全球模內電子 (IME) 市場(2025-2035 年)
市場調查報告書
商品編碼
1628907

全球模內電子 (IME) 市場(2025-2035 年)

The Global Market for In-mold Electronics (IME) 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 83 Pages, 47 Tables, 10 Figures | 訂單完成後即時交付

價格

模內電子(IME),也稱為plastronics,是一種將傳統注塑與印刷電子結合的創新技術。此製程允許將觸控感測器、顯示器和照明等功能電子元件在成型過程中直接嵌入到塑膠零件中。此製程使得透過單一製造步驟創建智慧表面和複雜的電子功能成為可能。 IME 技術允許將觸控感測器、照明和其他電子功能嵌入到 3D 模製表面,從而簡化製造流程並降低組裝成本。這不僅提高了產品的性能,而且由於無需外部組件而改善了外觀。

IME 的優點如下:

  • 設計彈性:IME 可以實現傳統電子整合方法無法實現的複雜幾何形狀和設計。
  • 耐用性:電子產品受到模製塑膠的保護,使其能夠抵抗磨損和環境因素的影響。
  • 成本效益:透過將多種功能整合到一個元件中,IME 能夠降低組裝成本並提高製造效率。

IME 技術通常涉及三個步驟:

  • 印刷電子電路:在此步驟中,使用導電墨水來形成必要的電子電路。
  • 成型:此步驟非常重要,可確保電子電路無縫地融入最終產品中。
  • 成型:最後,將成型電路封裝到成型部件中,以創建耐用、功能齊全的組件,用於各種應用,包括汽車內飾、消費電子產品和醫療設備。它是一種電子元件。

IME 產品在汽車、消費性電子產品和醫療設備等節省空間和重量至關重要的行業尤其有益。除了改進產品設計之外,該技術還消除了組裝單獨電子元件的需要,從而提高了耐用性和性能,在單個模製部件中實現了用戶友好界面和複雜電子系統。 IME 產品旨在滿足對智慧連網設備日益增長的需求,使製造商能夠在競爭激烈的市場中創新和差異化其產品。

本報告對快速成長的全球模內電子 (IME) 市場進行了深入分析,提供了 2025-2035 年的主要趨勢、技術、材料、應用和市場預測。

目錄

第 1 章執行摘要

  • 表面設計限制
  • 用途
  • IME 製造
  • 投資
  • 永續性
  • 市場展望
  • 市場預測

第 2 章簡介

第 3 章 IME 製造

  • IME 元件
  • 輸入法製作
  • 實施方法
  • 其他生產方法
  • 功能性薄膜附著力
  • 金屬化技術
  • MID 技術
  • 多功能複合材料 增材製造

第 4 章 整合 IME 元件

  • 電容式感應技術
  • 照明
  • 觸覺
  • 3D顯示
  • 天線

第 5 章 IME 材料

  • 概述
  • 導電墨水
  • 介電墨水
  • 導電膠
  • 透明導電材料
  • 基材,熱塑性材料

第6章 輸入法市場

  • 汽車
    • 概述
    • 商業用途
    • 全球市場預測
  • 白色家電
    • 概述
    • 用途
    • 全球市場預測
  • 醫療設備
    • 概述
    • 用途
    • 全球市場預測
  • 行業
    • 概述
    • 用途
  • 穿戴式電子產品
    • 概述
    • 用途
  • 其他市場與應用

第7章 公司簡介

第 8 章參考資料

In-mold electronics (IME), also sometimes known as plastronics, is an innovative technology that combines traditional injection molding with printed electronics. This process allows for the embedding of functional electronic elements, such as touch sensors, displays, and lighting, directly into plastic components during the molding process. This process allows for the creation of smart surfaces and complex electronic functionalities within a single manufacturing step. IME technology enables the embedding of touch sensors, lighting, and other electronic functionalities into 3D molded surfaces, resulting in streamlined manufacturing processes and reduced assembly costs. This not only enhances product performance but also improves aesthetics by removing the need for external components.

The advantages of IME include:

  • Design Flexibility: IME enables the creation of complex shapes and designs that are not possible with traditional electronics integration methods.
  • Durability: The electronic components are protected within the molded plastic, making them more resistant to wear and environmental factors.
  • Cost Efficiency: By integrating multiple functions into a single part, IME can reduce assembly costs and improve manufacturing efficiency.

IME technology typically involves a three-step process:

  • Printing of Electronic Circuits: This step includes the application of conductive inks to create the necessary electronic pathways.
  • Forming: The printed circuits are then formed into the desired shape, which is crucial for ensuring that the electronics fit seamlessly into the final product.
  • Molding: Finally, the formed circuits are encapsulated within a molded part, creating a durable and functional electronic component that can be used in various applications, such as automotive interiors, consumer electronics, and medical devices.

