直接提鋰(DLE)的全球市場(2025年~2035年)
市場調查報告書
商品編碼
1595743

直接提鋰(DLE)的全球市場(2025年~2035年)

The Global Direct Lithium Extraction (DLE) Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 160 Pages, 87 Tables, 20 Figures | 訂單完成後即時交付

價格

在可持續鋰生產以支持不斷增長的電動汽車行業的迫切需求的推動下,全球直接鋰提取 (DLE) 市場正在迅速擴張。 DLE 技術將生產時間從18-24 個月大幅縮短至1-2 天,回收率提高70-90%,用水量減少90%,土地佔用量減少80%,這與傳統方法相比具有顯著優勢,包括減少對環境的影響。預計到2030年,電動車市場規模將超過2.5億輛,每年將需要3至400萬噸碳酸鋰。

全球大規模商業開發正在加速,DLE計畫在主要地區落地。該領域的資本投資預計到2023年將達到25億美元,到2030年將超過150億美元。該技術具有有吸引力的經濟效益,生​​產成本比傳統方法低20-30%,投資回收期短,為3-5 年,但技術規模擴大、初始資本要求高、課題仍然存在,例如需要針對特定地點進行最佳化。儘管有這些課題,DLE 仍代表鋰生產轉型的機遇,將技術創新與環境永續性和經濟效益結合。

本報告研究和分析了全球直接鋰提取 (DLE) 市場,並提供了有關市場動態、創新和成長機會的詳細見解。

目錄

第1章 摘要整理

  • 市場概要
    • 鋰的生產和需求
    • 傳統的開採方法的問題點
    • 直接提鋰市場
    • 直接提鋰市場成長軌道
    • 主要的市場區隔
  • 市場預測
    • 短期預測(2024年~2026年)
    • 中期預測(2026年~2030年)
    • 長期預測(2030年~2035年)
  • 推動市場要素
    • 電動車的成長
    • 能源儲存需求
    • 政府的政策
    • 技術的進步
    • 永續性的目標
    • 供給的安全性
  • 市場課題
    • 技術障礙
    • 經濟可行性
    • 擴大規模問題
    • 資源可用性
    • 監理障礙
    • 衝突
  • 商業活動
    • 市場地圖
    • 全球鋰開採計劃
    • DLE計劃
    • 經營模式
    • 投資

第2章 簡介

  • 鋰的用途
  • 鋰鹵水礦床
  • 定義及工作原理
    • 基本概念與機制
    • 製程化學
    • 科技的演變
  • DLE技術類型
    • 鹹水資源
    • 硬岩資源
    • 沉積物中所含的礦床
    • 離子交換
    • 吸附
    • 膜分離
    • 溶劑萃取
    • 電化學萃取
    • 化學沉澱
    • 新的混合方法
  • 相對於傳統萃取方法的優勢
    • 回收率
    • 環境影響
    • 處理時間
    • 產品純度
  • DLE 技術比較
  • 價格
  • 環境影響與永續性
  • 能源需求
  • 用水
  • 回收率
    • 依技術型
    • 依資源類型
    • 可優化性
  • 可擴充性
  • 資源分析
    • 鹹水資源
    • 黏土礦床
    • 地熱水
    • 資源品質評估
    • 可萃取性

第3章 全球市場的分析

  • 市場規模與成長
  • 市場佔有率:各地區
    • 北美
    • 南美
    • 亞太地區
    • 歐洲
  • 成本分析
    • CAPEX的比較
    • OPEX的明細
    • 每1噸的成本的分析
  • 供需的動態
    • 目前供給
    • 需求的預測
  • 規則
  • 競爭情形

第4章 企業簡介(64公司的企業簡介)

第5章 附錄

第6章 參考文獻

The global Direct Lithium Extraction (DLE) market is undergoing rapid expansion, driven by the pressing demand for sustainable lithium production to support the growing electric vehicle industry. DLE technologies offer significant advantages over traditional methods, including dramatic reduction in production time from 18-24 months to 1-2 days, increased recovery rates of 70-90%, and substantially reduced environmental impact through 90% lower water consumption and 80% smaller land footprint. The EV market's projection of 250+ million vehicles by 2030 necessitates 3-4 million tons of lithium carbonate equivalent annually, creating a substantial supply gap that DLE is positioned to address.

