.4.2.2. Biometrics
- 10.4.2.3. Flexible X-ray detectors
- 10.4.2.4. Healthcare and Wearables
- 10.4.2.5. Inventory Management
- 10.5. Printed temperature sensors
- 10.5.1. Technology overview
- 10.5.2. Applications
- 10.5.2.1. Automotive
- 10.5.2.2. Monitoring Systems
- 10.5.2.3. Consumer Electronics
- 10.6. Printed strain sensors
- 10.6.1. Technology overview
- 10.6.2. Applications
- 10.6.2.1. Industrial health monitoring
- 10.6.2.2. Motion Capture for AR/VR
- 10.6.2.3. Healthcare and Medical
- 10.7. Printed Gas Sensors
- 10.7.1. Technology overview
- 10.7.2. Applications
- 10.7.2.1. Outdoor Pollution Monitoring
- 10.7.2.2. Indoor Air Quality
- 10.7.2.3. Automotive
- 10.7.2.4. Breath Diagnostics
- 10.8. Printed capacitive sensors
- 10.8.1. Technology overview
- 10.8.2. Applications
- 10.8.2.1. 3D electronics
- 10.8.2.2. In-mold Electronics
- 10.8.2.3. Hybrid Sensors
- 10.8.2.4. Flexible Displays
- 10.8.2.5. Automotive HMI
- 10.8.2.6. Wearables and AR/VR
- 10.8.2.7. Other Applications
- 10.9. Printed wearable electrodes
- 10.9.1. Technology overview
- 10.9.2. Applications
- 10.9.2.1. Wearable EMG
- 10.9.2.2. Skin Patches and E-Textiles
- 10.10. Global market forecasts
- 10.10.1. Volume
- 10.10.2. Revenues
- 10.11. Companies
11. PRINTED AND FLEXIBLE SMART BUILDINGS AND CONSTRUCTION ELECTRONICS
- 11.1. Macro-trends
- 11.2. Market drivers
- 11.3. SWOT analysis
- 11.4. Applications
- 11.4.1. Industrial asset tracking/monitoring with hybrid electronics
- 11.4.2. Customizable interiors
- 11.4.3. Sensors
- 11.4.3.1. Capacitive sensors
- 11.4.3.2. Temperature and humidity sensors
- 11.4.3.3. Sensors for air quality
- 11.4.3.4. Magnetostrictive sensors
- 11.4.3.5. Magneto- and electrorheological fluids
- 11.4.3.6. CO2 sensors for energy efficient buildings
- 11.4.4. Building integrated transparent antennas
- 11.4.5. Reconfigurable intelligent surfaces (RIS)
- 11.4.6. Industrial monitoring
- 11.5. Global market forecasts
- 11.6. Companies
12. SMART PACKAGING ELECTRONICS
- 12.1. What is Smart Packaging?
- 12.1.1. Flexible hybrid electronics (FHE)
- 12.1.2. Printed batteries and antennas
- 12.1.3. Flexible silicon integrated circuits
- 12.1.4. Natural materials in packaging
- 12.1.5. Extruded conductive pastes and inkjet printing
- 12.1.6. OLEDs for smart and interactive packaging
- 12.1.7. Active packaging
- 12.1.8. Intelligent packaging
- 12.1.8.1. Smart Cards
- 12.1.8.2. RFID tags
- 12.1.8.2.1. Low-frequency (LF) RFID tags: 30 KHz to 300 KHz
- 12.1.8.2.2. High-frequency (HF) RFID tags: 3 to 30 MHz
- 12.1.8.2.3. Ultra-high-frequency (UHF) RFID tags: 300 MHz to 3GHz
- 12.1.8.2.4. Active, passive and semi-passive RFID tags
- 12.1.8.3. Temperature Indicators
- 12.1.8.4. Freshness Indicators
- 12.1.8.5. Gas Indicators
- 12.2. SWOT analysis
- 12.3. Supply chain management
- 12.4. Improving product freshness and extending shelf life
- 12.5. Brand protection and anti-counterfeiting
- 12.6. Printed and flexible electronics in packaging
- 12.6.1. FHE with printed batteries and antennas for smart packaging
- 12.6.2. Printed codes and markings
- 12.6.3. Barcodes (D)
- 12.6.4. D data matrix codes
- 12.6.5. Augmented reality (AR) codes
- 12.6.6. Sensors and indicators
- 12.6.6.1. Freshness Indicators
- 12.6.6.2. Time-temperature indicator labels (TTIs)
- 12.6.6.3. Natural colour formulation indicator
- 12.6.6.4. Thermochromic inks
- 12.6.6.5. Gas indicators
- 12.6.6.6. Chemical Sensors
- 12.6.6.7. Electrochemical-Based Sensors
- 12.6.6.8. Optical-Based Sensors
- 12.6.6.9. Biosensors
- 12.6.6.9.1. Electrochemical-Based Biosensors
- 12.6.6.9.2. Optical-Based Biosensors
- 12.6.6.10. Edible Sensors
- 12.6.7. Antennas
- 12.6.7.1. Radio frequency identification (RFID)
- 12.6.7.1.1. RFID technologies
- 12.6.7.1.1.1. Biosensors on RFID tags
- 12.6.7.1.1.2. Powerless RFID sensor tags
- 12.6.7.1.1.3. RFID ICs with Large Area Printed Sensors
- 12.6.7.1.1.4. RFID for anti-counterfeiting
- 12.6.7.1.2. Passive RFID
- 12.6.7.1.3. Active RFID
- 12.6.7.1.3.1. Real Time Locating Systems (RTLS)
- 12.6.7.1.3.2. Bluetooth Low Energy (BLE) and Low Power Wide Area Networks (LPWAN)
- 12.6.7.1.4. Chipless RFID or Flexible/Printed IC Passive tags
- 12.6.7.1.5. RAIN (UHF RFID) Smart Packaging
- 12.6.7.2. Near-field communications (NFC)
- 12.6.8. Smart blister packs
- 12.7. Global market forecasts
- 12.7.1. Volume
- 12.7.2. Revenues
- 12.8. Companies
13. COMPANY PROFILES (713 company profiles)
14. RESEARCH METHODOLOGY
15. REFERENCES