全球印刷/柔性電子市場(2025-2035)
市場調查報告書
商品編碼
1583182

全球印刷/柔性電子市場(2025-2035)

The Global Market for Printed and Flexible Electronics 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 1,341 Pages, 325 Tables, 530 Figures | 訂單完成後即時交付

價格

由於對穿戴式裝置、物聯網應用和柔性顯示器的需求不斷增長,全球印刷/柔性電子市場正在快速成長。

本報告考察了全球印刷和柔性電子市場,對從材料和製造到應用和終端市場的整個生態系統進行了深入分析。它還為快速發展的印刷/柔性電子產業提供全面的分析和預測。

目錄

第 1 章執行摘要

  • 電子產品的演變
  • 印刷/柔性電子市場
  • 穿戴式裝置革命
  • 穿戴式科技市場(2024 年)
  • 持續監控
  • 印刷/柔性電子市場地圖
  • 穿戴式市場領導者
  • 什麼是印刷/柔性電子產品?
  • 在虛擬宇宙中的角色
  • 紡織業中的穿戴式電子產品
  • 新型導電材料
  • 娛樂
  • 柔性/可拉伸電子市場的成長
  • 2021-2024 年 CES 上的創新
  • 投資融資與收購(2019-2024 年)
  • 柔性混合電子裝置 (FHE)
  • 柔性電子產品的永續性
  • 全球市場收入(2018-2035 年)

第二章製作方法

  • 比較分析
  • 印刷電子產品
  • 3D電子產品
  • 模擬列印
  • 數位印刷
  • 模內電子元件 (IME)
  • 卷對卷 (R2R)

第 3 章材料與組件

  • 組件附件材料
  • 導電油墨
  • 可印刷半導體
  • 可印刷感測材料
  • 柔性板
  • 柔性積體電路
  • 印刷電路板
  • 薄膜電池
  • 能量收集

第 4 章印刷/柔性消費性電子產品

  • 宏觀趨勢
  • 市場推動因素
  • SWOT分析
  • 穿戴式感測器
  • 穿戴式執行器
  • 近期市場發展
  • 可佩戴在手腕上
  • 運動、健身
  • 耳戴式設備
  • 睡眠追蹤器、穿戴式監測器
  • 寵物和動物穿戴設備
  • 軍用穿戴設備
  • 工業/工作場所監控
  • 世界市場預測
  • 市場課題
  • 公司

第 5 章印刷/柔性醫療/健康電子產品

  • 宏觀趨勢
  • 市場推動因素
  • SWOT分析
  • 當前的尖端技術
  • 穿戴式裝置、健康監測、康復
  • 電子皮膚貼片
  • 穿戴式藥物輸送
  • 化妝貼片
  • 女性科技設備
  • 用於健康監測的智慧鞋類
  • 專為視障人士設計的智慧隱形眼鏡和智慧眼鏡
  • 智慧傷口護理
  • 智慧尿布
  • 穿戴式機器人 - 外骨骼、仿生義肢、外裝、穿戴式協作機器人
  • 世界市場預測
  • 市場課題

第6章電子紡織品(e-textiles)、智慧服裝

  • 宏觀趨勢
  • 市場推動因素
  • SWOT分析
  • 電子紡織品的性能要求
  • 電子紡織品的成長前景
  • 物聯網中的紡織品
  • 電子紡織品的類型
  • 材料和組件
  • 應用、市場、產品
  • 世界市場預測
  • 市場課題
  • 公司

第 7 章印刷/靈活的能量儲存與收集

  • 宏觀趨勢
  • 市場推動因素
  • SWOT分析
  • 印刷/柔性電子產品的應用
  • 用於電子設備的柔性/可拉伸電池
  • 實作彈性的方法
  • 靈活的電池技術
  • 柔性電池主要部件
  • 績效指標與特徵
  • 印刷超級電容器
  • 太陽能發電
  • 透明柔性加熱器
  • 熱電能量收集
  • 市場課題
  • 世界市場預測
  • 公司

第 8 章印刷/柔性顯示

  • 宏觀趨勢
  • 市場推動因素
  • SWOT分析
  • 印刷/柔性展示原型與產品
  • OLCD
  • OLED
  • 無機LED
  • 柔性 AMOLED
  • 柔性 PMOLED(被動矩陣 OLED)
  • 靈活/可折疊的 microLED
  • 靈活的 QD 顯示屏
  • 智慧型手機
  • 筆記型電腦、平板電腦和其他顯示器
  • 產品和原型
  • 靈活的照明
  • FHE 適用於大面積照明
  • 直接列印LED照明
  • 柔性電泳顯示器
  • 電潤濕顯示器
  • 電致變色顯示器
  • 鈣鈦礦發光二極體(PeLED)
  • 超材料
  • 透明顯示
  • 世界市場預測
  • 市場課題
  • 公司

第 9 章印刷/柔性汽車電子

  • 宏觀趨勢
  • 市場推動因素
  • SWOT分析
  • 應用
  • 世界市場預測
  • 市場課題
  • 公司

第 10 章印刷/柔性感測器

  • 市場概覽
  • 印刷壓阻感測器
  • 印刷壓電感測器
  • 印刷光電探測器
  • 印刷溫度感測器
  • 印刷應變感測器
  • 印刷氣體感測器
  • 印刷電容感測器
  • 印刷穿戴電極
  • 世界市場預測
  • 公司

第 11 章印刷/柔性智慧建築、建築電子

  • 宏觀趨勢
  • 市場推動因素
  • SWOT分析
  • 應用
  • 世界市場預測
  • 公司

第 12 章智慧包裝電子產品

  • 什麼是智慧包裝?
  • SWOT分析
  • 供應鏈管理
  • 提高產品新鮮度並延長保存期限
  • 品牌保護與防偽
  • 包裝中的印刷/柔性電子產品
  • 世界市場預測
  • 公司

第十三章公司概況(713家公司概況)

第十四章研究方法

第 15 章參考文獻

The global printed and flexible electronics market is experiencing rapid growth driven by increasing demand for wearable devices, IoT applications, and flexible displays. This comprehensive report provides detailed analysis of the entire ecosystem from materials and manufacturing to applications and end markets. "The Global Market for Printed and Flexible Electronics 2025-2035" provides comprehensive analysis and forecasting of the rapidly evolving printed and flexible electronics industry. This extensive report covers emerging technologies, applications, materials, manufacturing processes, and market opportunities across multiple sectors including consumer electronics, healthcare, automotive, smart packaging, and e-textiles.

Key Market Segments Covered include:

  • Consumer electronics and wearables
  • Medical devices and healthcare monitoring
  • E-textiles and smart apparel
  • Automotive electronics and displays
  • Smart packaging and RFID
  • Building and construction
  • Energy storage and harvesting
  • Flexible displays and lighting
  • Printed and flexible sensors

The report provides detailed analysis of:

  • Manufacturing Technologies:
    • Printed electronics processes
    • Roll-to-roll (R2R) manufacturing
    • In-mold electronics (IME)
    • 3D electronics
    • Digital and analog printing methods
    • Flexible hybrid electronics (FHE)
  • Materials and Components:
    • Conductive inks (silver, copper, carbon)
    • Flexible substrates
    • Semiconducting materials
    • Component attachment materials
    • Flexible ICs and PCBs
    • Printable sensing materials
    • Energy storage materials
  • Applications including:
    • Flexible displays and OLED lighting
    • Wearable devices and sensors
    • Electronic skin patches
    • Smart textiles and clothing
    • Automotive displays and interfaces
    • Smart packaging and labels
    • Building-integrated electronics
    • Flexible batteries and energy harvesting
  • Market sizing and forecasts 2025-2035 (volume and value)
  • Technology benchmarking and readiness levels
  • Competitive landscape analysis
  • Regional market analysis
  • Extensive company profiles.
  • Manufacturing innovations
  • Application roadmaps

Key Topics covered include:

  • Consumer Electronics & Wearables:
    • Smart watches and fitness trackers
    • Hearables and medical wearables
    • Gaming and entertainment devices
    • Flexible displays and touch interfaces
  • Healthcare & Medical:
    • Electronic skin patches
    • Remote patient monitoring
    • Smart bandages and wound care
    • Drug delivery devices
    • Continuous glucose monitoring
    • Cardiovascular monitoring
  • E-textiles & Smart Apparel:
    • Smart clothing and accessories
    • Performance sportswear
    • Healthcare monitoring garments
    • Military and protective wear
    • Manufacturing processes
    • Integration methods
  • Automotive Applications:
    • Flexible displays and lighting
    • Touch controls and interfaces
    • Seat occupancy sensors
    • Heated surfaces
    • Structural electronics
  • Smart Packaging:
    • RFID and NFC integration
    • Time-temperature indicators
    • Freshness monitoring
    • Anti-counterfeiting
    • Smart labels and tags
  • Energy Applications:
    • Flexible batteries
    • Printed supercapacitors
    • Solar cells
    • Energy harvesting
    • Wireless charging
  • Display Technologies:
    • OLED displays
    • E-paper displays
    • Micro-LED
    • Quantum dot displays
    • Automotive displays
    • Transparent displays
  • Company Profiles: Comprehensive profiles of 1,000+ companies including:
    • Major electronics manufacturers
    • Materials suppliers
    • Equipment providers
    • Technology developers
    • Start-ups and innovators

Companies profiled include Profiles of over 750 companies including 1drop, 24M Technologies, Inc., 3DEYES Co., Ltd., 3DOM Inc., ABEye SA, ABeetle Corp., Abbott Laboratories, AC Biode, Accensors, Acurable, Adamant Health Oy, Add Care Ltd., Adapttech, Addionics, AerBetic, Inc, AerNos, AffordSENS Corporation, Agx, Inc., AGFA-Gevaert N.V., AG Texteis, Aidar Health, Aidee, AirMembrane Corporation, AI Silk Corporation, AIDPLEX S.P.P.C., AIQ Smart Clothing, Inc., Alphaclo, AlphaMicron, Inc., Alertgy, Allevion Therapeutics, Alimetry Ltd., Almawave S.p.A., AlmaScience, Altana AG (Heliosonic GmbH), Allterco Robotics, Alva Health, Alvalux Medical SA, Ambiotex GmbH, American Semiconductor Inc, AMO Lab, Ampcera, Inc., Amprius, Inc., Amorepacific Corporation, Anicca Wellness, APB, APDM Wearable Technologies, Inc., AMF Medical, AMSU (Shenzhen) New Technology Co. Ltd., Apollo Neuro, AposHealth, AquilX, Inc., Arcascope, Inc., Ares Materials, Inc., Arkema S.A, Arjowiggins Group, Artemis, Articulate Labs, Arylla, Inc., AshChromics Corporation, Asics, Asahi Kasei, Asiatic Fiber Corporation, Asics, AspiraDAC Pty Ltd., AssistMe, Atheer, Inc., Ateios Systems, Athos, ATtens Co., Ltd., ATT advanced thermal technologies GmbH, Australian Advanced Materials, AU Optronics Corporation, Augmency, Augumenta Ltd., AURA Devices, Avanix srl, Avegant, Avery Dennison, Awarewear, Azalea Vision, AZUL Energy Co., Ltd, B-Secur, Bally Ribbon Mills, Bando Chemical Industries, Ltd., Bare Conductive, BeBop Sensors, BeFC, Beijing BOE Display Technology Co., Ltd., Belun Technology, Bionic Vision Technologies (BVT), Biobeat Technologies Ltd., Biofourmis, Inc., BioIntelliSense, Biolinq, Inc., Bionet Co., Ltd., BioRICS NV, Biorithm Pte Ltd., BioSenseTek Coporation, BioSensics LLC, BioSerenity SAS, BioTelemetry, Inc., Biotricity, biped.ai, Bittium Corporation, Blackstone Resources, BloomerTech, Blue Spark Technologies, Inc., Blue Current, Inc., Blue Solutions, Blue Spark Technologies, Inc., Blulog, Boco, Inc., Bodi, Inc., BOE Technology Group Co., Ltd., BONX, Bodimetrics, Bold Diagnostics, Bonbouton, Borsam Biomedical Instruments Co., Ltd., Bostonclub Co., Ltd., BotFactory, BrainQ Technologies, BrainStem Biometrics, Inc., Brewer Science, Brilliant Matters, Cambridge Touch Technologies, C2 Sense, Inc., C3Nano, CAEN RFID, Cala Health, Canatu Oy, CardiacSense, CardieX, CareWear Corporation, Cari Health, Inc., Cellid, Inc., CeQur Corporation, Chasm Advanced Materials, Charco Neurotech, Chromatic Technologies Inc (CTI), Chronolife SAS, Cionic, Inc., Cipher Skin, Clim8, CondAlign AS, Coachwhisperer GmbH, C-mo Medical Solutions, CollectID, Cognito Therapeutics, Cogwear, Corsano Health, Cortrium APS, Cosinuss, Comftech srl, Conductive Transfers, Continental AG, Creact International Corporation, CREAL SA, CTS Denmark A/S, CurveSYS GmbH, CuteCircuit, Cyrcadia Asia, Cymbet, DaVinci Wearables, Datwyler, Descente Ltd., Directa Plus, dorsaVi Ltd., Debiotech S.A., Deep Nordic ApS, Dexcom, Inc., Diabeloop, DiaMonTech AG, Dispelix Oy, Doccla, dorsaVi Ltd., Dracula Technologies, DuPont Advanced Materials, Durak Tekstil, DyAnsys Inc., Dynocardia, E Ink Holdings, Inc., Earable Neuroscience, EarSwitch, Eccrine Systems, Inc., Ectosense, Eeonyx Corporation, Elastimed, ElastiSense Sensor Technology, Element Science, Inc., Elephantech, Inc., Elevre Medical Limited, Electroninks, Eleksen, Elidah, Elitac B.V., EMBEGA S.Coop., Emberion Oy, K and more....