Major commercial developments are accelerating globally, with companies implementing DLE projects across key regions. Capital investment in the sector reached $2.5 billion in 2023 and is expected to exceed $15 billion by 2030, focusing on advanced sorbent materials, process automation, and renewable energy integration. While the technology offers compelling economics with 20-30% lower production costs than traditional methods and shorter payback periods of 3-5 years, challenges remain in technology scale-up, high initial capital requirements, and site-specific optimization needs. Despite these challenges, DLE represents a transformative opportunity in lithium production, combining technological innovation with environmental sustainability and economic viability.

"The Global Direct Lithium Extraction (DLE) Market 2025-2035" analyzes the sector, providing detailed insights into market dynamics, technological innovations, and growth opportunities. The report combines extensive primary research with detailed secondary analysis of market trends, competitive landscapes, and technological developments. The study examines key DLE technologies including ion exchange, adsorption, membrane separation, solvent extraction, and electrochemical methods, providing comparative analysis of their performance metrics, cost structures, and commercial viability. It evaluates various extraction processes against traditional methods, analyzing recovery rates, environmental impact, processing times, and product purity.

Key market segments covered include technology types, resource types (brines, clays, geothermal waters), and geographical regions. The report provides detailed market size projections, with breakdowns by technology and region, supported by comprehensive data on market drivers including EV growth, energy storage demand, and government policies.

Report contents include:

  • Detailed market size and growth projections through 2035
  • Technology comparison and performance analysis
  • Cost analysis including CAPEX and OPEX breakdowns
  • Environmental impact and sustainability assessments
  • Competitive landscape analysis featuring 64 companies. Companies profiled include Adionics, Aepnus Technology, American Battery Materials, Anson Resources, Arcadium Lithium, Albemarle Corporation, alkaLi, Arizona Lithium, BioMettallum, Century Lithium, CleanTech Lithium, Conductive Energy, Controlled Thermal Resources, Cornish Lithium, E3 Lithium, Ekosolve, ElectraLith, Ellexco, EnergyX, Energy Sourcer Minerals, Eon Minerals, Eramet, Evove, ExSorbiton, Geo40, Geolith, Go2Lithium, International Battery Metals, Jintai Lithium, Koch Technology Solutions, KMX Technologies, Lake Resources, Lanke Lithium, Lihytech, Lilac Solutions, LithiumBank, Lithios, Mangrove Lithium, MVP Lithium, Novalith, Olukun Minerals, PureLi, Posco, Precision Periodic, Qinghai Chaidamu Xinghua Lithium Salt Co., Saltworks Technologies, SLB, Solvay, SpecifX and more.....These companies span the DLE value chain from technology developers to project operators, with solutions ranging from ion exchange and membrane technologies to electrochemical extraction methods. The profiles analyze each company's technological approach, commercial development stage, strategic partnerships, and market positioning within the rapidly evolving DLE landscape.
  • Regional market analysis covering North America, South America, Asia Pacific, and Europe
  • Resource analysis including brine chemistry and extraction potential
  • Commercial project analysis and investment trends

The analysis covers critical market drivers including electric vehicle adoption, energy storage demand, government policies, and technological advancements. It addresses key challenges such as technical barriers, economic viability, scale-up issues, and regulatory hurdles.

