封面
市場調查報告書
商品編碼
1535787

核子機器人市場 - 按類型(遠端機械手、履帶式機器人、無人機、水下機器人 (ROV)、人形機器人)、最終用途產業和預測,2024 - 2032 年

Nuclear Robots Market - By Type (Remote Manipulators, Crawlers, Aerial Drones, Underwater Robots (ROVs), Humanoid Robots), By End-use Industry & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

在研發重大進步的推動下,2024 年至 2032 年間,全球核子機器人市場的複合年成長率將超過 10%。隨著核電廠和設施越來越注重安全、效率和自動化,核子機器人正成為不可或缺的工具。這些機器人在高輻射環境中執行檢查、維護和退役等危險任務,最大限度地減少人類暴露在危險條件下的機會。例如,2024 年 3 月,美國能源部阿貢國家實驗室的研究人員展示了一種遠端操作的遠端機器人系統,旨在加強核設施危險廢物的清理。

最近的研發工作導致了更通用和更複雜的機器人的開發,能夠以更高的精度和可靠性處理複雜的任務。創新包括增強的移動性、改進的輻射屏蔽以及用於即時資料收集的先進感測器。隨著核能在全球能源結構中發揮至關重要的作用,並且隨著設施的老化,對能夠在充滿挑戰的環境中安全有效運作的機器人系統的需求不斷成長。因此,技術的不斷進步和對安全的關注正在推動核機器人市場的強勁成長。

整個核子機器人產業根據類型、最終用途和地區進行分類。

根據類型,履帶式核子機器人市場收入從2024 年到2032 年將實現令人稱讚的複合年成長率。清除碎片等任務。其堅固的設計使它們能夠在高輻射區域運行,同時最大限度地減少人類暴露在危險條件下的機會。最近的進步提高了它們的可操作性、耐用性和感測器功能,提高了它們在充滿挑戰的環境中的有效性。隨著對核子材料安全高效處理和現場維護的需求不斷成長,履帶式機器人變得越來越重要,推動了核子機器人市場的大幅成長。

就最終用途而言,從2024 年到2032 年,輻射清理領域將出現顯著成長。 。專為輻射清理而設計的先進機器人配備了專門的感測器和工具,可以安全地處理和清除放射性碎片、執行現場檢查並執行精確的淨化任務。隨著核設施的老化以及有效退役和廢棄物管理的需求不斷成長,輻射清理機器人的角色變得越來越重要。對處理放射性材料的安全性和效率的需求正在推動核子機器人市場的顯著成長。

2024年至2032年,歐洲核子機器人市場將呈現顯著的複合年成長率。這些機器人在執行危險任務、減少人類暴露於輻射和提高操作效率方面發揮關鍵作用。隨著歐洲致力於維持高安全標準和探索永續核子解決方案,對先進核機器人的需求不斷增加。這一趨勢得到了整個非洲大陸大量研發工作的支持,促進了市場擴張和技術創新。

目錄

第 1 章:方法與範圍

第 2 章:執行摘要

第 3 章:產業洞察

  • 產業生態系統分析
  • 供應商矩陣
  • 利潤率分析
  • 技術與創新格局
  • 專利分析
  • 重要新聞和舉措
  • 監管環境
  • 衝擊力
    • 成長動力
      • 核能的需求不斷增加
      • 人們對安全和安保的擔憂日益增加
      • 核退役需求不斷增加
      • 核能的全球擴張
      • 持續的技術進步
    • 產業陷阱與挑戰
      • 複雜性和整合性
      • 網路安全漏洞
  • 成長潛力分析
  • 波特的分析
  • PESTEL分析

第 4 章:競爭格局

  • 介紹
  • 公司市佔率分析
  • 競爭定位矩陣
  • 戰略展望矩陣

第 5 章:核子機器人市場估計與預測:按類型,2021-2032 年

  • 主要動向:依類型
  • 遠程機械手
  • 爬行者
  • 空中無人機
  • 水下機器人 (ROV)
  • 人形機器人

第 6 章:核子機器人市場估計與預測:依最終用途,2021-2032 年

  • 主要動向:依最終用途
  • 核廢料處理
  • 核退役
  • 輻射清理
  • 核電廠
  • 研究與探索
  • 其他

第 7 章:市場估計與預測:按地區分類,2021 - 2032 年

  • 主要趨勢
  • 北美洲
    • 美國
    • 加拿大
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 義大利
    • 西班牙
    • 歐洲其他地區
  • 亞太地區
    • 中國
    • 印度
    • 日本
    • 韓國
    • 亞太地區其他地區
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地區
  • MEA
    • 阿拉伯聯合大公國
    • 南非
    • 沙烏地阿拉伯
    • MEA 的其餘部分

第 8 章:公司簡介

  • AB Precision (Poole) Ltd
  • Areva
  • Boston Dynamics
  • Brokk Global
  • Clearpath Robotics
  • Diakont
  • Hitachi, Ltd.
  • James Fisher Technologies
  • KUKA AG
  • Mitsubishi Heavy Industries
  • QinetiQ
  • Reach robotics
  • Robotnik
  • SuperDroid Robots
  • Walischmiller Engineering GmbH
  • Westinghouse Electric Company
簡介目錄
Product Code: 6979

Global Nuclear Robots Market will witness over 10% CAGR between 2024 and 2032, driven by significant advancements in research and development. As nuclear power plants and facilities increasingly focus on safety, efficiency, and automation, nuclear robots are becoming essential tools. These robots perform hazardous tasks such as inspection, maintenance, and decommissioning in high-radiation environments, minimizing human exposure to dangerous conditions. For instance, in March 2024, researchers at the U.S. Department of Energy's Argonne National Laboratory showcased a remote-operated telerobotics system aimed at enhancing hazardous waste cleanup at nuclear sites.