The report provides critical insights for:

  • Electronics manufacturers
  • Material suppliers
  • Equipment makers
  • Technology developers
  • Investment firms
  • R&D organizations
  • Government agencies

Key Features:

  • Market forecasts (volume and value)
  • Technology assessment
  • Competitive analysis
  • Strategic recommendations
  • Investment opportunities
  • Patent landscape
  • Company profiles

This report is essential for understanding:

  • Market opportunities and challenges
  • Technology trends and developments
  • Competitive landscape
  • Investment potential
  • Manufacturing innovations
  • Application roadmaps

With extensive primary research and analysis, the report offers valuable insights for companies looking to:

  • Identify market opportunities
  • Evaluate technologies
  • Assess competition
  • Plan strategic investments
  • Develop new products
  • Establish partnerships
  • Enter new markets

The report includes detailed market forecasts, technology assessments, and strategic analysis essential for companies participating in or planning to enter the printed and flexible electronics market.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. The evolution of electronics
  • 1.2. Markets for printed and flexible electronics
    • 1.2.1. Macro-trends
    • 1.2.2. Healthcare and wellness
    • 1.2.3. Automotive
    • 1.2.4. Buildings and construction
    • 1.2.5. Energy storage and harvesting
    • 1.2.6. E-Textiles
    • 1.2.7. Consumer electronics
    • 1.2.8. Smart packaging and logistics
  • 1.3. The wearables revolution
  • 1.4. The wearable tech market in 2024
  • 1.5. Continuous monitoring
  • 1.6. Market map for printed and flexible electronics
  • 1.7. Wearable market leaders
  • 1.8. What is printed/flexible electronics?
    • 1.8.1. Motivation for use
    • 1.8.2. From rigid to flexible and stretchable
      • 1.8.2.1. Stretchable electronics
      • 1.8.2.2. Stretchable electronics in wearables
      • 1.8.2.3. Stretchable electronics in Medical devices
      • 1.8.2.4. Stretchable electronics in sensors
      • 1.8.2.5. Stretchable electronics in energy harvesting
      • 1.8.2.6. Stretchable artificial skin
  • 1.9. Role in the metaverse
  • 1.10. Wearable electronics in the textiles industry
  • 1.11. New conductive materials
  • 1.12. Entertainment
  • 1.13. Growth in flexible and stretchable electronics market
    • 1.13.1. Recent growth in Printed, flexible and hyrbid products
    • 1.13.2. Future growth
    • 1.13.3. Advanced materials as a market driver
    • 1.13.4. Growth in remote health monitoring and diagnostics
  • 1.14. Innovations at CES 2021-2024 xxx
  • 1.15. Investment funding and buy-outs 2019-2024
  • 1.16. Flexible hybrid electronics (FHE)
  • 1.17. Sustainability in flexible electronics
  • 1.18. Global market revenues, 2018-2035
    • 1.18.1. Consumer electronics
    • 1.18.2. Medical & healthcare
    • 1.18.3. E-textiles and smart apparel
    • 1.18.4. Displays
    • 1.18.5. Automotive
    • 1.18.6. Smart buildings
    • 1.18.7. Smart packaging

2. MANUFACTURING METHODS

  • 2.1. Comparative analysis
  • 2.2. Printed electronics
    • 2.2.1. Technology description
    • 2.2.2. SWOT analysis
  • 2.3. 3D electronics
    • 2.3.1. Technology description
    • 2.3.2. SWOT analysis
  • 2.4. Analogue printing
    • 2.4.1. Technology description
    • 2.4.2. SWOT analysis
  • 2.5. Digital printing
    • 2.5.1. Technology description
    • 2.5.2. SWOT analysis
  • 2.6. In-mold electronics (IME)
    • 2.6.1. Technology description
    • 2.6.2. SWOT analysis
  • 2.7. Roll-to-roll (R2R)
    • 2.7.1. Technology description
    • 2.7.2. SWOT analysis

3. MATERIALS AND COMPONENTS

  • 3.1. Component attachment materials
    • 3.1.1. Conductive adhesives
    • 3.1.2. Biodegradable adhesives
    • 3.1.3. Magnets
    • 3.1.4. Bio-based solders
    • 3.1.5. Bio-derived solders
    • 3.1.6. Recycled plastics
    • 3.1.7. Nano adhesives
    • 3.1.8. Shape memory polymers
    • 3.1.9. Photo-reversible polymers
    • 3.1.10. Conductive biopolymers
    • 3.1.11. Traditional thermal processing methods
    • 3.1.12. Low temperature solder
    • 3.1.13. Reflow soldering
    • 3.1.14. Induction soldering
    • 3.1.15. UV curing
    • 3.1.16. Near-infrared (NIR) radiation curing
    • 3.1.17. Photonic sintering/curing
    • 3.1.18. Hybrid integration
  • 3.2. Conductive inks
    • 3.2.1. Metal-based conductive inks
    • 3.2.2. Nanoparticle inks
    • 3.2.3. Silver inks
    • 3.2.4. Particle-Free conductive ink
    • 3.2.5. Copper inks
    • 3.2.6. Gold (Au) ink
    • 3.2.7. Conductive polymer inks
    • 3.2.8. Liquid metals
    • 3.2.9. Companies
  • 3.3. Printable semiconductors
    • 3.3.1. Technology overview
    • 3.3.2. Advantages and disadvantages
    • 3.3.3. SWOT analysis
  • 3.4. Printable sensing materials
    • 3.4.1. Overview
    • 3.4.2. Types
    • 3.4.3. SWOT analysis
  • 3.5. Flexible Substrates
    • 3.5.1. Flexible plastic substrates
      • 3.5.1.1. Types of materials
      • 3.5.1.2. Flexible (bio) polyimide PCBs
    • 3.5.2. Paper substrates
      • 3.5.2.1. Overview
    • 3.5.3. Glass substrates
      • 3.5.3.1. Overview
    • 3.5.4. Textile substrates
  • 3.6. Flexible ICs
    • 3.6.1. Description
    • 3.6.2. Flexible metal oxide ICs
    • 3.6.3. Comparison of flexible integrated circuit technologies
    • 3.6.4. SWOT analysis
  • 3.7. Printed PCBs
    • 3.7.1. Description
    • 3.7.2. High-Speed PCBs
    • 3.7.3. Flexible PCBs
    • 3.7.4. 3D Printed PCBs
    • 3.7.5. Sustainable PCBs
  • 3.8. Thin film batteries
    • 3.8.1. Technology description
    • 3.8.2. SWOT analysis
  • 3.9. Energy harvesting
    • 3.9.1. Approaches
    • 3.9.2. Perovskite photovoltaics
    • 3.9.3. Applications
    • 3.9.4. SWOT analysis

4. PRINTED AND FLEXIBLE CONSUMER ELECTRONICS

  • 4.1. Macro-trends
  • 4.2. Market drivers
  • 4.3. SWOT analysis
  • 4.4. Wearable sensors
  • 4.5. Wearable actuators
  • 4.6. Recent market developments
  • 4.7. Wrist-worn wearables
    • 4.7.1. Overview
    • 4.7.2. Sports-watches, smart-watches and fitness trackers
      • 4.7.2.1. Sensing
      • 4.7.2.2. Actuating
    • 4.7.3. SWOT analysis
    • 4.7.4. Health monitoring
    • 4.7.5. Energy harvesting for powering smartwatches
    • 4.7.6. Main producers and products
  • 4.8. Sports and fitness
    • 4.8.1. Overview
    • 4.8.2. Wearable devices and apparel
    • 4.8.3. Skin patches
    • 4.8.4. Products
  • 4.9. Hearables
    • 4.9.1. Technology overview
    • 4.9.2. Assistive Hearables
  • 4.9.2.1 Biometric Monitoring
    • 4.9.3. SWOT analysis
    • 4.9.4. Health & Fitness Hearables
    • 4.9.5. Multimedia Hearables
    • 4.9.6. Artificial Intelligence (AI)
    • 4.9.7. Companies and products
  • 4.10. Sleep trackers and wearable monitors
    • 4.10.1. Built in function in smart watches and fitness trackers
    • 4.10.2. Smart rings
    • 4.10.3. Headbands
    • 4.10.4. Sleep monitoring devices
      • 4.10.4.1. Companies and products
  • 4.11. Pet and animal wearables
  • 4.12. Military wearables
  • 4.13. Industrial and workplace monitoring
    • 4.13.1. Products
  • 4.14. Global market forecasts
    • 4.14.1. Volume
    • 4.14.2. Revenues
  • 4.15. Market challenges
  • 4.16. Companies

5. PRINTED AND FLEXIBLE MEDICAL AND HEALTHCARE/WELLNESS ELECTRONICS

  • 5.1. Macro-trends
  • 5.2. Market drivers
  • 5.3. SWOT analysis
  • 5.4. Current state of the art
    • 5.4.1. Electrochemical biosensors
    • 5.4.2. Skin patches for continuous monitoring
    • 5.4.3. Printed pH sensors
    • 5.4.4. Wearable medical device products
    • 5.4.5. Temperature and respiratory rate monitoring
  • 5.5. Wearable and health monitoring and rehabilitation
    • 5.5.1. Market overview
    • 5.5.2. Companies and products
  • 5.6. Electronic skin patches
    • 5.6.1. Electronic skin sensors
    • 5.6.2. Conductive hydrogels for soft and flexible electronics
    • 5.6.3. Nanomaterials-based devices
      • 5.6.3.1. Graphene
    • 5.6.4. Liquid metal alloys
    • 5.6.5. Conductive hydrogels for soft and flexible electronics
    • 5.6.6. Printed batteries
    • 5.6.7. Materials
      • 5.6.7.1. Summary of advanced materials
    • 5.6.8. SWOT analysis
    • 5.6.9. Temperature and respiratory rate monitoring
      • 5.6.9.1. Market overview
      • 5.6.9.2. Companies and products
    • 5.6.10. Continuous glucose monitoring (CGM)
      • 5.6.10.1. Market overview
    • 5.6.11. Minimally-invasive CGM sensors
      • 5.6.11.1. Technologies
    • 5.6.12 Non-invasive CGM sensors
      • 5.6.12.1. Commercial devices
      • 5.6.12.2. Companies and products
    • 5.6.13. Cardiovascular monitoring
      • 5.6.13.1. Market overview
      • 5.6.13.2. ECG sensors
        • 5.6.13.2.1. Companies and products
      • 5.6.13.3. PPG sensors
        • 5.6.13.3.1. Companies and products
    • 5.6.14. Pregnancy and newborn monitoring
      • 5.6.14.1. Market overview
      • 5.6.14.2. Companies and products
    • 5.6.15. Hydration sensors
      • 5.6.15.1. Market overview
      • 5.6.15.2. Companies and products
    • 5.6.16. Wearable sweat sensors (medical and sports)
      • 5.6.16.1. Market overview
      • 5.6.16.2. Companies and products
  • 5.7. Wearable drug delivery
    • 5.7.1. Companies and products
  • 5.8. Cosmetics patches
    • 5.8.1. Companies and products
  • 5.9. Femtech devices
    • 5.9.1. Companies and products
  • 5.10. Smart footwear for health monitoring
    • 5.10.1. Companies and products
  • 5.11. Smart contact lenses and smart glasses for visually impaired
    • 5.11.1. Companies and products
  • 5.12. Smart woundcare
    • 5.12.1. Companies and products
  • 5.13. Smart diapers
    • 5.13.1. Companies and products
  • 5.14. Wearable robotics-exo-skeletons, bionic prostheses, exo-suits, and body worn collaborative robots
    • 5.14.1. Companies and products
  • 5.15. Global market forecasts
    • 5.15.1. Volume
    • 5.15.2. Revenues
  • 5.16. Market challenges