Special focus areas include:

  • Comparative analysis of DLE technologies and their commercial readiness
  • Environmental and sustainability implications
  • Resource quality assessment and extraction potential
  • Economic analysis including capital costs and operating expenses
  • Regulatory framework and policy impacts
  • Supply-demand dynamics and price trends

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. Lithium production and demand
      • 1.1.1.1. DLE Projects
      • 1.1.1.2. Global Lithium Production and Demand 2020-2024 (ktpa LCE)
      • 1.1.1.3. Lithium Production Forecast 2025-2035
    • 1.1.2. Issues with traditional extraction methods
    • 1.1.3. The Direct Lithium Extraction market
    • 1.1.4. Growth trajectory for The Direct Lithium Extraction market
    • 1.1.5. Key market segments
  • 1.2. Market forecasts
    • 1.2.1. Short-term outlook (2024-2026)
    • 1.2.2. Medium-term forecasts (2026-2030)
    • 1.2.3. Long-term predictions (2030-2035)
  • 1.3. Market Drivers
    • 1.3.1. Electric Vehicle Growth
    • 1.3.2. Energy Storage Demand
    • 1.3.3. Government Policies
    • 1.3.4. Technological Advancements
      • 1.3.4.1. Process improvements
      • 1.3.4.2. Efficiency gains
      • 1.3.4.3. Cost reduction
    • 1.3.5. Sustainability Goals
    • 1.3.6. Supply Security
  • 1.4. Market Challenges
    • 1.4.1. Technical Barriers
    • 1.4.2. Economic Viability
    • 1.4.3. Scale-up Issues
    • 1.4.4. Resource Availability
    • 1.4.5. Regulatory Hurdles
    • 1.4.6. Competition
      • 1.4.6.1. Traditional methods
      • 1.4.6.2. Alternative technologies
  • 1.5. Commercial activity
    • 1.5.1. Market map
    • 1.5.2. Global lithium extraction projects
    • 1.5.3. DLE Projects
    • 1.5.4. Business models
    • 1.5.5. Investments

2. INTRODUCTION

  • 2.1. Applications of lithium
  • 2.2. Lithium brine deposits
  • 2.3. Definition and Working Principles
    • 2.3.1. Basic concepts and mechanisms
    • 2.3.2. Process chemistry
    • 2.3.3. Technology evolution
  • 2.4. Types of DLE Technologies
    • 2.4.1. Brine Resources
    • 2.4.2. Hard Rock Resources
    • 2.4.3. Sediment-hosted deposits
    • 2.4.4. Ion Exchange
      • 2.4.4.1. Resin-based systems
      • 2.4.4.2. Inorganic ion exchangers
      • 2.4.4.3. Hybrid systems
      • 2.4.4.4. Companies
      • 2.4.4.5. SWOT analysis
    • 2.4.5. Adsorption
      • 2.4.5.1. Adsorption vs ion exchange
      • 2.4.5.2. Physical adsorption
      • 2.4.5.3. Chemical adsorption
      • 2.4.5.4. Selective materials
        • 2.4.5.4.1. Ion sieves
        • 2.4.5.4.2. Sorbent Composites
      • 2.4.5.5. Companies
      • 2.4.5.6. SWOT analysis
    • 2.4.6. Membrane Separation
      • 2.4.6.1. Pressure-assisted
        • 2.4.6.1.1. Reverse osmosis (RO)
        • 2.4.6.1.2. Membrane fouling
        • 2.4.6.1.3. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF)
      • 2.4.6.2. Potential-assisted
        • 2.4.6.2.1. Electrodialysis
        • 2.4.6.2.2. Bipolar
        • 2.4.6.2.3. Capacitive deionization (CDI)
        • 2.4.6.2.4. Membrane distillation (MD)
      • 2.4.6.3. Companies
      • 2.4.6.4. SWOT analysis
    • 2.4.7. Solvent Extraction
      • 2.4.7.1. Overview
        • 2.4.7.1.1. CO2-based extraction systems
      • 2.4.7.2. Companies
      • 2.4.7.3. SWOT analysis
    • 2.4.8. Electrochemical extraction
      • 2.4.8.1. Overview
      • 2.4.8.2. Battery-based
      • 2.4.8.3. Intercalation Cells
      • 2.4.8.4. Hybrid Capacitive
      • 2.4.8.5. Modified Electrodes
      • 2.4.8.6. Flow-through Systems
      • 2.4.8.7. Companies
      • 2.4.8.8. SWOT analysis
    • 2.4.9. Chemical precipitation
      • 2.4.9.1. Overview
      • 2.4.9.2. SWOT analysis
    • 2.4.10. Novel hybrid approaches
  • 2.5. Advantages Over Traditional Extraction
    • 2.5.1. Recovery rates
    • 2.5.2. Environmental impact
    • 2.5.3. Processing time
    • 2.5.4. Product purity
  • 2.6. Comparison of DLE Technologies
  • 2.7. Prices
  • 2.8. Environmental Impact and Sustainability
  • 2.9. Energy Requirements
  • 2.10. Water Usage
  • 2.11. Recovery Rates
    • 2.11.1. By technology type
    • 2.11.2. By resource type
    • 2.11.3. Optimization potential
  • 2.12. Scalability
  • 2.13. Resource Analysis
    • 2.13.1. Brine Resources
    • 2.13.2. Clay Deposits
    • 2.13.3. Geothermal Waters
    • 2.13.4. Resource Quality Assessment
    • 2.13.5. Extraction Potential

