氣凝膠的全球市場(2025年~2035年)
市場調查報告書
商品編碼
1661288

氣凝膠的全球市場(2025年~2035年)

The Global Aerogels Market 2025-2035

出版日期: | 出版商: Future Markets, Inc. | 英文 208 Pages, 56 Tables, 44 Figures | 訂單完成後即時交付

價格
簡介目錄

全球氣凝膠市場已大幅成長,從一種小眾特種材料轉變為重要的商業領域。這種增長是由氣凝膠的優異性能所推動的,例如超低熱導率(0.015 W/mK)、極輕重量(80-150 kg/m3)、高孔隙率和阻燃性。二氧化矽氣凝膠繼續佔據主導地位,主要用於石油和天然氣、建築隔熱和工業應用。然而,由於聚合物基氣凝膠的柔韌性和加工性得到改善,其成長速度正在加速,在運輸、服裝和航空應用領域越來越有吸引力。碳氣凝膠和生物基氣凝膠已成為在能源儲存、催化和永續材料領域具有專門應用的關鍵領域。

按地區劃分,北美目前佔據收入領先地位,但中國正在迅速擴大其製造能力。由於嚴格的建築隔熱法規和永續發展舉措,歐洲市場依然保持強勁。成長最快的應用是電動車電池的熱管理,隨著製造商採用氣凝膠解決方案來防止熱失控和火災,該應用的年增長率超過 40%。競爭格局正在發生重大變化,現有企業不斷擴大產能,而廣東艾利森和IBIH先進材料等中國製造商正迅速擴大生產規模。專注於小眾應用或先進製造方法的小型專業製造商也正在出現。

技術進步至關重要,與傳統的超臨界方法相比,常壓乾燥技術降低了生產成本。製造創新(包括連續卷對卷製程)提高了可擴展性,而新的混合方法和複合結構也擴展了其能力。儘管某些應用仍然存在高生產成本和加工課題,但隨著製造規模的擴大,這些障礙正在逐漸減少。全球能源效率法規、建築規範、電動車安全標準和工業脫碳措施等市場推動因素持續加強氣凝膠在各領域應用的價值主張。

展望未來,隨著生產成本持續下降和新應用的出現,尤其是在交通運輸、永續建築材料、能源儲存和高性能工業應用領域,氣凝膠市場預計將繼續保持強勁成長。整個產業對更輕、更高效材料的追求為氣凝膠不斷擴大的市場佔有率提供了堅實的基礎。

本報告提供全球氣凝膠市場相關調查,與市場促進因素趨勢,生產能力,技術課題,市場預測,專利,企業簡介等資訊。

目錄

第1章 摘要整理

  • 氣凝膠的特性
  • 氣凝膠的用途
  • 氣凝膠市場上競爭要素
  • 推動市場要素和趨勢
  • 氣凝膠的廠商和生產能力
  • 市場與技術的課題
  • 市場規模與預測(2021年~2035年)
    • 各氣凝膠類型
    • 各市場
    • 各地區

第2章 簡介

  • 氣凝膠
    • 氣凝膠的起源
    • 分類
    • 氣凝膠泡沫
    • 市售的氣凝膠
  • 二氧化矽氣凝膠
    • 特性
    • 產品
    • 成本
    • 主要參與企業
  • 氣凝膠類聚合物泡沫
    • 特性
    • 氣凝膠類聚合物泡沫的用途中包含以下。
  • 金屬氧化物氣凝膠
  • 有機氣凝膠
    • 聚合物為基礎的氣凝膠
    • 生物為基礎氣凝膠(生物氣凝膠)
    • 碳氣凝膠
  • 3D印刷氣凝膠
    • 氮化碳
  • 混合,複合氣凝膠
    • 混合氧化物氣凝膠
    • 金屬氧化物氣凝膠複合材料
    • 碳為基礎的氣凝膠複合材料