6. ELECTRONIC TEXTILES (E-TEXTILES) AND SMART APPAREL

  • 6.1. Macro-trends
  • 6.2. Market drivers
  • 6.3. SWOT analysis
  • 6.4. Performance requirements for E-textiles
  • 6.5. Growth prospects for electronic textiles
  • 6.6. Textiles in the Internet of Things
  • 6.7. Types of E-Textile products
    • 6.7.1. Embedded e-textiles
    • 6.7.2. Laminated e-textiles
  • 6.8. Materials and components
    • 6.8.1. Integrating electronics for E-Textiles
      • 6.8.1.1. Textile-adapted
      • 6.8.1.2. Textile-integrated
      • 6.8.1.3. Textile-based
    • 6.8.2. Manufacturing of E-textiles
      • 6.8.2.1. Integration of conductive polymers and inks
      • 6.8.2.2. Integration of conductive yarns and conductive filament fibers
      • 6.8.2.3. Integration of conductive sheets
    • 6.8.3. Flexible and stretchable electronics in E-textiles
    • 6.8.4. E-textiles materials and components
      • 6.8.4.1. Conductive and stretchable fibers and yarns
        • 6.8.4.1.1. Production
        • 6.8.4.1.2. Metals
        • 6.8.4.1.3. Carbon materials and nanofibers
          • 6.8.4.1.3.1. Graphene
          • 6.8.4.1.3.2. Carbon nanotubes
          • 6.8.4.1.3.3. Nanofibers
      • 6.8.4.2. Mxenes
      • 6.8.4.3. Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)
      • 6.8.4.4. Conductive polymers
        • 6.8.4.4.1. PDMS
        • 6.8.4.4.2. PEDOT: PSS
        • 6.8.4.4.3. Polypyrrole (PPy)
        • 6.8.4.4.4. Conductive polymer composites
        • 6.8.4.4.5. Ionic conductive polymers
      • 6.8.4.5. Conductive inks
        • 6.8.4.5.1. Aqueous-Based Ink
        • 6.8.4.5.2. Solvent-Based Ink
        • 6.8.4.5.3. Oil-Based Ink
        • 6.8.4.5.4. Hot-Melt Ink
        • 6.8.4.5.5. UV-Curable Ink
        • 6.8.4.5.6. Metal-based conductive inks
          • 6.8.4.5.6.1. Nanoparticle ink
          • 6.8.4.5.6.2. Silver inks
          • 6.8.4.5.6.3. Copper inks
          • 6.8.4.5.6.4. Gold (Au) ink
        • 6.8.4.5.7. Carbon-based conductive inks
          • 6.8.4.5.7.1. Carbon nanotubes
          • 6.8.4.5.7.2. Single-walled carbon nanotubes
          • 6.8.4.5.7.3. Graphene
        • 6.8.4.5.8. Liquid metals
          • 6.8.4.5.8.1. Properties
      • 6.8.4.6. Electronic filaments
      • 6.8.4.7. Phase change materials
        • 6.8.4.7.1. Temperature controlled fabrics
      • 6.8.4.8. Shape memory materials
      • 6.8.4.9. Metal halide perovskites
      • 6.8.4.10. Nanocoatings in smart textiles
      • 6.8.4.11. 3D printing
        • 6.8.4.11.1. Fused Deposition Modeling (FDM)
        • 6.8.4.11.2. Selective Laser Sintering (SLS)
        • 6.8.4.11.3. Products
    • 6.8.5. E-textiles components
      • 6.8.5.1. Sensors and actuators
        • 6.8.5.1.1. Physiological sensors
        • 6.8.5.1.2. Environmental sensors
        • 6.8.5.1.3. Pressure sensors
          • 6.8.5.1.3.1. Flexible capacitive sensors
          • 6.8.5.1.3.2. Flexible piezoresistive sensors
          • 6.8.5.1.3.3. Flexible piezoelectric sensors
        • 6.8.5.1.4. Activity sensors
        • 6.8.5.1.5. Strain sensors
          • 6.8.5.1.5.1. Resistive sensors
          • 6.8.5.1.5.2. Capacitive strain sensors
        • 6.8.5.1.6. Temperature sensors
          • 6.8.5.1.7. Inertial measurement units (IMUs)
      • 6.8.5.2. Electrodes
      • 6.8.5.3. Connectors
  • 6.9. Applications, markets and products
    • 6.9.1. Temperature monitoring and regulation
      • 6.9.1.1. Heated clothing
      • 6.9.1.2. Heated gloves
      • 6.9.1.3. Heated insoles
      • 6.9.1.4. Heated jacket and clothing products
      • 6.9.1.5. Materials used in flexible heaters and applications
    • 6.9.2. Stretchable E-fabrics
    • 6.9.3. Therapeutic products
    • 6.9.4. Sport & fitness
      • 6.9.4.1. Products
    • 6.9.5. Smart footwear
      • 6.9.5.1. Companies and products
    • 6.9.6. Wearable displays
    • 6.9.7. Military
    • 6.9.8. Textile-based lighting
      • 6.9.8.1. OLEDs
    • 6.9.9. Smart gloves
    • 6.9.10. Powering E-textiles
      • 6.9.10.1. Advantages and disadvantages of main battery types for E-textiles
      • 6.9.10.2. Bio-batteries
      • 6.9.10.3. Challenges for battery integration in smart textiles
      • 6.9.10.4. Textile supercapacitors
      • 6.9.10.5. Energy harvesting
        • 6.9.10.5.1. Photovoltaic solar textiles
        • 6.9.10.5.2. Energy harvesting nanogenerators
          • 6.9.10.5.2.1. TENGs
          • 6.9.10.5.2.2. PENGs
        • 6.9.10.5.3. Radio frequency (RF) energy harvesting
    • 6.9.11. Motion capture for AR/VR
  • 6.10. Global market forecasts
    • 6.10.1. Volume
    • 6.10.2. Revenues
  • 6.11. Market challenges
  • 6.12. Companies

7. PRINTED AND FLEXIBLE ENERGY STORAGE AND HARVESTING

  • 7.1. Macro-trends
  • 7.2. Market drivers
  • 7.3. SWOT analysis
  • 7.4. Applications of printed and flexible electronics
  • 7.5. Flexible and stretchable batteries for electronics
  • 7.6. Approaches to flexibility
  • 7.7. Flexible Battery Technologies
    • 7.7.1. Thin-film Lithium-ion Batteries
      • 7.7.1.1. Types of Flexible/stretchable LIBs
        • 7.7.1.1.1. Flexible planar LiBs
        • 7.7.1.1.2. Flexible Fiber LiBs
        • 7.7.1.1.3. Flexible micro-LiBs
        • 7.7.1.1.4. Stretchable lithium-ion batteries
        • 7.7.1.1.5. Origami and kirigami lithium-ion batteries
      • 7.7.1.2. Flexible Li/S batteries
      • 7.7.1.3. Flexible lithium-manganese dioxide (Li-MnO2) batteries
    • 7.7.2. Printed Batteries
      • 7.7.2.1. Technical specifications
      • 7.7.2.2. Components
      • 7.7.2.3. Design
      • 7.7.2.4. Key features
        • 7.7.2.4.1. Printable current collectors
        • 7.7.2.4.2. Printable electrodes
        • 7.7.2.4.3. Materials
        • 7.7.2.4.4. Applications
        • 7.7.2.4.5. Printing techniques
        • 7.7.2.4.6. Lithium-ion (LIB) printed batteries
        • 7.7.2.4.7. Zinc-based printed batteries
        • 7.7.2.4.8. 3D Printed batteries
          • 7.7.2.4.8.1. Materials for 3D printed batteries
    • 7.7.3. Thin-Film Solid-state Batteries
      • 7.7.3.1. Solid-state electrolytes
      • 7.7.3.2. Features and advantages
      • 7.7.3.3. Technical specifications
      • 7.7.3.4. Microbatteries
        • 7.7.3.4.1. Introduction
        • 7.7.3.4.2. 3D designs
    • 7.7.4. Stretchable Batteries
    • 7.7.5. Other Emerging Technologies
      • 7.7.5.1. Metal-sulfur batteries
      • 7.7.5.2. Flexible zinc-based batteries
      • 7.7.5.3. Flexible silver-zinc (Ag-Zn) batteries
      • 7.7.5.4. Flexible Zn-Air batteries
      • 7.7.5.5. Flexible zinc-vanadium batteries
      • 7.7.5.6. Fiber-shaped batteries
        • 7.7.5.6.1. Carbon nanotubes
        • 7.7.5.6.2. Applications
        • 7.7.5.6.3. Challenges
      • 7.7.5.7. Transparent batteries
        • 7.7.5.7.1. Components
      • 7.7.5.8. Degradable batteries
        • 7.7.5.8.1. Components
      • 7.7.5.9. Fiber-shaped batteries
        • 7.7.5.9.1. Carbon nanotubes
        • 7.7.5.9.2. Types
        • 7.7.5.9.3. Applications
        • 7.7.5.9.4. Challenges
  • 7.8. Key Components of Flexible Batteries
    • 7.8.1. Electrodes
      • 7.8.1.1. Cable-type batteries
      • 7.8.1.2. Batteries-on-wire
    • 7.8.2. Electrolytes
    • 7.8.3. Separators
    • 7.8.4. Current Collectors
    • 7.8.5. Packaging
      • 7.8.5.1. Flexible Pouch Cells
      • 7.8.5.2. Encapsulation Materials
    • 7.8.6. Other Manufacturing Techniques
  • 7.9. Performance Metrics and Characteristics
    • 7.9.1. Energy Density
    • 7.9.2. Power Density
    • 7.9.3. Cycle Life
    • 7.9.4. Flexibility and Bendability
  • 7.10. Printed supercapacitors
    • 7.10.1. Electrode materials
    • 7.10.2. Electrolytes
  • 7.11. Photovoltaics
    • 7.11.1. Conductive pastes
    • 7.11.2. Organic photovoltaics (OPV)
    • 7.11.3. Perovskite PV
    • 7.11.4. Flexible and stretchable photovoltaics
      • 7.11.4.1. Companies
    • 7.11.5. Photovoltaic solar textiles
    • 7.11.6. Solar tape
    • 7.11.7. Origami-like solar cells
    • 7.11.8. Spray-on and stick-on perovskite photovoltaics
    • 7.11.9. Photovoltaic solar textiles
  • 7.12. Transparent and flexible heaters
    • 7.12.1. Technology overview
    • 7.12.2. Applications
      • 7.12.2.1. Automotive Industry
        • 7.12.2.1.1. Defrosting and Defogging Systems
        • 7.12.2.1.2. Heated Windshields and Mirrors
        • 7.12.2.1.3. Touch Panels and Displays
      • 7.12.2.2. Aerospace and Aviation
        • 7.12.2.2.1. Aircraft Windows and Canopies
        • 7.12.2.2.2. Sensor and Camera Housings
      • 7.12.2.3. Consumer Electronics
        • 7.12.2.3.1. Smartphones and Tablets
        • 7.12.2.3.2. Wearable Devices
        • 7.12.2.3.3. Smart Home Appliances
      • 7.12.2.4. Building and Architecture
        • 7.12.2.4.1. Smart Windows
        • 7.12.2.4.2. Heated Glass Facades
        • 7.12.2.4.3. Greenhouse and Skylight Applications
      • 7.12.2.5. Medical and Healthcare
        • 7.12.2.5.1. Incubators and Warming Beds
        • 7.12.2.5.2. Surgical Microscopes and Endoscopes
        • 7.12.2.5.3. Medical Imaging Equipment
      • 7.12.2.6. Display Technologies
        • 7.12.2.6.1. LCD Displays
        • 7.12.2.6.2. OLED Displays
        • 7.12.2.6.3. Flexible and Transparent Displays
      • 7.12.2.7. Energy Systems
        • 7.12.2.7.1. Solar Panels (De-icing and Efficiency Enhancement)
        • 7.12.2.7.2. Fuel Cells
        • 7.12.2.7.3. Battery Systems
  • 7.13. Thermoelectric energy harvesting
  • 7.14. Market challenges
  • 7.15. Global market forecasts
    • 7.15.1. Volume
    • 7.15.2. Revenues
  • 7.16. Companies