3. GLOBAL MARKET ANALYSIS

  • 3.1. Market Size and Growth
  • 3.2. Regional Market Share
    • 3.2.1. North America
    • 3.2.2. South America
    • 3.2.3. Asia Pacific
    • 3.2.4. Europe
  • 3.3. Cost Analysis
    • 3.3.1. CAPEX comparison
    • 3.3.2. OPEX breakdown
    • 3.3.3. Cost Per Ton Analysis
  • 3.4. Supply-Demand Dynamics
    • 3.4.1. Current supply
    • 3.4.2. Demand projections
  • 3.5. Regulations
  • 3.6. Competitive Landscape

4. COMPANY PROFILES (64 company profiles)

5. APPENDICES

  • 5.1. Glossary of Terms
  • 5.2. List of Abbreviations
  • 5.3. Research Methodology

6. REFERENCES

List of Tables

  • Table 1. Lithium sources and extraction methods
  • Table 2. Global Lithium Production 2023, by country
  • Table 3. Factors Affecting Lithium Production Outlook
  • Table 4. Worldwide Distribution of DLE Projects - Comprehensive Table
  • Table 5. Announced vs Assumed DLE Outlook
  • Table 6. Global Lithium Production and Demand 2020-2024 (ktpa LCE)
  • Table 7. Lithium Production Forecast 2025-2035
  • Table 8. Li Production Contribution by Resource Type (%)
  • Table 9. Li Production Contribution from Brine Extraction (ktpa LCE)
  • Table 10. Lithium Supply vs Demand Outlook 2023-2035 (ktpa LCE)
  • Table 11. Comparison of lithium extraction methods
  • Table 12. Key Characteristics by DLE Method
  • Table 13. Global DLE Market Size 2020-2024
  • Table 14. DLE Market Growth Projections 2024-2035
  • Table 15. DLE Production Forecast by Country (ktpa LCE)
  • Table 16. DLE forecast by extraction technology
  • Table 17. DLE forecast segmented by brine type
  • Table 18. Direct Lithium Extraction Key Market Segments
  • Table 19. Market Drivers for DLE
  • Table 20. Market Challenges in Direct Lithium Extraction
  • Table 21. Alternative Technologies Comparison
  • Table 22. Global lithium extraction projects
  • Table 23. Current and Planned DLE Projects
  • Table 24. Traditional Brine Operations
  • Table 25. Hard Rock Operations
  • Table 26. Conversion Plants
  • Table 27. Business Models by DLE Player Activity
  • Table 28. Business Models by Li Recovery Process
  • Table 29. DLE Investments
  • Table 30. Lithium applications
  • Table 31. Types of lithium brine deposits
  • Table 32. Existing and emerging methods for lithium mining & extraction
  • Table 33. Technology Evolution Timeline and Characteristics
  • Table 34. Types of DLE Technologies
  • Table 35. Brine Evaporation vs Brine DLE Comparison
  • Table 36. Commercial Hard Rock (Spodumene) Projects
  • Table 37. Companies in Sedimentary Lithium Processing
  • Table 38. Ion exchange processes for lithium extraction
  • Table 39. Ion Exchange DLE Projects and Companies
  • Table 40. Companies in ion exchange DLE
  • Table 41. Adsorption vs Absorption
  • Table 42. Adsorption Processes for Lithium Extraction
  • Table 43. Adsorption vs ion exchange
  • Table 44. Types of Sorbent Materials
  • Table 45. Commercial brine evaporation projects
  • Table 46. Comparison of Al/Mn/Ti-based Sorbents