第3章 生產方式

  • 概要
  • 溶膠凝膠法
  • 氣凝膠的3D列印
  • 乾燥法
    • 乾燥法概要
    • 超臨界乾燥
    • 平常壓乾燥
    • 急速超臨界開採(RSCE)
    • 優點和缺點
  • 成本

第4章 氣凝膠的市場與用途

  • 競爭情形
  • 石油、天然氣
    • 概要
    • 用途
  • 建築·建設
    • 概要
    • 永續的隔熱材料的類型
    • 用途
  • 能源儲存
    • 概要
    • 用途
  • 生物醫學
    • 概要
    • 用途
  • 低溫運輸包裝
    • 概要
  • 電子,通訊
    • 概要
    • 用途
  • 過濾,分離,吸著
    • 概要
    • 用途
  • 紡織品
    • 概要
    • 用途
  • 食品
    • 概要
  • 催化劑
  • 油漆和塗料
  • 航太·防衛
    • 概要
    • 用途
  • 化妝品
    • 概要
  • 汽車
    • 概要
    • EV電池
  • 其他的市場與用途

第5章 氣凝膠的專利

  • 專利申請

第6章 氣凝膠企業簡介(50公司的企業簡介)

第7章 調查範圍和調查手法

第8章 參考文獻

簡介目錄

The global aerogel market has experienced remarkable growth, transforming from a niche specialty material into a significant commercial sector. This growth is fueled by aerogels' exceptional properties, including ultra-low thermal conductivity (as low as 0.015 W/m-K), extreme lightweight nature (80-150 kg/m3), high porosity, and fire resistance. Silica aerogels continue to dominate, primarily serving oil and gas, building insulation, and industrial applications. However, polymer-based aerogels are showing accelerated growth rates due to enhanced flexibility and processability, making them increasingly attractive for transportation, apparel, and aerospace applications. Carbon aerogels and bio-based variants are emerging as important segments for specialized applications in energy storage, catalysis, and sustainable materials.

Regionally, North America currently leads in revenue generation, though China is rapidly expanding manufacturing capacity. The European market remains strong, driven by stringent building insulation regulations and sustainability initiatives. The fastest-growing application sector is electric vehicle battery thermal management, expanding at over 40% annually as manufacturers adopt aerogel solutions for thermal runaway prevention and fire protection. The competitive landscape has evolved significantly, with established players expanding capacity while Chinese manufacturers such as Guangdong Alison and IBIH Advanced Materials rapidly scale up production. Smaller specialized producers have emerged focusing on niche applications and advanced formulations.

Technology advancements have been pivotal, with ambient pressure drying techniques reducing production costs compared to traditional supercritical methods. Manufacturing innovations including continuous roll-to-roll processes have improved scalability, while new hybrid formulations and composite structures have expanded performance capabilities. While high production costs and processing challenges persist for certain applications, these barriers are progressively diminishing as manufacturing scale increases. Market drivers including global energy efficiency regulations, building codes, EV safety standards, and industrial decarbonization initiatives continue to strengthen the value proposition for aerogel adoption across multiple sectors.

Looking forward, the aerogel market is positioned for continued strong growth as production costs decrease further and new applications emerge, particularly in transportation, sustainable building materials, energy storage, and high-performance industrial applications. The trend toward lightweight, high-efficiency materials across industries provides a strong foundation for aerogels' expanding market presence.

"The Global Aerogels Market 2025-2035" provides an in-depth analysis of the rapidly expanding global aerogels industry, with detailed segmentation by aerogel type, application sector, and geographic region. The executive summary covers aerogel properties, market position, drivers, production capacities, and technology challenges. The introduction section presents aerogel classification, commercially available types, and analysis of silica, polymer, metal oxide, organic, carbon, and hybrid aerogel variants. Production methodology content includes manufacturing processes from sol-gel synthesis through aging, surface modification, and drying techniques with cost assessments and manufacturing process evaluations.

Application sector analysis covers fifteen markets with drivers, aerogel types, performance advantages, technology readiness levels, and growth projections for building insulation, oil and gas, EV batteries, energy storage, biomedical applications, and textiles. Regional analysis examines China's expanding production capacity compared to North America and Europe's focus on high-value applications. The competitive landscape section contains profiles of 45 aerogel manufacturers.