8. PRINTED AND FLEXIBLE DISPLAYS

  • 8.1. Macro-trends
  • 8.2. Market drivers
  • 8.3. SWOT analysis
  • 8.4. Printed and flexible display prototypes and products
  • 8.5. Organic LCDs (OLCDs)
  • 8.6. Organic light-emitting diodes (OLEDs)
  • 8.7. Inorganic LEDs
  • 8.8. Flexible AMOLEDs
  • 8.9. Flexible PMOLED (Passive Matrix OLED)
    • 8.9.1. Printed OLEDs
      • 8.9.1.1. Performance
      • 8.9.1.2. Challenges
  • 8.10. Flexible and foldable microLED
    • 8.10.1. Foldable microLED displays
    • 8.10.2. Product developers
  • 8.11. Flexible QD displays
  • 8.12. Smartphones
  • 8.13. Laptops, tablets and other displays
  • 8.14. Products and prototypes
  • 8.15. Flexible lighting
    • 8.15.1. OLED lighting
    • 8.15.2. Automotive applications
      • 8.15.2.1. Commercial activity
  • 8.16. FHE for large area lighting
  • 8.17. Directly printed LED lighting
  • 8.18. Flexible electrophoretic displays
    • 8.18.1. Commercial activity
  • 8.19. Electrowetting displays
  • 8.20. Electrochromic displays
  • 8.21. Perovskite light-emitting diodes (PeLEDs)
    • 8.21.1. Types
    • 8.21.2. Challenges
    • 8.21.3. White PeLEDs
    • 8.21.4. Printable and flexible electronics
  • 8.22. Metamaterials
    • 8.22.1. Metasurfaces
      • 8.22.1.1. Flexible metasurfaces
      • 8.22.1.2. Meta-Lens
      • 8.22.1.3. Metasurface holograms
      • 8.22.1.4. Stretchable displays
      • 8.22.1.5. Soft materials
  • 8.23. Transparent displays
    • 8.23.1. Product developers
  • 8.24. Global market forecasts
    • 8.24.1. Volume
    • 8.24.2. Revenues
  • 8.25. Market challenges
  • 8.26. Companies

9. PRINTED AND FLEXIBLE AUTOMOTIVE ELECTRONICS

  • 9.1. Macro-trends
  • 9.2. Market drivers
  • 9.3. SWOT analysis
  • 9.4. Applications
    • 9.4.1. Electric vehicles
      • 9.4.1.1. Applications
      • 9.4.1.2. Battery monitoring and heating
      • 9.4.1.3. Printed temperature sensors and heaters
    • 9.4.2. HMI
    • 9.4.3. Automotive displays and lighting
      • 9.4.3.1. Interiors
        • 9.4.3.1.1. OLED and flexible displays
        • 9.4.3.1.2. Passive-matrix OLEDs
        • 9.4.3.1.3. Active matrix OLED
        • 9.4.3.1.4. Transparent OLED for heads-up displays
        • 9.4.3.1.5. LCD displays
        • 9.4.3.1.6. Curved displays
          • 9.4.3.1.6.1. Overview
          • 9.4.3.1.6.2. Automotive applications
          • 9.4.3.1.6.3. Companies
        • 9.4.3.1.7. Micro-LEDs in automotive displays
          • 9.4.3.1.7.1. Head-up display (HUD)
          • 9.4.3.1.7.2. Headlamps
          • 9.4.3.1.7.3. Product developers
      • 9.4.3.2. Exteriors
    • 9.4.4. In-Mold Electronics
    • 9.4.5. Printed and flexible sensors
      • 9.4.5.1. Capacitive sensors
      • 9.4.5.2. Flexible and stretchable pressure sensors
      • 9.4.5.3. Piezoresistive sensors
      • 9.4.5.4. Piezoelectric sensors
      • 9.4.5.5. Image sensors
        • 9.4.5.5.1. Materials and technologies
    • 9.4.6. Printed heaters
      • 9.4.6.1. Printed car seat heaters
      • 9.4.6.2. Printed/flexible interior heaters
      • 9.4.6.3. Printed on-glass heater
      • 9.4.6.4. Carbon nanotube transparent conductors
      • 9.4.6.5. Metal mesh transparent conductors
      • 9.4.6.6. 3D shaped transparent heaters
      • 9.4.6.7. Direct heating
      • 9.4.6.8. Transparent heaters
    • 9.4.7. Transparent antennas
  • 9.5. Global market forecasts
    • 9.5.1. Volume
    • 9.5.2. Revenues
  • 9.6. Market challenges
  • 9.7. Companies

10. PRINTED AND FLEXIBLE SENSORS

  • 10.1. Market overview
  • 10.2. Printed piezoresistive sensors
    • 10.2.1. Technology overview
    • 10.2.2. Applications
      • 10.2.2.1. Automotive
      • 10.2.2.2. Consumer electronics
      • 10.2.2.3. Medical
      • 10.2.2.4. Inventory management
      • 10.2.2.5. Industrial applications
  • 10.3. Printed piezoelectric sensors
    • 10.3.1. Technology overview
    • 10.3.2. Applications
  • 10.4. Printed photodetectors
    • 10.4.1. Technology overview
    • 10.4.2. Applications
      • 10.4.2.1. Image Sensors
      • 10.4.2.2. Biometrics
      • 10.4.2.3. Flexible X-ray detectors
      • 10.4.2.4. Healthcare and Wearables
      • 10.4.2.5. Inventory Management
  • 10.5. Printed temperature sensors
    • 10.5.1. Technology overview
    • 10.5.2. Applications
      • 10.5.2.1. Automotive
      • 10.5.2.2. Monitoring Systems
      • 10.5.2.3. Consumer Electronics
  • 10.6. Printed strain sensors
    • 10.6.1. Technology overview
    • 10.6.2. Applications
      • 10.6.2.1. Industrial health monitoring
      • 10.6.2.2. Motion Capture for AR/VR
      • 10.6.2.3. Healthcare and Medical
  • 10.7. Printed Gas Sensors
    • 10.7.1. Technology overview
    • 10.7.2. Applications
      • 10.7.2.1. Outdoor Pollution Monitoring
      • 10.7.2.2. Indoor Air Quality
      • 10.7.2.3. Automotive
      • 10.7.2.4. Breath Diagnostics
  • 10.8. Printed capacitive sensors
    • 10.8.1. Technology overview
    • 10.8.2. Applications
      • 10.8.2.1. 3D electronics
      • 10.8.2.2. In-mold Electronics
      • 10.8.2.3. Hybrid Sensors
      • 10.8.2.4. Flexible Displays
      • 10.8.2.5. Automotive HMI
      • 10.8.2.6. Wearables and AR/VR
      • 10.8.2.7. Other Applications
  • 10.9. Printed wearable electrodes
    • 10.9.1. Technology overview
    • 10.9.2. Applications
      • 10.9.2.1. Wearable EMG
      • 10.9.2.2. Skin Patches and E-Textiles
  • 10.10. Global market forecasts
    • 10.10.1. Volume
    • 10.10.2. Revenues
  • 10.11. Companies

11. PRINTED AND FLEXIBLE SMART BUILDINGS AND CONSTRUCTION ELECTRONICS

  • 11.1. Macro-trends
  • 11.2. Market drivers
  • 11.3. SWOT analysis
  • 11.4. Applications
    • 11.4.1. Industrial asset tracking/monitoring with hybrid electronics
    • 11.4.2. Customizable interiors
    • 11.4.3. Sensors
      • 11.4.3.1. Capacitive sensors
      • 11.4.3.2. Temperature and humidity sensors
      • 11.4.3.3. Sensors for air quality
      • 11.4.3.4. Magnetostrictive sensors
      • 11.4.3.5. Magneto- and electrorheological fluids
      • 11.4.3.6. CO2 sensors for energy efficient buildings
    • 11.4.4. Building integrated transparent antennas
    • 11.4.5. Reconfigurable intelligent surfaces (RIS)
    • 11.4.6. Industrial monitoring
  • 11.5. Global market forecasts
    • 11.5.1. Revenues
  • 11.6. Companies

12. SMART PACKAGING ELECTRONICS

  • 12.1. What is Smart Packaging?
    • 12.1.1. Flexible hybrid electronics (FHE)
    • 12.1.2. Printed batteries and antennas
    • 12.1.3. Flexible silicon integrated circuits
    • 12.1.4. Natural materials in packaging
    • 12.1.5. Extruded conductive pastes and inkjet printing
    • 12.1.6. OLEDs for smart and interactive packaging
    • 12.1.7. Active packaging
    • 12.1.8. Intelligent packaging
      • 12.1.8.1. Smart Cards
      • 12.1.8.2. RFID tags
        • 12.1.8.2.1. Low-frequency (LF) RFID tags: 30 KHz to 300 KHz
        • 12.1.8.2.2. High-frequency (HF) RFID tags: 3 to 30 MHz
        • 12.1.8.2.3. Ultra-high-frequency (UHF) RFID tags: 300 MHz to 3GHz
        • 12.1.8.2.4. Active, passive and semi-passive RFID tags
      • 12.1.8.3. Temperature Indicators
      • 12.1.8.4. Freshness Indicators
      • 12.1.8.5. Gas Indicators
  • 12.2. SWOT analysis
  • 12.3. Supply chain management
  • 12.4. Improving product freshness and extending shelf life
  • 12.5. Brand protection and anti-counterfeiting
  • 12.6. Printed and flexible electronics in packaging
    • 12.6.1. FHE with printed batteries and antennas for smart packaging
    • 12.6.2. Printed codes and markings
    • 12.6.3. Barcodes (D)
    • 12.6.4. D data matrix codes
    • 12.6.5. Augmented reality (AR) codes
    • 12.6.6. Sensors and indicators
      • 12.6.6.1. Freshness Indicators
      • 12.6.6.2. Time-temperature indicator labels (TTIs)
      • 12.6.6.3. Natural colour formulation indicator
      • 12.6.6.4. Thermochromic inks
      • 12.6.6.5. Gas indicators
      • 12.6.6.6. Chemical Sensors
      • 12.6.6.7. Electrochemical-Based Sensors
      • 12.6.6.8. Optical-Based Sensors
      • 12.6.6.9. Biosensors
        • 12.6.6.9.1. Electrochemical-Based Biosensors
        • 12.6.6.9.2. Optical-Based Biosensors
      • 12.6.6.10. Edible Sensors
    • 12.6.7. Antennas
      • 12.6.7.1. Radio frequency identification (RFID)
        • 12.6.7.1.1. RFID technologies
          • 12.6.7.1.1.1. Biosensors on RFID tags
          • 12.6.7.1.1.2. Powerless RFID sensor tags
          • 12.6.7.1.1.3. RFID ICs with Large Area Printed Sensors
          • 12.6.7.1.1.4. RFID for anti-counterfeiting
        • 12.6.7.1.2. Passive RFID
        • 12.6.7.1.3. Active RFID
          • 12.6.7.1.3.1. Real Time Locating Systems (RTLS)
          • 12.6.7.1.3.2. Bluetooth Low Energy (BLE) and Low Power Wide Area Networks (LPWAN)
        • 12.6.7.1.4. Chipless RFID or Flexible/Printed IC Passive tags
        • 12.6.7.1.5. RAIN (UHF RFID) Smart Packaging
      • 12.6.7.2. Near-field communications (NFC)
    • 12.6.8. Smart blister packs
  • 12.7. Global market forecasts
    • 12.7.1. Volume
    • 12.7.2. Revenues
  • 12.8. Companies