IME products are particularly beneficial in industries such as automotive, consumer electronics, and medical devices, where space and weight savings are critical. The technology not only enhances product design but also improves durability and performance by eliminating the need for separate electronic assemblies, enabling the creation of user-friendly interfaces and complex electronic systems within a single molded part. IME products are designed to meet the growing demand for smart, connected devices, enabling manufacturers to innovate and differentiate their offerings in competitive markets.

"The Global Market for In-Mold Electronics (IME) 2025-2035" provides an in-depth analysis of the rapidly growing global in-mold electronics (IME) market, examining key trends, technologies, materials, applications, and market forecasts from 2025 to 2035. The study offers detailed insights into this transformative technology that integrates electronic functionality directly into molded plastic components, revolutionizing manufacturing across multiple industries. The report provides extensive coverage of IME manufacturing processes, including detailed analysis of production methods, component integration, and material requirements. Key focus areas include surface functionalization technologies, conductive inks, transparent conductors, and substrate materials essential for successful IME implementation.

Market analysis covers major application sectors including:

  • Automotive human-machine interfaces
  • White goods and appliances
  • Medical devices
  • Industrial controls
  • Wearable electronics

The study examines critical aspects of IME technology including:

  • Manufacturing processes and requirements
  • Component integration strategies
  • Materials development and selection
  • Quality control and testing
  • Regulatory considerations
  • Sustainability aspects

Technical coverage includes detailed analysis of:

  • Conductive ink formulations
  • Transparent conductive materials
  • Substrate and thermoplastic selection
  • Integration of electronic components
  • Surface treatment technologies
  • Testing and validation methods

The report features comprehensive market data including:

  • Market size and growth projections (2025-2035)
  • Revenue forecasts by application sector
  • Regional market analysis
  • Technology adoption trends
  • Competitive landscape assessment. The report profiles leading companies across the IME value chain, including Canatu, CHASM Technologies, Covestro, Dupont, E2IP Technologies, Elantas, Embega, FORVIA Faurecia, Genes'Ink, Henkel, Kimoto, Nissha, TactoTek Oy, and more. These companies represent various segments of the IME industry including material suppliers, equipment manufacturers, technology developers, and end-product manufacturers.

Special focus is placed on emerging technologies and innovations:

  • Advanced material developments
  • Novel manufacturing processes
  • Integration strategies
  • Future technology roadmaps
  • Market opportunities and challenges

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Design limitations on surfaces
  • 1.2. Applications
  • 1.3. IME manufacturing
  • 1.4. Investments
  • 1.5. Sustainability
  • 1.6. Market outlook
  • 1.7. Market forecasts

2. INTRODUCTION

  • 2.1. Functionality Integration
  • 2.2. 3D Electronics
  • 2.3. IME Value Chain

3. IME MANUFACTURING

  • 3.1. IME components
  • 3.2. IME production
  • 3.3. Implementation approaches
    • 3.3.1. Hybrid
    • 3.3.2. One-film vs two-film
    • 3.3.3. Implementation of multilayer circuits
    • 3.3.4. Integration of integrated circuits in IME
    • 3.3.5. Print-then-plate
    • 3.3.6. Automation
    • 3.3.7. Transfer printing technology
    • 3.3.8. Evaporated line technology
    • 3.3.9. Capacitive touch functionality
  • 3.4. Other manufacturing methods
  • 3.5. Functional film bonding
  • 3.6. Metallization Methods
  • 3.7. MID technology
    • 3.7.1. Aerosol deposition
    • 3.7.2. Laser Direct Structuring (LDS)
    • 3.7.3. Two shot molding
    • 3.7.4. 3D surfaces
    • 3.7.5. Impulse printing technology
    • 3.7.6. Pad printing
    • 3.7.7. Spray metallization
  • 3.8. Multifunctional composites
  • 3.9. Additive manufacturing

4. IME COMPONENTS INTEGRATION

  • 4.1. Capacitive sensing technology
    • 4.1.1. Overview
    • 4.1.2. Operation
  • 4.2. Lighting
  • 4.3. Haptics
  • 4.4. 3D Displays
  • 4.5. Antenna

5. MATERIALS FOR IME

  • 5.1. Overview
  • 5.2. Conductive inks
    • 5.2.1. Materials
    • 5.2.2. Stretchable inks
    • 5.2.3. Inks for IME
  • 5.3. Dielectric inks
  • 5.4. Electrically conductive adhesives
  • 5.5. Transparent conductive materials
    • 5.5.1. Overview
    • 5.5.2. Types
    • 5.5.3. Carbon nanotube (CNT) films
    • 5.5.4. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)
    • 5.5.5. Carbon nanobuds
    • 5.5.6. Metal mesh
  • 5.6. Substrate and thermoplastic materials