The report features 40 tables and 45 figures showing market trends, material properties, manufacturing processes, and performance metrics, plus patent analysis tracking innovation activity. The forecasts through 2035 segment the market by aerogel type, application sectors, and geographical regions for precise market sizing and opportunity identification in this advanced materials sector.

Report Contents include:

  • Aerogel properties
  • Applications overview
  • Competitive landscape
  • Market drivers and trends
  • Production capacities
  • Technology challenges
  • Market forecasts 2021-2035
  • Types of Aerogels
    • Silica aerogels
    • Polymer-based aerogels
    • Metal oxide aerogels
    • Organic and biobased aerogels
    • Carbon aerogels
    • 3D printed aerogels
    • Hybrid and composite aerogels
  • Production Methods
  • Markets and Applications
    • Oil and gas
    • Building and construction
    • Energy storage
    • Biomedical
    • Cold-chain packaging
    • Electronics and telecommunications
    • Filtration and separation
    • Textiles
    • Food
    • Catalysts
    • Paint and coatings
    • Aerospace and defense
    • Cosmetics
    • Automotive and EV batteries
    • Other applications
  • Patent Analysis
    • Innovation trends
    • Key patent holders
  • Company Profiles (50 manufacturers)
    • Established market leaders
    • Emerging specialists
    • Regional manufacturers. Companies profiled include: ABIS Aerogel Co., Active Aerogels, Aerofybers Technologies SL, Aerogel Core Ltd, Aerogel Coating Technologies, aerogel-it GmbH, Aerogel Technologies LLC, AeroShield Materials, Armacell International S.A., Aspen Aerogels Inc., BASF SE, Blueshift Materials Inc., Cabot Corporation, Cellutech AB (Stora Enso), Dragonfly Insulation, Elisto GmbH, Enersens SAS, Fibenol, Fuji Silysia Chemical Ltd., Gelanggang Kencana Sdn. Bhd., Green Earth Aerogel Technologies, Guangdong Alison Hi-Tech Co. Ltd., Hebei Jinna Technology Co. Ltd., Hokuetsu Toyo Fibre Co. Ltd., IBIH Advanced Materials, Keey Aerogel and more
  • Market Forecasts 2021-2035
    • By aerogel type
    • By application market
    • By geographic region

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Aerogel properties
  • 1.2. Aerogel applications
  • 1.3. Competitive factors in the aerogels market
  • 1.4. Market drivers and trends
  • 1.5. Aerogel producers and capacities
  • 1.6. Market and technology challenges
  • 1.7. Market size and forecast 2021-2035
    • 1.7.1. By aerogel type
    • 1.7.2. By market
    • 1.7.3. By region