13. COMPANY PROFILES (713 company profiles)

14. RESEARCH METHODOLOGY

15. REFERENCES

List of Tables

  • Table 1. Macro-trends driving printed/flexible electronics
  • Table 2. Applications of printed and flexible electronics in healthcare & wellness
  • Table 3. Applications of printed and flexible electronics in automotive
  • Table 4. Applications of printed and flexible electronics in buildings and construction
  • Table 5. Applications of printed and flexible electronics in energy storage and harvesting
  • Table 6. Applications of printed and flexible electronics in E-textiles
  • Table 7. Applications of printed and flexible electronics in consumer electronics
  • Table 8. Applications of printed and flexible electronics in smart packaging and logistics
  • Table 9. Types of wearable devices and applications
  • Table 10. Types of wearable devices and the data collected
  • Table 11. Main Wearable Device Companies by Shipment Volume, Market Share, and Year-Over-Year Growth, (million units)
  • Table 12. New wearable tech products 2022-2024
  • Table 13. Wearable market leaders by market segment
  • Table 14.Stretchable Electronics Applications
  • Table 15. Applications of stretchable electronics in wearables
  • Table 16. Applications of stretchable electronics in sensors
  • Table 17. Applications of stretchable artificial skin electronics
  • Table 18. Applications for printed flexible and stretchable electronics in the metaverse
  • Table 19. Advanced materials for Printed and Flexible and sensors and electronics-Advantages and disadvantages
  • Table 20. Sheet resistance (RS) and transparency (T) values for transparent conductive oxides and alternative materials for transparent conductive electrodes (TCE)
  • Table 21. Applications of printed flexible and stretchable electronics in the entertainment industry
  • Table 22. Wearable, printed and flexible electronics at CES 2021-2024
  • Table 23. Wearables Investment funding and buy-outs 2019-2024
  • Table 24. Comparative analysis of conventional and flexible hybrid electronics
  • Table 25. Materials, components, and manufacturing methods for FHE
  • Table 26. Research and commercial activity in FHE
  • Table 27. Global market revenues for Printed & Flexible consumer electronics, 2018-2035, (millions USD)
  • Table 28. Global market for Printed & Flexible medical & healthcare electronics, 2018-2035, millions of US dollars
  • Table 29. Global market for Printed & Flexible E-textiles and smart apparel electronics, 2018-2035, millions of US dollars
  • Table 30. Global market for Printed & Flexible displays, 2018-2035, millions of US dollars
  • Table 31. Global market for Printed & Flexible automotive electronics, 2018-2035, millions of US dollars
  • Table 32. Global market for Printed & Flexible smart buildings electronics, 2018-2035, millions of US dollars
  • Table 33. Global market for Printed & Flexible smart packaging electronics, 2018-2035, millions of US dollars
  • Table 34. Manufacturing methods for printed, flexible and hybrid electronics
  • Table 35. Common printing methods used in printed electronics manufacturing in terms of resolution vs throughput
  • Table 36. Manufacturing methods for 3D electronics
  • Table 37. Readiness level of various additive manufacturing technologies for electronics applications
  • Table 38. Fully 3D printed electronics process steps
  • Table 39. Manufacturing methods for Analogue manufacturing
  • Table 40. Technological and commercial readiness level of analogue printing methods
  • Table 41. Manufacturing methods for Digital printing
  • Table 42. Innovations in high resolution printing
  • Table 43. Key manufacturing methods for creating smart surfaces with integrated electronics
  • Table 44. IME manufacturing techniques
  • Table 45. Applications of R2R electronics manufacturing
  • Table 46. Technology readiness level for R2R manufacturing
  • Table 47. Materials for printed and flexible electronics
  • Table 48. Comparison of component attachment materials
  • Table 49. Comparison between sustainable and conventional component attachment materials for printed circuit boards
  • Table 50. Comparison between the SMAs and SMPs
  • Table 51. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication
  • Table 52. Low temperature solder alloys
  • Table 53. Thermally sensitive substrate materials
  • Table 54. Typical conductive ink formulation
  • Table 55. Comparative properties of conductive inks
  • Table 56. Comparison of the electrical conductivities of liquid metal with typical conductive inks
  • Table 57. Conductive ink producers
  • Table 58. Technology readiness level of printed semiconductors
  • Table 59. Organic semiconductors: Advantages and disadvantages
  • Table 60. Market Drivers for printed/flexible sensors
  • Table 61. Overview of specific printed/flexible sensor types
  • Table 62. Properties of typical flexible substrates
  • Table 63. Comparison of stretchable substrates
  • Table 64. Main types of materials used as flexible plastic substrates in flexible electronics
  • Table 65. Applications of flexible (bio) polyimide PCBs
  • Table 66. Paper substrates: Advantages and disadvantages
  • Table 67. Comparison of flexible integrated circuit technologies
  • Table 68. PCB manufacturing process
  • Table 69. Challenges in PCB manufacturing
  • Table 70. 3D PCB manufacturing
  • Table 71. Macro-trends in consumer electronics
  • Table 72. Market drivers and trends in wearable electronics
  • Table 73. Types of wearable sensors
  • Table 74. Trends in wearable technology
  • Table 75. Different sensing modalities that can be incorporated into wrist-worn wearable device
  • Table 76. Overview of actuating at the wrist
  • Table 77. Wearable health monitors
  • Table 78. Sports-watches, smart-watches and fitness trackers producers and products
  • Table 79. Wearable sensors for sports performance
  • Table 80. Wearable sensor products for monitoring sport performance
  • Table 81. Product types in the hearing assistance technology market
  • Table 82. Sensing options in the ear
  • Table 83. Companies and products in hearables
  • Table 84. Wearable sleep tracker products and prices
  • Table 85. Smart ring products
  • Table 86. Sleep headband products
  • Table 87. Sleep monitoring products
  • Table 88. Pet wearable companies and products
  • Table 89. Wearable electronics applications in the military
  • Table 90. Wearable workplace products
  • Table 91. Global market for printed and flexible consumer electronics 2020-2035 by type (Millions Units)
  • Table 92. Global market revenues for Printed & Flexible consumer electronics, 2018-2035, (millions USD)
  • Table 93. Market challenges in consumer wearable electronics
  • Table 94. Market players in printed and flexible consumer electronics
  • Table 95. Macro trends in medical & healthcare/ wellness
  • Table 96. Market drivers for printed, flexible and stretchable medical and healthcare sensors and wearables
  • Table 97. Healthcare/wellness applications for printed/flexible electronics
  • Table 98. Examples of wearable medical device products
  • Table 99. Medical wearable companies applying products to remote monitoring and analysis
  • Table 100. Electronic skin patch manufacturing value chain
  • Table 101. Benefits of electronic skin patches as a form factor
  • Table 102. Current and emerging applications for electronic skin patches
  • Table 103. Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof
  • Table 104. Medical wearable companies applying products to temperate and respiratory monitoring and analysis
  • Table 105. Technologies for minimally-invasive and non-invasive glucose detection-advantages and disadvantages
  • Table 106. Commercial devices for non-invasive glucose monitoring not released or withdrawn from market
  • Table 107. Minimally-invasive and non-invasive glucose monitoring products
  • Table 108. Companies developing wearable sweat sensors
  • Table 109. Wearable drug delivery companies and products
  • Table 110. Companies and products in cosmetics patches
  • Table 111. Companies developing femtech wearable technology
  • Table 112. Companies and products in smart footwear
  • Table 113. Companies and products in smart contact lenses
  • Table 114. Companies and products in smart wound care
  • Table 115. Companies developing smart diaper products
  • Table 116. Companies developing wearable robotics
  • Table 117. Global Market for Printed and Flexible Medical & Healthcare Electronics 2020-2035 (Million Units)
  • Table 118. Global market for printed and flexible medical & healthcare electronics, 2020-2035, millions of US dollars
  • Table 119. Market challenges in medical and healthcare sensors and wearables
  • Table 120. Macro-trends for electronic textiles
  • Table 121. Market drivers for printed, flexible, stretchable and organic electronic textiles
  • Table 122. Examples of smart textile products
  • Table 123. Performance requirements for E-textiles
  • Table 124. Commercially available smart clothing products
  • Table 125. Types of smart textiles
  • Table 126. Comparison of E-textile fabrication methods
  • Table 127. Types of fabrics for the application of electronic textiles
  • Table 128. Methods for integrating conductive compounds
  • Table 129. Methods for integrating conductive yarn and conductive filament fiber
  • Table 130. 1D electronic fibers including the conductive materials, fabrication strategies, electrical conductivity, stretchability, and applications
  • Table 131. Conductive materials used in smart textiles, their electrical conductivity and percolation threshold
  • Table 132. Metal coated fibers and their mechanisms
  • Table 133. Applications of carbon nanomaterials and other nanomaterials in e-textiles
  • Table 134. Applications and benefits of graphene in textiles and apparel
  • Table 135. Properties of CNTs and comparable materials
  • Table 136. Properties of hexagonal boron nitride (h-BN)
  • Table 137. Types of flexible conductive polymers, properties and applications
  • Table 138. Typical conductive ink formulation
  • Table 139. Comparative properties of conductive inks
  • Table 140. Comparison of pros and cons of various types of conductive ink compositions
  • Table 141. Properties of CNTs and comparable materials
  • Table 142. Properties of graphene
  • Table 143. Electrical conductivity of different types of graphene
  • Table 144. Comparison of the electrical conductivities of liquid metal with typical conductive inks
  • Table 145. Nanocoatings applied in the smart textiles industry-type of coating, nanomaterials utilized, benefits and applications
  • Table 146. 3D printed shoes
  • Table 147. Sensors used in electronic textiles
  • Table 148. Features of flexible strain sensors with different structures
  • Table 149. Features of resistive and capacitive strain sensors
  • Table 150. Typical applications and markets for e-textiles
  • Table 151. Heated jacket products
  • Table 152. Heated jacket and clothing products
  • Table 153. Examples of materials used in flexible heaters and applications
  • Table 154. Commercialized smart textiles/or e-textiles for healthcare and fitness applications
  • Table 155. Wearable sensor products for monitoring sport performance
  • Table 156.Companies and products in smart footwear
  • Table 157. Wearable Displays Applications
  • Table 158. Types of Wearable Displays