6. MARKETS FOR IME

  • 6.1. Automotive
    • 6.1.1. Overview
    • 6.1.2. Commercial applications
      • 6.1.2.1. Sensing
      • 6.1.2.2. Headlamp covers
      • 6.1.2.3. Steering Wheel
    • 6.1.3. Global market forecast
  • 6.2. White Goods
    • 6.2.1. Overview
    • 6.2.2. Applications
    • 6.2.3. Global market forecast
  • 6.3. Medical Devices
    • 6.3.1. Overview
    • 6.3.2. Applications
    • 6.3.3. Global market forecast
  • 6.4. Industrial
    • 6.4.1. Overview
    • 6.4.2. Applications
  • 6.5. Wearable Electronics
    • 6.5.1. Overview
    • 6.5.2. Applications
  • 6.6. Other Markets and Applications

7. COMPANY PROFILES

8. REFERENCES

List of Tables

  • Table 1. Surface Functionalization Technologies Comparison
  • Table 2. In-Mold Electronics Applications
  • Table 3. IME Manufacturing Requirements
  • Table 4. Competing Manufacturing Methods
  • Table 5. Smart Surface Manufacturing Methods
  • Table 6. Investment in In-Mold Electronics
  • Table 7. IME Applications and Stage of Development
  • Table 8. IME Benefits and Challenges
  • Table 9. Global Market Forecast for IME Component Area by Application, 2025-2035(m2)
  • Table 10. Global Market Forecast for IME Revenue by Application, 2025-2035 (US$ Millions)
  • Table 11. In-mold Electronics Applications and Markets
  • Table 12. Approaches to 3D Printed Electronics
  • Table 13. Manufacturing of IME Components
  • Table 14. Manufacturing Methods Comparison
  • Table 15. IME Production Equipment
  • Table 16. IC Package Requirements for IME
  • Table 17. Process Comparison
  • Table 18. Comparison of Metallization Methods
  • Table 19. MID Manufacturing Methods Comparison
  • Table 20. Applications of LDS
  • Table 21. Applications for Printing Wiring onto 3D Surfaces
  • Table 22. Processes for 3D Electronics
  • Table 23. Printed Capacitive Sensor Technologies
  • Table 24. Conventional Backlighting vs Integrated Lighting with IME
  • Table 25. Materials for IME
  • Table 26. Material Composition comparison of IME vs Conventional HMI
  • Table 27. IME Materials companies
  • Table 28. Conductive Ink Materials
  • Table 29. In-mold Conductive Inks
  • Table 30. Conductive Ink Requirements for IME
  • Table 31. Properties of Stretchable/Thermoformable Conductive Inks
  • Table 32. Types of Conductive Adhesives
  • Table 33. Transparent Conductive Materials for IME
  • Table 34. Carbon Nanotube In-mold Films
  • Table 35. PEDOT:PSS Films
  • Table 36. Substrates and Thermoplastics for IME
  • Table 37.IME in Automotive HMI
  • Table 38. Commercial Automotive In-mold Decoration
  • Table 39. Global market forecast for IME in the Automotive Market 2025-2035 (USD Millions)
  • Table 40. Applications of IME in White Goods
  • Table 41. Example IME for White Goods products
  • Table 42. Global market forecast for IME in White Goods Market 2025-2035 (USD Millions)
  • Table 43. Medical Device Applications
  • Table 44. Global market forecast for IME in Medical Devices Market 2025-2035 (USD Millions)
  • Table 45. Industrial IME Applications
  • Table 46. Wearable IME Applications
  • Table 47. Other markets and applications for IME

List of Figures

  • Figure 1. IME device
  • Figure 2. IME manufacturing process flow
  • Figure 3. Global Market Forecast for IME Component Area by Application, 2025-2035 (m2)
  • Figure 4. Global Market Forecast for IME Revenue by Application, 2025-2035 (US$ Millions)
  • Figure 5. IME Value Chain
  • Figure 6. Global market forecast for IME in the Automotive Market 2025-2035 (USD Millions)
  • Figure 7. Top panel of the remote control, made with in-mold decoration (IMD)
  • Figure 8. Global market forecast for IME in White Goods Market 2025-2035 (USD Millions)
  • Figure 9. Global market forecast for IME in Medical Devices Market 2025-2035 (USD Millions)
  • Figure 10. Origo Steering Wheel