2. INTRODUCTION

  • 2.1. Aerogels
    • 2.1.1. Origin of Aerogels
    • 2.1.2. Classification
    • 2.1.3. Aerogel Forms
    • 2.1.4. Commercially available aerogels
  • 2.2. Silica aerogels
    • 2.2.1. Properties
      • 2.2.1.1. Thermal conductivity
      • 2.2.1.2. Mechanical
      • 2.2.1.3. Silica aerogel precursors
    • 2.2.2. Products
      • 2.2.2.1. Monoliths
      • 2.2.2.2. Powder
      • 2.2.2.3. Granules
      • 2.2.2.4. Blankets
      • 2.2.2.5. Aerogel boards
      • 2.2.2.6. Aerogel renders
      • 2.2.2.7. Silica aerogel from sustainable feedstocks
      • 2.2.2.8. Silica composite aerogels
        • 2.2.2.8.1. Organic crosslinkers
        • 2.2.2.8.2. Commercial activity
    • 2.2.3. Cost
    • 2.2.4. Main players
  • 2.3. Aerogel-like polymer foams
    • 2.3.1. Properties
    • 2.3.2. Applications for aerogel-like polymer foams include:
  • 2.4. Metal oxide aerogels
  • 2.5. Organic aerogels
    • 2.5.1. Polymer-based aerogels
    • 2.5.2. Biobased aerogels (bio-aerogels)
      • 2.5.2.1. Overview
      • 2.5.2.2. Sustainable Feedstocks
        • 2.5.2.2.1. Silica aerogels derived from waste sources
        • 2.5.2.2.2. Commercial development
        • 2.5.2.2.3. Textile waste into high-value aerogel materials
      • 2.5.2.3. Cellulose aerogels
        • 2.5.2.3.1. Cellulose nanofiber (CNF) aerogels
        • 2.5.2.3.2. Cellulose nanocrystal aerogels
        • 2.5.2.3.3. Bacterial nanocellulose aerogels
        • 2.5.2.3.4. Lignin aerogels
        • 2.5.2.3.5. Alginate aerogels
        • 2.5.2.3.6. Starch aerogels
        • 2.5.2.3.7. Chitosan aerogels
        • 2.5.2.3.8. Protein aerogels
          • 2.5.2.3.8.1. Albumin aerogels
          • 2.5.2.3.8.2. Casein aerogels
          • 2.5.2.3.8.3. Gelatin aerogels
        • 2.5.2.3.9. Silk fiber
    • 2.5.3. Carbon aerogels
      • 2.5.3.1. Carbon nanotube aerogels
      • 2.5.3.2. Graphene and graphite aerogels
  • 2.6. 3D printed aerogels
    • 2.6.1. Carbon nitride
      • 2.6.1.1. Gold
      • 2.6.1.2. Cellulose
      • 2.6.1.3. Graphene oxide
  • 2.7. Hybrid and composite aerogels
    • 2.7.1. Mixed oxide aerogels
    • 2.7.2. Metal oxide aerogel composites
    • 2.7.3. Carbon-based aerogel composites

3. PRODUCTION METHODS

  • 3.1. Overview
  • 3.2. Sol-gel process
  • 3.3. 3D printing of aerogels
  • 3.4. Drying methods
    • 3.4.1. Overview of drying methods
    • 3.4.2. Supercritical Drying
      • 3.4.2.1. Closed loop
      • 3.4.2.2. Autoclave loading
    • 3.4.3. Ambient Pressure Drying
    • 3.4.4. Rapid Supercritical Extraction (RSCE)
    • 3.4.5. Advantages and disadvantages
  • 3.5. Costs