  • Table 159. Commercial Examples of Wearable Displays
  • Table 160. Wearable electronics applications in the military
  • Table 161. Smart glove products
  • Table 162. Advantages and disadvantages of batteries for E-textiles
  • Table 163. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance
  • Table 164. Advantages and disadvantages of photovoltaic, piezoelectric, triboelectric, and thermoelectric energy harvesting in of e-textiles
  • Table 165. Teslasuit
  • Table 166. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035 (Million Units)
  • Table 167. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035, millions of US dollars
  • Table 168. Market and technical challenges for E-textiles and smart clothing
  • Table 169. Market players in E-textiles
  • Table 170. Macro-trends in printed and flexible electronics in energy
  • Table 171. Market drivers for Printed and flexible electronic energy storage, generation and harvesting
  • Table 172. Energy applications for printed/flexible electronics
  • Table 173. Comparison of Flexible and Traditional Lithium-Ion Batteries
  • Table 174. Material Choices for Flexible Battery Components
  • Table 175. Flexible Li-ion battery prototypes
  • Table 176. Thin film vs bulk solid-state batteries
  • Table 177. Summary of fiber-shaped lithium-ion batteries
  • Table 178. Main components and properties of different printed battery types
  • Table 179, Types of printable current collectors and the materials commonly used
  • Table 180. Applications of printed batteries and their physical and electrochemical requirements
  • Table 181. 2D and 3D printing techniques
  • Table 182. Printing techniques applied to printed batteries
  • Table 183. Main components and corresponding electrochemical values of lithium-ion printed batteries
  • Table 184. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn-MnO2 and other battery types
  • Table 185. Main 3D Printing techniques for battery manufacturing
  • Table 186. Electrode Materials for 3D Printed Batteries
  • Table 187. Main Fabrication Techniques for Thin-Film Batteries
  • Table 188. Types of solid-state electrolytes
  • Table 189. Market segmentation and status for solid-state batteries
  • Table 190. Typical process chains for manufacturing key components and assembly of solid-state batteries
  • Table 191. Comparison between liquid and solid-state batteries
  • Table 192. Types of fiber-shaped batteries
  • Table 193. Components of transparent batteries
  • Table 194. Components of degradable batteries
  • Table 195. Types of fiber-shaped batteries
  • Table 196. Organic vs. Inorganic Solid-State Electrolytes
  • Table 197. Electrode designs in flexible lithium-ion batteries
  • Table 198. Packaging Procedures for Pouch Cells
  • Table 199. Performance Metrics and Characteristics for Printed and Flexible Batteries
  • Table 200. Methods for printing supercapacitors
  • Table 201. Electrode Materials for printed supercapacitors
  • Table 202. Electrolytes for printed supercapacitors
  • Table 203. Main properties and components of printed supercapacitors
  • Table 204. Conductive pastes for photovoltaics
  • Table 205. Companies commercializing thin film flexible photovoltaics
  • Table 206. Examples of materials used in flexible heaters and applications
  • Table 207. Transparent heaters for exterior lighting / sensors / windows
  • Table 208. Types of transparent heaters for automotive exterior applications
  • Table 209. Smart Window Applications of Transparent Heaters
  • Table 210. Applications of Printed and Flexible Fuel Cells
  • Table 211. Market challenges in printed and flexible electronics for energy
  • Table 212. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035 by type (Volume)
  • Table 213. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035, millions of US dollars
  • Table 214. Market players in printed and flexible energy storage and harvesting
  • Table 215. Macro-trends in displays
  • Table 216. Market drivers for Printed and flexible displays and electronic components
  • Table 217. Printed and flexible displays products
  • Table 218. Flexible miniLED and MicroLED products
  • Table 219. Comparison of performance metrics between microLEDs and other commercial display technologies
  • Table 220. Foldable smartphones, laptops and tablets and other display products, on or near market
  • Table 221. Companies developing OLED lighting products
  • Table 222. Types of electrochromic materials and applications
  • Table 223. Applications of Mini-LED and Micro-LED transparent displays
  • Table 224. Companies developing Micro-LED transparent displays
  • Table 225. Estimated Global Market for Flexible Displays (Million Units)*
  • Table 226. Global market for printed and flexible displays, 2020-2035, millions of US dollars
  • Table 227. Market challenges in printed and flexible displays
  • Table 228. Market players in printed and flexible displays
  • Table 229. Macro-trends in automotive
  • Table 230. Market drivers for printed and flexible electronics in automotive
  • Table 231. Printed and flexible electronics in the automotive market
  • Table 232. Printed/flexible electronics in automotive displays and lighting
  • Table 233. Printed and flexible electronics are being integrated into vehicle interiors
  • Table 234. Applications of curved displays in automotive and technology readiness level (TRL)
  • Table 235. Companies developing curved automotive displays
  • Table 236. Applications of Micro-LED in automotive
  • Table 237. HUD vs other display types
  • Table 238. Automotive display Mini-LED and Micro-LED products
  • Table 239. Conductive materials for transparent capacitive sensors
  • Table 240. Automotive applications for printed piezoresistive sensors
  • Table 241. Piezoelectric sensors for automotive applications
  • Table 242. Printed piezoelectric sensors in automotive applications
  • Table 243. SWIR for autonomous mobility and ADAS
  • Table 244. Types of printed photodetectors and image sensors developed for automotive applications
  • Table 245. Comparison of SWIR image sensors technologies
  • Table 246. Comparison of conventional and printed seat heaters for automotive applications
  • Table 247. Printed car seat heaters
  • Table 248. Types of Printed/flexible interior heaters
  • Table 249. Transparent heaters for exterior lighting / sensors / windows
  • Table 250. Types of transparent heaters for automotive exterior applications
  • Table 251. Transparent electronics for automotive radar for ADAS
  • Table 252. Global Market for Automotive Electronics (Million Units)
  • Table 253. Global market for printed and flexible automotive electronics, 2020-2035, millions of US dollars
  • Table 254. Market challenges for printed and flexible electronics in automotive
  • Table 255. Market players in printed and flexible electronics in automotive
  • Table 256. Market opportunities in printed and flexible sensors
  • Table 257.Growth Opportunities in Printed and Flexible Sensors
  • Table 258. Growth Markets for Printed Sensor Technology
  • Table 259.Manufacturing Methods for Printed Piezoresistive Sensors
  • Table 260. Piezoresistive vs Capacitive Touch Sensors
  • Table 261. Printed piezoresistive sensors applications
  • Table 262. Manufacturing Process of Piezoelectric Polymers
  • Table 263. Printed Piezoelectric Materials in Sensors
  • Table 264. Printed piezoelectric sensors Applications
  • Table 265. Comparison of Photodetector Technologies
  • Table 266. Materials for Thin Film Photodetectors
  • Table 267. Pros and Cons of Printed QD Manufacturing Methods
  • Table 268. Printed photodetectors Applications
  • Table 269. Types of Temperature Sensors
  • Table 270. Printed Temperature Sensor Materials and Printing Methods
  • Table 271. Printed temperature sensors Applications
  • Table 272. Printed strain sensors Applications
  • Table 273. Types and Materials for Printed Gas Sensors
  • Table 274. Printed Gas Sensor Applications
  • Table 275. Printed Capacitive Sensor Technologies
  • Table 276. Materials Used in Printed Capacitive Sensors
  • Table 277. Printed capacitive sensors Applications
  • Table 278. Applications and Product Types of Printed Wearable Electrodes
  • Table 279. Wet vs. Dry Electrodes for Wearable Applications
  • Table 280. Applications of printed wearable electrodes
  • Table 281. Global market for printed/flexible sensors 2020-2035 by market (Volume in Millions of Units)
  • Table 282. Global market for printed/flexible sensors 2020-2035 by market (Billions USD)
  • Table 283. Market players in printed and flexible sensors
  • Table 284. Macro-trends in smart buildings and construction
  • Table 285. Market drivers for smart sensors for buildings
  • Table 286. Printed and flexible electronics being applied for building, infrastructure, and industrial applications
  • Table 287. Printed electronics in customizable smart building interiors
  • Table 288. Types of smart building sensors
  • Table 289. Commonly used sensors in smart buildings
  • Table 290. Capacitive sensors integrated into smart buildings
  • Table 291. Types of flexible humidity sensors
  • Table 292. MOF sensor applications
  • Table 293. Global market for printed and flexible smart buildings electronics, 2020-2035, millions of US dollars
  • Table 294. Market players in printed and flexible smart buildings electronics
  • Table 295. Consumer goods applications for printed/flexible electronics
  • Table 296. Types of Active packaging
  • Table 297. Commercially available food active packaging
  • Table 298. Types of intelligent packaging
  • Table 299. Types of RFID tags
  • Table 300. Commercially available time-temperature indicators (TTI) indicators
  • Table 301. Commercially available freshness indicators
  • Table 302. Commercially available gas indicators
  • Table 303. Supply chain management considerations for smart electronic packaging targeted at consumers
  • Table 304. Types of printed/flexible electronics and materials that can be used to enhance packaging barcodes
  • Table 305. Commercially available freshness indicators
  • Table 306. Commercial examples of time-temperature indicators
  • Table 307. Examples of Chemical Time Temperature Indicators (TTIs)
  • Table 308. Types of ripeness indicators
  • Table 309. Commercially available gas indicators
  • Table 310. Chemical sensors in smart packaging
  • Table 311. Electrochemical-based sensors for smart food packaging
  • Table 312. Optical-based sensors for smart food packaging applications
  • Table 313. Electrochemical biosensors for smart food packaging:
  • Table 314. Optical-Based Biosensors for smart food packaging
  • Table 315. Types of edible sensors for food packaging
  • Table 316. Commercially available radio frequency identification systems (RFID) technology
  • Table 317. Passive RFID: Technologies by Operating Frequency
  • Table 318. Examples of NFC in packaging
  • Table 319. Companies in smart blister packs
  • Table 320. Global Market for Smart Packaging Electronics (Million Units)
  • Table 321. Global market for printed and flexible smart packaging electronics, 2020-2035, millions of US dollars
  • Table 322. Market players in smart packaging electronics
  • Table 323. 3DOM separator
  • Table 324. Battery performance test specifications of J. Flex batteries
  • Table 325. TCL Mini-LED product range