  • Table 47. Adsorption DLE Projects
  • Table 48. Companies in adsorption DLE
  • Table 49. Membrane processes for lithium recovery
  • Table 50. Membrane Materials
  • Table 51. Membrane Filtration Comparison
  • Table 52. Potential-assisted Membrane Technologies
  • Table 53. Companies in membrane technologies for DLE
  • Table 54. Membrane technology developers by Li recovery process
  • Table 55. Solvent extraction processes for lithium extraction
  • Table 56. Companies in solvent extraction DLE
  • Table 57. Electrochemical technologies for lithium recovery
  • Table 58. Companies in electrochemical extraction DLE
  • Table 59. Chemical Precipitation Agents
  • Table 60. Novel Hybrid DLE Approaches
  • Table 61. Cost Comparison: DLE vs Traditional Methods
  • Table 62. Recovery Rate Comparison
  • Table 63. Environmental Impact Comparison
  • Table 64. Processing Time Comparison
  • Table 65. Product Purity Comparison
  • Table 66. Comparison of DLE Technologies
  • Table 67. Lithium Prices 2019-2024 (Battery Grade Li2CO3)
  • Table 68. Energy Consumption Comparison
  • Table 69. Water Usage by Technology Type
  • Table 70. Recovery Rates Comparison
  • Table 71. Recovery Rates By Technology Type
  • Table 72. Recovery Rates By Resource Type
  • Table 73. Global Lithium Resource Distribution,
  • Table 74. Quality Parameters
  • Table 75. Brine Chemistry Comparison
  • Table 76. Resource Quality Matrix
  • Table 77. Extraction Potential by Resource Type
  • Table 78. Global DLE Market Size by Region
  • Table 79. CAPEX Breakdown by Technology
  • Table 80. Cost Comparisons Between Lithium Projects
  • Table 81. OPEX Breakdown Table (USD/tonne LCE)
  • Table 82. Production Cost Comparison (USD/tonne LCE)
  • Table 83. Sustainability Comparisons
  • Table 84. Regulations and incentives related to lithium extraction and mining
  • Table 85. DLE Patent Filing Trends 2015-2024
  • Table 86. Glossary of Terms
  • Table 87. List of Abbreviations

List of Figures

  • Figure 1. Schematic of a conventional lithium extraction process with evaporation ponds
  • Figure 2. Schematic for a direct lithium extraction (DLE) process.
  • Figure 3. Global DLE Market Size 2020-2024
  • Figure 4. DLE Market Growth Projections 2024-2035
  • Figure 5. Market map of DLE technology developers
  • Figure 6. Direct Lithium Extraction Process
  • Figure 7. Direct lithium extraction (DLE) technologies
  • Figure 8. Ion Exchange Process Flow Diagram
  • Figure 9. SWOT analysis for ion exchange technologies
  • Figure 10. SWOT analysis for adsorption DLE
  • Figure 11. Membrane Separation Schematic
  • Figure 12. SWOT analysis for membrane DLE
  • Figure 13. SWOT analysis for solvent extraction DLE
  • Figure 14. SWOT analysis for electrochemical extraction DLE
  • Figure 15. SWOT analysis for chemical precipitation
  • Figure 16. Conventional vs. DLE processes
  • Figure 17. Global DLE Market Size by Region
  • Figure 18. Competitive Position Matrix
  • Figure 19. Flionex-R process
  • Figure 20. Volt Lithium Process