4. MARKETS AND APPLICATIONS FOR AEROGELS

  • 4.1. Competitive landscape
  • 4.2. Oil and Gas
    • 4.2.1. Overview
    • 4.2.2. Applications
      • 4.2.2.1. Refineries
      • 4.2.2.2. Pipelines
  • 4.3. Building and Construction
    • 4.3.1. Overview
    • 4.3.2. Types of sustainable insulation materials
    • 4.3.3. Applications
      • 4.3.3.1. Panels and blankets
      • 4.3.3.2. Plaster, concrete and bricks
      • 4.3.3.3. Coatings and paints
      • 4.3.3.4. Windows/Daylighting
      • 4.3.3.5. Industrial insulation
  • 4.4. Energy Storage
    • 4.4.1. Overview
    • 4.4.2. Applications
      • 4.4.2.1. Silicon anodes
      • 4.4.2.2. Li-S batteries
      • 4.4.2.3. Electrodes
      • 4.4.2.4. Thermal insulation
      • 4.4.2.5. Supercapacitors
  • 4.5. Biomedical
    • 4.5.1. Overview
    • 4.5.2. Applications
      • 4.5.2.1. Drug delivery
      • 4.5.2.2. Tissue engineering
      • 4.5.2.3. Medical implants
      • 4.5.2.4. Wound care
  • 4.6. Cold-Chain Packaging
    • 4.6.1. Overview
  • 4.7. Electronics and Telecommunications
    • 4.7.1. Overview
    • 4.7.2. Applications
      • 4.7.2.1. EMI Shielding
      • 4.7.2.2. Thermal insulation
      • 4.7.2.3. 5G
        • 4.7.2.3.1. Antenna modules
        • 4.7.2.3.2. High-performance antenna substrates
        • 4.7.2.3.3. Advanced low-loss materials
  • 4.8. Filtration, Separation, and Sorption
    • 4.8.1. Overview
    • 4.8.2. Applications
      • 4.8.2.1. Sorbents for liquids, hazardous ions (heavy metal ions) (e.g., water treatment)
      • 4.8.2.2. Sorbent for oil spills
      • 4.8.2.3. Sorbents for gases (CO2, hazardous gases, VOC)
  • 4.9. Textiles
    • 4.9.1. Overview
    • 4.9.2. Applications
      • 4.9.2.1. Winter sports apparel
      • 4.9.2.2. Consumer apparel
      • 4.9.2.3. Protective equipment
      • 4.9.2.4. Footwear applications
  • 4.10. Food
    • 4.10.1. Overview
  • 4.11. Catalysts
  • 4.12. Paint and Coatings
  • 4.13. Aerospace and Defence
    • 4.13.1. Overview
    • 4.13.2. Applications
  • 4.14. Cosmetics
    • 4.14.1. Overview
  • 4.15. Automotive
    • 4.15.1. Overview
    • 4.15.2. EV batteries
      • 4.15.2.1. Fire protection
      • 4.15.2.2. Thermal barriers
      • 4.15.2.3. Regulations
      • 4.15.2.4. Challenges
      • 4.15.2.5. Integration of aerogels with specialized foam materials
      • 4.15.2.6. Companies
  • 4.16. Other markets and applications

5. AEROGEL PATENTS

  • 5.1. Patent applications

6. AEROGEL COMPANY PROFILES (50 company profiles)

7. RESEARCH SCOPE AND METHODOLOGY

  • 7.1. Report scope
  • 7.2. Research methodology

8. REFERENCES

Tables

  • Table 1. General properties and value of aerogels
  • Table 2. Aerogel Thermal Conductivity and Density Benchmarking
  • Table 3. Market drivers for aerogels
  • Table 4. Aerogel Manufacturer Production Capacity and Manufacturing Processes
  • Table 5. Planned aerogel production expansions
  • Table 6. Market and technology challenges in aerogels
  • Table 7. Aerogel Forecast 2021-2035 (Million USD), by aerogel type
  • Table 8. Aerogel Forecast 2021-2035 by Markets (Million USD)
  • Table 9. Aerogel Manufacturers in China
  • Table 10. Aerogel Forecast 2021-2035 by Region (Million USD)
  • Table 11. Aerogel Form Factors
  • Table 12. Commercially Available Aerogel Products
  • Table 13. Silica aerogel properties
  • Table 14. Chemical precursors used to synthesize silica aerogels
  • Table 15. Commercially available aerogel-enhanced blankets
  • Table 16. Commercial Silica Composite Aerogels
  • Table 17. Main manufacturers of silica aerogels and product offerings
  • Table 18. Typical structural properties of metal oxide aerogels
  • Table 19. Polymer aerogels companies
  • Table 20. Types of biobased aerogels
  • Table 21. Carbon aerogel companies
  • Table 22. Synthesis methods-Aerogels synthesised, advantages and disadvantages
  • Table 23. Silica Aerogel Powder Manufacturing Processes Using Ambient Drying
  • Table 24. Drying methods for aerogel production
  • Table 25. Advantages and disadvantages of drying methods
  • Table 26. Silica Composite Aerogels - Cost Analysis
  • Table 27. Cost Analysis by Aerogel Type
  • Table 28. Market overview of aerogels in oil and gas-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 29. Aerogel Products for Cryogenic Insulation
  • Table 30. Market overview of aerogels in building and construction-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 31. Aerogel Materials for Building & Construction Applications
  • Table 32. Aerogel Products for Windows/Daylighting
  • Table 33. Market overview of aerogels in energy conversion and storage-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 34. Market overview of aerogels in drug delivery-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 35. Market overview of aerogels in tissue engineering-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 36. Market overview of aerogels in medical implants-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 37. Market overview of aerogels in wound care-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 38. Market overview of aerogels in cold-chain packaging-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 39. Market overview of aerogels in electronics and Telecommunications-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 40. Aerogel Products for Electronic Appliances
  • Table 41. Market overview of aerogels in filtration, separation, and sorption-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 42. Market overview of aerogels in textiles- market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 43. Market overview of aerogels in food- market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 44. Market overview of aerogels in catalysts-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 45. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 46. Market overview of aerogels in aerospace-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 47. Market overview of aerogels in cosmetics-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 48. Market overview of aerogels in automotive-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL
  • Table 49. Properties of Aerogels and Other Fire Protection Materials
  • Table 50. Types of Fire Protection Materials
  • Table 51. Thermally Insulating Fire Protection Products for EVs
  • Table 52. Comparison of Aerogels vs Other Fire Protection Materials
  • Table 53. Comparison of Aerogel Fire Protection Materials for EV Batteries
  • Table 54. Companies producing Aerogels for EV Batteries
  • Table 55. Other markets and applications for aerogels
  • Table 56. Aerogel patents 2010-2024