List of Figures

  • Figure 1. Examples of flexible electronics devices
  • Figure 2. Evolution of electronics
  • Figure 3. Applications for printed and flexible electronics
  • Figure 4. Wearable technology inventions
  • Figure 5. Market map for printed and flexible electronics
  • Figure 6. Wove Band
  • Figure 7. Wearable graphene medical sensor
  • Figure 8. 3D printed stretchable electronics
  • Figure 9. Artificial skin prototype for gesture recognition
  • Figure 10. Applications of wearable flexible sensors worn on various body parts
  • Figure 11. Systemization of wearable electronic systems
  • Figure 12. Baby Monitor
  • Figure 13. Wearable health monitor incorporating graphene photodetectors
  • Figure 14. LG 77" transparent 4K OLED TV
  • Figure 15. 137-inch N1 foldable TV
  • Figure 16. Flex Note ExtendableTM
  • Figure 17. Flex In & Out Flip
  • Figure 18. Traxcon printed lighting circuitry
  • Figure 19. Global market revenues for Printed & Flexible consumer electronics, 2018-2035, (millions USD)
  • Figure 20. Global market for Printed & Flexible medical & healthcare electronics, 2018-2035, millions of US dollars
  • Figure 21. Global market for Printed & Flexible E-textiles and smart apparel electronics, 2018-2035, millions of US dollars
  • Figure 22. Global market for Printed & Flexible displays, 2018-2035, millions of US dollars
  • Figure 23. Global market for Printed & Flexible automotive electronics, 2018-2035, millions of US dollars
  • Figure 24. Global market for Printed & Flexible smart buildings electronics, 2018-2035, millions of US dollars
  • Figure 25. Global market for Printed & Flexible smart packaging electronics, 2018-2035, millions of US dollars
  • Figure 26. SWOT analysis for printed electronics
  • Figure 27. SWOT analysis for 3D electronics
  • Figure 28. SWOT analysis for analogue printing
  • Figure 29. SWOT analysis for digital printing
  • Figure 30. In-mold electronics prototype devices and products
  • Figure 31. SWOT analysis for In-Mold Electronics
  • Figure 32. SWOT analysis for R2R manufacturing
  • Figure 33. The molecular mechanism of the shape memory effect under different stimuli
  • Figure 34. Supercooled SolderingTM Technology
  • Figure 35. Reflow soldering schematic
  • Figure 36. Schematic diagram of induction heating reflow
  • Figure 37. Types of conductive inks and applications
  • Figure 38. Copper based inks on flexible substrate
  • Figure 39. SWOT analysis for Printable semiconductors
  • Figure 40. SWOT analysis for Printable sensor materials
  • Figure 41. RFID Tag with Nano Copper Antenna on Paper
  • Figure 42. SWOT analysis for flexible integrated circuits
  • Figure 43. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films
  • Figure 44. Flexible PCB
  • Figure 45. SWOT analysis for Flexible batteries
  • Figure 46. SWOT analysis for Flexible PV for energy harvesting
  • Figure 47. SWOT analysis for printed, flexible and hybrid electronics in consumer electronics
  • Figure 48. EmeTerm nausea relief wearable
  • Figure 49. Embr Wave for cooling and warming
  • Figure 50. dpl Wrist Wrap Light THerapy pain relief
  • Figure 51. SWOT analysis for Wrist-worn wearables
  • Figure 52. FitBit Sense Watch
  • Figure 53. Wearable bio-fluid monitoring system for monitoring of hydration
  • Figure 54. Nuheara IQbuds2 Max
  • Figure 55. HP Hearing PRO OTC Hearing Aid
  • Figure 56. SWOT analysis for Ear worn wearables (hearables)
  • Figure 57. Beddr SleepTuner
  • Figure 58. Global market for printed and flexible consumer electronics 2020-2035 by type (Volume)
  • Figure 59. Global market revenues for Printed & Flexible consumer electronics, 2018-2035, (millions USD)
  • Figure 60. SWOT analysis for printed, flexible and hybrid electronics in medical and healthcare/wellness
  • Figure 61. Connected human body and product examples
  • Figure 62. Companies and products in wearable health monitoring and rehabilitation devices and products
  • Figure 63. Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs
  • Figure 64. Graphene medical patch
  • Figure 65. Graphene-based E-skin patch
  • Figure 66. SWOT analysis for printed and flexible electronics in skin patches
  • Figure 67. Enfucell wearable temperature tag
  • Figure 68. TempTraQ wearable wireless thermometer
  • Figure 69. Technologies for minimally-invasive and non-invasive glucose detection
  • Figure 70. Schematic of non-invasive CGM sensor
  • Figure 71. Adhesive wearable CGM sensor
  • Figure 72. VitalPatch
  • Figure 73. Wearable ECG-textile
  • Figure 74. Wearable ECG recorder
  • Figure 75. NexkinTM
  • Figure 76. Bloomlife
  • Figure 77. Nanowire skin hydration patch
  • Figure 78. NIX sensors
  • Figure 79. Wearable sweat sensor
  • Figure 80. Wearable graphene sweat sensor
  • Figure 81. Gatorade's GX Sweat Patch
  • Figure 82. Sweat sensor incorporated into face mask
  • Figure 83. D-mine Pump
  • Figure 84. Lab-on-SkinTM
  • Figure 85. My UV Patch
  • Figure 86. Overview layers of L'Oreal skin patch
  • Figure 87. Brilliantly Warm
  • Figure 88. Ava Fertility tracker
  • Figure 89. S9 Pro breast pump
  • Figure 90. Tempdrop
  • Figure 91. Digitsole Smartshoe
  • Figure 92. Schematic of smart wound dressing
  • Figure 93. REPAIR electronic patch concept. Image courtesy of the University of Pittsburgh School of Medicine
  • Figure 94. ABENA Nova smart diaper
  • Figure 95. Honda Walking Assist
  • Figure 96. ABLE Exoskeleton
  • Figure 97. ANGEL-LEGS-M10
  • Figure 98. AGADEXO Shoulder
  • Figure 99. Enyware
  • Figure 100. AWN-12 occupational powered hip exoskeleton
  • Figure 101. CarrySuit passive upper-body exoskeleton
  • Figure 102. Axosuit lower body medical exoskeleton
  • Figure 103. FreeGait
  • Figure 104. InMotion Arm
  • Figure 105. Biomotum SPARK
  • Figure 106. PowerWalk energy
  • Figure 107. KeeogoTM
  • Figure 108. MATE-XT
  • Figure 109. CDYS passive shoulder support exoskeleton
  • Figure 110. ALDAK
  • Figure 111. HAL-R Lower Limb
  • Figure 112. DARWING PA
  • Figure 113. Dephy ExoBoot
  • Figure 114. EksoNR
  • Figure 115. Emovo Assist
  • Figure 116. HAPO
  • Figure 117. Atlas passive modular exoskeleton
  • Figure 118. ExoAtlet II
  • Figure 119. ExoHeaver
  • Figure 120. Exy ONE
  • Figure 121. ExoArm
  • Figure 122. ExoMotus
  • Figure 123. Gloreha Sinfonia
  • Figure 124. BELK Knee Exoskeleton
  • Figure 125. Apex exosuit
  • Figure 126. Honda Walking Assist
  • Figure 127. BionicBack
  • Figure 128. Muscle Suit
  • Figure 129.Japet.W powered exoskeleton
  • Figure 130.Ski~Mojo
  • Figure 131. AIRFRAME passive shoulder
  • Figure 132.FORTIS passive tool holding exoskeleton
  • Figure 133. Integrated Soldier Exoskeleton (UPRISE-R)
  • Figure 134.UNILEXA passive exoskeleton
  • Figure 135.HandTutor
  • Figure 136.MyoPro-R
  • Figure 137.Myosuit
  • Figure 138. archelis wearable chair
  • Figure 139.Chairless Chair
  • Figure 140.Indego
  • Figure 141. Polyspine
  • Figure 142. Hercule powered lower body exoskeleton
  • Figure 143. ReStore Soft Exo-Suit
  • Figure 144. Hand of Hope
  • Figure 145. REX powered exoskeleton
  • Figure 146. Elevate Ski Exoskeleton
  • Figure 147. UGO210 exoskeleton
  • Figure 148. EsoGLOVE Pro
  • Figure 149. Roki
  • Figure 150. Powered Clothing
  • Figure 151. Againer shock absorbing exoskeleton
  • Figure 152. EasyWalk Assistive Soft Exoskeleton Walker
  • Figure 153. Skel-Ex
  • Figure 154. EXO-H3 lower limbs robotic exoskeleton
  • Figure 155. Ikan Tilta Max Armor-Man 2
  • Figure 156. AMADEO hand and finger robotic rehabilitation device
  • Figure 157.Atalante autonomous lower-body exoskeleton
  • Figure 158. Global Market for Printed and Flexible Medical & Healthcare Electronics 2020-2035 (Million Units)
  • Figure 159. Global market for printed and flexible medical & healthcare electronics, 2020-2035, millions of US dollars
  • Figure 160. SWOT analysis for printed, flexible and hybrid electronics in E-textiles
  • Figure 161. Timeline of the different generations of electronic textiles
  • Figure 162. Examples of each generation of electronic textiles
  • Figure 163. Conductive yarns
  • Figure 164. H-Tee by H-Cube
  • Figure 165. Electronics integration in textiles: (a) textile-adapted, (b) textile-integrated (c) textile-basd
  • Figure 166. Stretchable polymer encapsulation microelectronics on textiles
  • Figure 167. Conductive yarns
  • Figure 168. Classification of conductive materials and process technology
  • Figure 169. Structure diagram of Ti3C2Tx
  • Figure 170. Structure of hexagonal boron nitride
  • Figure 171. BN nanosheet textiles application
  • Figure 172. SEM image of cotton fibers with PEDOT:PSS coating
  • Figure 173. Schematic of inkjet-printed processes
  • Figure 174: Silver nanocomposite ink after sintering and resin bonding of discrete electronic components
  • Figure 175. Schematic summary of the formulation of silver conductive inks
  • Figure 176. Copper based inks on flexible substrate
  • Figure 177: Schematic of single-walled carbon nanotube
  • Figure 178. Stretchable SWNT memory and logic devices for wearable electronics
  • Figure 179. Graphene layer structure schematic
  • Figure 180. BGT Materials graphene ink product
  • Figure 181. PCM cooling vest
  • Figure 182. SMPU-treated cotton fabrics
  • Figure 183. Schematics of DIAPLEX membrane
  • Figure 184. SMP energy storage textiles
  • Figure 185. Nike x Acronym Blazer Sneakers
  • Figure 186. Adidas 3D Runner Pump
  • Figure 187. Under Armour Archi-TechFuturist
  • Figure 188. Reebok Reebok Liquid Speed
  • Figure 189. Radiate sports vest
  • Figure 190. Adidas smart insole
  • Figure 191. Applications of E-textiles
  • Figure 192. EXO2 Stormwalker 2 Heated Jacket
  • Figure 193. Flexible polymer-based heated glove, sock and slipper
  • Figure 194. ThermaCell Rechargeable Heated Insoles
  • Figure 195. Myant sleeve tracks biochemical indicators in sweat
  • Figure 196. Flexible polymer-based therapeutic products
  • Figure 197. iStimUweaR
  • Figure 198. Digitsole Smartshoe
  • Figure 199. Basketball referee Royole fully flexible display
  • Figure 200. A mechanical glove, Robo-Glove, with pressure sensors and other sensors jointly developed by General Motors and NASA
  • Figure 201. Power supply mechanisms for electronic textiles and wearables
  • Figure 202. Micro-scale energy scavenging techniques
  • Figure 203. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper
  • Figure 204. 3D printed piezoelectric material
  • Figure 205. Application of electronic textiles in AR/VR
  • Figure 206. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035 (Million Units)
  • Figure 207. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035, millions of US dollars
  • Figure 208. SWOT analysis for printed, flexible and hybrid electronics in energy
  • Figure 209. Flexible batteries on the market
  • Figure 210. Various architectures for flexible and stretchable electrochemical energy storage
  • Figure 211. Types of flexible batteries
  • Figure 212. Materials and design structures in flexible lithium ion batteries
  • Figure 213. Flexible/stretchable LIBs with different structures
  • Figure 214. a-c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs
  • Figure 215. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d-f)
  • Figure 216. Origami disposable battery
  • Figure 217. Zn-MnO2 batteries produced by Brightvolt
  • Figure 218. Various applications of printed paper batteries
  • Figure 219.Schematic representation of the main components of a battery
  • Figure 220. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together
  • Figure 221. Sakuu's Swift Print 3D-printed solid-state battery cells
  • Figure 222. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III)
  • Figure 223. Examples of applications of thin film batteries
  • Figure 224. Capacities and voltage windows of various cathode and anode materials
  • Figure 225. Traditional lithium-ion battery (left), solid state battery (right)
  • Figure 226. Stretchable lithium-air battery for wearable electronics
  • Figure 227. Ag-Zn batteries produced by Imprint Energy
  • Figure 228. Transparent batteries
  • Figure 229. Degradable batteries
  • Figure 230 . Fraunhofer IFAM printed electrodes
  • Figure 231. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries
  • Figure 232. Schematic of the structure of stretchable LIBs
  • Figure 233. Electrochemical performance of materials in flexible LIBs
  • Figure 234. Main printing methods for supercapacitors
  • Figure 235. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper
  • Figure 236. Origami-like silicon solar cells
  • Figure 237. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper
  • Figure 238. Concept of microwave-transparent heaters for automotive radars
  • Figure 239. Defrosting and defogging transparent heater applications
  • Figure 240. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035 by type (Volume)
  • Figure 241. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035, millions of US dollars
  • Figure 242. LG Signature OLED TV R
  • Figure 243. Flexible display
  • Figure 244. SWOT analysis for printed and flexible displays
  • Figure 245. f-OLED N-shaped folding display
  • Figure 246. C SEED 37-inch N1 foldable TV
  • Figure 247. DELL Ori
  • Figure 248. Gloshine curved LED screen
  • Figure 249. Huawei Mate X3
  • Figure 250. LG Media Chair
  • Figure 251. LG Virtual Ride
  • Figure 252. Microsoft Surface Duo 2
  • Figure 253. Motorola Razr
  • Figure 254. Mirage smart speaker with wraparound touch display
  • Figure 255. Samsung Galaxy Fold
  • Figure 256. Vivo X Flip
  • Figure 257. Organic LCD with a 10-mm bend radius
  • Figure 258. Foldable organic light-emitting diode (OLED) panel
  • Figure 259. AMOLED schematic
  • Figure 260. LG rollable OLED TV
  • Figure 261. OLED structure
  • Figure 262. AU Optonics Flexible MicroLED Display
  • Figure 263. Schematic of the TALT technique for wafer-level microLED transferring
  • Figure 264. Foldable 4K C SEED M1
  • Figure 265. Stamp-based transfer-printing techniques
  • Figure 266: Flexible & stretchable LEDs based on quantum dots
  • Figure 267. Samsung S-foldable display
  • Figure 268. Samsung slideable display
  • Figure 269. Samsung foldable battery patent schematic
  • Figure 270. Rollable 65RX OLED TV
  • Figure 271. Lenovo ThinkPad X1 Fold
  • Figure 272. LG Chem foldable display
  • Figure 273. Samsung Display Flex G folding smartphones
  • Figure 274. Asus Foldable Phone
  • Figure 275. Asus Zenbook 17 Fold
  • Figure 276. Dell Concept Ori
  • Figure 277. Intel Foldable phone
  • Figure 278. ThinkPad X1 Fold
  • Figure 279. Motorola Razr
  • Figure 280. Oppo Find N folding phone
  • Figure 281. Oppo Find N2 Flip
  • Figure 282. Royole FlexPai 2
  • Figure 283. Royole FlexPai 3 from CES 2024
  • Figure 284. Galaxy Fold 3
  • Figure 285. Samsung Galaxy Z Flip 3
  • Figure 286. TCL Tri-Fold Foldable Phone
  • Figure 287. TCL rollable phone
  • Figure 288. Xiaomi Mi MIX Flex
  • Figure 289. LG OLED flexible lighting panel
  • Figure 290. Flexible OLED incorporated into automotive headlight
  • Figure 291. Audi 2022 A8
  • Figure 292. Electrophoretic display applications
  • Figure 293. Passive reflective displays with flexibility
  • Figure 294. Plastic Logic 5.4" IridisTM display
  • Figure 295. Argil electrochromic film integrated with polycarbonate lenses
  • Figure 296. Transparent and flexible metamaterial film developed by Sekishi Chemical
  • Figure 297. Scanning electron microscope (SEM) images of several metalens antenna forms
  • Figure 298. Design concepts of soft mechanical metamaterials with large negative swelling ratios and tunable stress-strain curves
  • Figure 299. Different transparent displays and transmittance limitations
  • Figure 300. 7.56" high transparency & frameless Micro-LED display
  • Figure 301. AUO's 13.5-inch transparent RGB microLED display
  • Figure 302. 17.3-inch transparent microLED AI display in a Taiwan Ferry
  • Figure 303. Global market for printed and flexible displays, 2020-2035 by type (Volume)
  • Figure 304. Global market for printed and flexible displays, 2020-2035, millions of US dollars
  • Figure 305. SWOT analysis for printed, flexible and hybrid electronics in automotive
  • Figure 306. Automotive display concept
  • Figure 307. Mercedes MBUX Hyperscreen
  • Figure 308. AUO Smart Cockpit with 55-inch pillar-to-pillar curved display
  • Figure 309. Cadillac XT4 33-inch curved LED touchscreen display
  • Figure 310. Continental Curved Ultrawide Display
  • Figure 311. Hyundai 2024 Sonata panoramic curved display
  • Figure 312. Peugeot 3008 fastback SUV curved wide-screen display
  • Figure 313. TCL CSOT single, continuous flexible curved automotive display panel
  • Figure 314. AUO automotive display
  • Figure 315. Micro-LED automotive display
  • Figure 316. Issues in current commercial automotive HUD
  • Figure 317. Rear lamp utilizing flexible Micro-LEDs
  • Figure 318. SWOT analysis for integrated antennas with printed electronics in automotive
  • Figure 319. Global Market for Automotive Electronics (Million Units)
  • Figure 320. Global market for printed and flexible automotive electronics, 2020-2035, millions of US dollars
  • Figure 321. Global market for printed/flexible sensors 2020-2035 by market (Volume in Millions of Units)
  • Figure 322. Global market for printed/flexible sensors 2020-2035 by type (Billions USD)
  • Figure 323. SWOT analysis for printed, flexible and hybrid electronics in smart buildings and construction. Source: Future Markets
  • Figure 324. Use of sensors in smart buildings
  • Figure 325. Global market for printed and flexible smart buildings electronics, 2020-2035, millions of US dollars
  • Figure 326. Active and Intelligent packaging classification
  • Figure 327. Smart packaging for detecting bacteria growth in milk containers
  • Figure 328. RFID tags with printed silver antennas on paper substrates
  • Figure 329. Smart card incorporating an ultra-thin battery
  • Figure 330. RFID ultra micro battery
  • Figure 331. SWOT analysis for printed, flexible and hybrid electronics in smart packaging
  • Figure 332. Active packaging film
  • Figure 333. Anti-counterfeiting smart label
  • Figure 334. Security tag developed by Nanotech Security
  • Figure 335. Fundamental principle of a gas sensor for detecting CO2 (gas) after food spoilage
  • Figure 336. A standard RFID system
  • Figure 337. RFID functions and applications of silver nanoparticle inks
  • Figure 338. OHMEGA Conductive Ink + Touchcode box
  • Figure 339. Wiliot RFID
  • Figure 340. Smart blister pack
  • Figure 341. Global market for printed and flexible smart packaging electronics 2020-2035 by type (Volume)
  • Figure 342. Global market for printed and flexible smart packaging electronics, 2020-2035, millions of US dollars
  • Figure 343. 24M battery
  • Figure 344. 3DOM battery
  • Figure 345. Libre 3
  • Figure 346. Abbott Lingo wearable
  • Figure 347. Libre Sense Glucose Sport Biowearable
  • Figure 348. AC biode prototype
  • Figure 349. AcuPebble SA100
  • Figure 350. Vitalgram-R
  • Figure 351. BioMan+
  • Figure 352. EXO Glove
  • Figure 353. e-Tint-R cell in the (a) OFF and in the (b) ON states
  • Figure 354. Alertgy NICGM wristband
  • Figure 355. ALLEVX
  • Figure 356. Gastric Alimetry
  • Figure 357. Alva Health stroke monitor
  • Figure 358. amofit S
  • Figure 359. Ampcera's all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm)
  • Figure 360. Amprius battery products
  • Figure 361. MIT and Amorepacific's chip-free skin sensor
  • Figure 362. All-polymer battery schematic
  • Figure 363. All Polymer Battery Module
  • Figure 364. Resin current collector
  • Figure 365. SigiTM Insulin Management System
  • Figure 366. The Apollo wearable device
  • Figure 367. Apos3
  • Figure 368. Piezotech-R FC
  • Figure 369. PowerCoat-R paper
  • Figure 370. Artemis is smart clothing system
  • Figure 371. KneeStim
  • Figure 372. LED hooded jacket
  • Figure 373. Heated element module
  • Figure 374. Ateios thin-film, printed battery
  • Figure 375. Printable NTC Temperature Sensor
  • Figure 376. 1.39-inch full-circle Micro-LED display
  • Figure 377. 9.4" flexible Micro-LED display
  • Figure 378. Cyclops HMD
  • Figure 379. PaciBreath
  • Figure 380. Avery Dennison smart labels
  • Figure 381. AD PureTM Line [Sustainable UHF RFID tags and inlays]
  • Figure 382. Structure of Azalea Vision's smart contact lens
  • Figure 383. BeFC-R biofuel cell and digital platform
  • Figure 384. Belun-R Ring
  • Figure 385. Evo Patch
  • Figure 386. Neuronaute wearable
  • Figure 387. biped.ai device
  • Figure 388. 3D printed lithium-ion battery
  • Figure 389. Blue Solution module
  • Figure 390. TempTraq wearable patch
  • Figure 391. BOE Mini-LED display TV
  • Figure 392. BOE Mini-LED automotive display
  • Figure 393. circul+ smart ring
  • Figure 394. Brewer Science printed water sensor
  • Figure 395. C2Sense sensors
  • Figure 396. Cala Trio
  • Figure 397. Transparent 3D touch control with LED lights and LED matrix
  • Figure 398. Large transparent heater for LiDAR
  • Figure 399. Cionic Neural Sleeve
  • Figure 400. Carhartt X-1 Smart Heated Vest
  • Figure 401. Coachwhisperer device
  • Figure 402. Cognito's gamma stimulation device
  • Figure 403. Cogwear headgear
  • Figure 404. CardioWatch 287
  • Figure 405. Graphene dress. The dress changes colour in sync with the wearer's breathing
  • Figure 406. Cymbet EnerChipTM
  • Figure 407. Descante Solar Thermo insulated jacket
  • Figure 408. G+ Graphene Aero Jersey
  • Figure 409. Diabeloop wearable
  • Figure 410. Inkjet printed OPV module
  • Figure 411. First Relief
  • Figure 412. FRENZTM Brainband
  • Figure 413. NightOwl Home Sleep Apnea Test Device
  • Figure 414. Jewel Patch Wearable Cardioverter Defibrillator
  • Figure 415. P-Flex-R Flexible Circuit
  • Figure 416. enFuse
  • Figure 417. Roll-to-roll equipment working with ultrathin steel substrate
  • Figure 418. EOPatch
  • Figure 419. Epilog
  • Figure 420. eQ02+LIfeMontor
  • Figure 421. noDiffusion OLED encapsulation film
  • Figure 422. TAeTTOOz printable battery materials
  • Figure 423. FDK Corp battery
  • Figure 424. Cove wearable device
  • Figure 425. HiFlex strain/pressure sensor
  • Figure 426. FloPatch
  • Figure 427. KiTT motion tracking knee sleeve
  • Figure 428. 2D paper batteries
  • Figure 429. 3D Custom Format paper batteries
  • Figure 430. Fuji carbon nanotube products
  • Figure 431. German bionic exoskeleton
  • Figure 432. UnlimitedHand
  • Figure 433. Healables app-controlled electrotherapy device
  • Figure 434. Helio materials incorporated into flexible displays
  • Figure 435. Apex Exosuit
  • Figure 436. Hinge Health wearable therapy devices
  • Figure 437. MYSA - 'Relax Shirt'
  • Figure 438. Humanox Shin Guard
  • Figure 439. Airvida E1
  • Figure 440. Sensor surface
  • Figure 441. ZincPolyTM technology
  • Figure 442. In2tec's fully recyclable flexible circuit board assembly
  • Figure 443. Footrax
  • Figure 444. Flexible microLED
  • Figure 445. eMacula-R
  • Figure 446. Printed moisture sensors
  • Figure 447. G2 Pro
  • Figure 448. Atusa system
  • Figure 449. ITEN micro batteries
  • Figure 450. Soluboard immersed in water
  • Figure 451. Infineon PCB before and after immersion
  • Figure 452. Kenzen ECHO Smart Patch
  • Figure 453. The Kernel Flow headset
  • Figure 454. REFLEX
  • Figure 455. KnowUTM
  • Figure 456. HyperfluorescenceTM OLED display
  • Figure 457. LG Display Stretchable displays
  • Figure 458. LiBEST flexible battery
  • Figure 459. LifeSpan patch
  • Figure 460. Flexible Biocompatible pH Sensor from Linxens
  • Figure 461. Ring ZERO
  • Figure 462. LumeoLoop device
  • Figure 463. Lyten batteries
  • Figure 464. Mawi Heart Patch
  • Figure 465. WalkAid
  • Figure 466. MonarchTM Wireless Wearable Biosensor
  • Figure 467. MetaSCOPE
  • Figure 468. HICARDI system
  • Figure 469. Modoo device
  • Figure 470. Movesense ECG monitor
  • Figure 471. Munevo Drive
  • Figure 472. Electroskin integration schematic
  • Figure 473. Modius Sleep wearable device
  • Figure 474. Neuphony Headband
  • Figure 475. Nextiles' compression garments
  • Figure 476. Nextiles e-fabric
  • Figure 477. Nix Biosensors patch
  • Figure 478. Ayo wearable light therapy
  • Figure 479. Nowatch
  • Figure 480 .Nuada
  • Figure 481. ONA DM
  • Figure 482. ORII smart ring
  • Figure 483. Otolith wearable device
  • Figure 484. Oxitone 1000M
  • Figure 485. Palarum PUP smart socks
  • Figure 486. BEYOLEXTM film
  • Figure 487. 55" flexible AM panel
  • Figure 488. Peerbridge Cor
  • Figure 489. 9.4" flexible MicroLED display
  • Figure 490. 7.56-inch transparent Micro LED display
  • Figure 491. Point Fit Technology skin patch
  • Figure 492. Printed battery
  • Figure 493. Printed Energy flexible battery
  • Figure 494. Proxxi Voltage
  • Figure 495. ProLogium solid-state battery
  • Figure 496. Sylvee 1.0
  • Figure 497. RealWear HMT-1
  • Figure 498. RootiRx
  • Figure 499. Micro-LED stretchable display
  • Figure 500. Sylvee 1.0
  • Figure 501. SES Apollo batteries
  • Figure 502. Silvertree Reach
  • Figure 503. Smardii smart diaper
  • Figure 504. Moonwalkers from Shift Robotics Inc
  • Figure 505. SnowCookie device
  • Figure 506. Softmatter compression garment
  • Figure 507. Softmatter sports bra with a woven ECG sensor
  • Figure 508. Soter device
  • Figure 509. Femsense patch
  • Figure 510. MoCap Pro Glove
  • Figure 511. Subcuject
  • Figure 512. 3D printed electronics
  • Figure 513. Tactotek IME device
  • Figure 514. TactoTek-R IMSE-R SiP - System In Package
  • Figure 515. TCL Mini-LED TV schematic
  • Figure 516. TCL 8K Mini-LED TV
  • Figure 517. The Cinema Wall Micro-LED display
  • Figure 518. Teslasuit
  • Figure 519. Nerivio
  • Figure 520. Feelzing Energy Patch
  • Figure 521. 7.56" Transparent Display
  • Figure 522. 7.56" Flexible Micro-LED
  • Figure 523. 5.04" seamless splicing Micro LED
  • Figure 524. 7.56" Transparent Micro LED
  • Figure 525. A sample of TracXon's printed lighting circuitry
  • Figure 526. Ultrahuman wearable glucose monitor
  • Figure 527. Vaxxas patch
  • Figure 528. S-Patch Ex
  • Figure 529. Wiliot tags
  • Figure 530. Zeit Medical Wearable Headband