Figures

  • Figure 1. Classification of aerogels
  • Figure 2. SLENTEX-R thermal insulation
  • Figure 3. Aerogel Forecast 2021-2035 (Million USD), by aerogel type
  • Figure 4. Aerogel Forecast 2021-2035 by Markets (Million USD)
  • Figure 5. Aerogel Forecast 2021-2035 by Region (Million USD)
  • Figure 6. Main characteristics of aerogel type materials
  • Figure 7. Classification of aerogels
  • Figure 8. Canada Goose luxury footwear
  • Figure 9. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner
  • Figure 10. Monolithic aerogel
  • Figure 11. Aerogel granules
  • Figure 12. Internal aerogel granule applications
  • Figure 13. Slentite
  • Figure 14. Methods for producing bio-based aerogels
  • Figure 15. Types of cellulose aerogel
  • Figure 16. Lignin-based aerogels
  • Figure 17. Fabrication routes for starch-based aerogels
  • Figure 18. Schematic of silk fiber aerogel synthesis
  • Figure 19. Graphene aerogel
  • Figure 20. Commonly employed printing technologies for aerogels
  • Figure 21. Schematic for direct ink writing of silica aerogels
  • Figure 22. 3D printed aerogel
  • Figure 23. Schematic of silica aerogels synthesis
  • Figure 24. Formation of aerogels, cryogels and xerogels
  • Figure 25. Aerogel engineering strategies
  • Figure 26. 3D printed aerogels
  • Figure 27. SEM images of the microstructures of (a) alginate and (b) pectin aerogels obtained by supercritical drying, (c) cellulose aerogels by freeze-drying, and (d) silica-cellulose composite aerogels by ambient drying
  • Figure 28. Methods of gel drying
  • Figure 29. Pyrogel insulation on a heat-exchange vessel in a petrochemical plant
  • Figure 30. Aerogel construction applications
  • Figure 31. Incorporation of aerogels into textiles
  • Figure 32. Aerogel dust collector
  • Figure 33. Thermal Conductivity Performance of ArmaGel HT
  • Figure 34. A pencil resting on a PyroThin thermal barrier to show its comparative thickness
  • Figure 35. SLENTEX-R roll (piece)
  • Figure 36. CNF gel
  • Figure 37. Block nanocellulose material
  • Figure 38. Keey Aerogel
  • Figure 39. Fire-resistance in Keey Aerogel
  • Figure 40. Melodea CNC suspension
  • Figure 41. HIP AERO paint
  • Figure 42. Insulation of various aerogel fibres illustrated using the example of a cushion,
  • Figure 43. Sunthru Aerogel pane
  • Figure 44. Quartzene-R