Recent R&D efforts have led to the development of more versatile and sophisticated robots capable of handling complex tasks with greater precision and reliability. Innovations include enhanced mobility, improved radiation shielding, and advanced sensors for real-time data collection. As nuclear energy plays a crucial role in the global energy mix and as facilities age, the need for robotic systems that can operate safely and effectively in challenging environments grows. Consequently, ongoing advancements in technology and a focus on safety are driving robust growth in the nuclear robots market.

The overall Nuclear Robots Industry is classified based on the type, end-use, and region.

Based on type, the nuclear robots market revenue from the crawlers segment will register a commendable CAGR from 2024 to 2032. These crawler robots are engineered to navigate complex and hazardous terrains within nuclear facilities, performing tasks such as inspection, maintenance, and debris removal. Their robust design allows them to operate in high-radiation zones while minimizing human exposure to dangerous conditions. Recent advancements have improved their maneuverability, durability, and sensor capabilities, enhancing their effectiveness in challenging environments. As the need for safe and efficient handling of nuclear materials and site maintenance grows, crawler-type robots are becoming increasingly vital, driving substantial growth in the nuclear robots market.

In terms of end-use, the radiation cleanup segment will witness an appreciable growth from 2024 to 2032. These robots are crucial for managing and decontaminating environments affected by radioactive materials, significantly reducing human exposure to hazardous conditions. Advanced robots designed for radiation cleanup are equipped with specialized sensors and tools to safely handle and remove radioactive debris, perform site inspections, and conduct precise decontamination tasks. As nuclear facilities age and the need for effective decommissioning and waste management grows, the role of radiation cleanup robots becomes increasingly important. This need for safety and efficiency in handling radioactive materials is driving significant growth in the nuclear robots market.

Europe nuclear robots market will exhibit a notable CAGR from 2024 to 2032. European countries are investing in robotic technology to enhance the management of aging nuclear facilities, decommissioning processes, and radioactive waste handling. These robots play a critical role in performing hazardous tasks, reducing human exposure to radiation, and improving operational efficiency. With Europe's commitment to maintaining high safety standards and exploring sustainable nuclear solutions, the demand for advanced nuclear robots is increasing. This trend is supported by significant research and development efforts across the continent, fostering market expansion and technological innovation.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Nuclear robots industry 360° synopsis, 2021 - 2032
  • 2.2 Business trends
    • 2.2.1 Total addressable market (TAM), 2024-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing demand for nuclear energy
      • 3.8.1.2 Growing concerns about safety and security
      • 3.8.1.3 Rising demand for nuclear decommissioning
      • 3.8.1.4 Global expansion of nuclear energy
      • 3.8.1.5 Ongoing technological advancement
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Complexity and Integration
      • 3.8.2.2 Cybersecurity Vulnerabilities
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Nuclear Robots Market Estimates & Forecast, By Type, 2021-2032, (USD Million)

  • 5.1 Key trends, by type
  • 5.2 Remote manipulators
  • 5.3 Crawlers
  • 5.4 Aerial drones
  • 5.5 Underwater robots (ROVs)
  • 5.6 Humanoid robots

Chapter 6 Nuclear Robots Market Estimates & Forecast, By End-Use, 2021-2032, (USD Million)

  • 6.1 Key trends, By End-Use
  • 6.2 Nuclear waste handling
  • 6.3 Nuclear decommissioning
  • 6.4 Radiation cleanup
  • 6.5 Nuclear power plants
  • 6.6 Research and exploration
  • 6.7 Others

Chapter 7 Market Estimates & Forecast, By Region, 2021 - 2032 (USD Million)

  • 7.1 Key trends
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
  • 7.3 Europe
    • 7.3.1 UK
    • 7.3.2 Germany
    • 7.3.3 France
    • 7.3.4 Italy
    • 7.3.5 Spain
    • 7.3.6 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 India
    • 7.4.3 Japan
    • 7.4.4 South Korea
    • 7.4.5 Rest of Asia Pacific
  • 7.5 Latin America
    • 7.5.1 Brazil
    • 7.5.2 Mexico
    • 7.5.3 Rest of Latin America
  • 7.6 MEA
    • 7.6.1 UAE
    • 7.6.2 South Africa
    • 7.6.3 Saudi Arabia
    • 7.6.4 Rest of MEA

Chapter 8 Company Profiles

  • 8.1 AB Precision (Poole) Ltd
  • 8.2 Areva
  • 8.3 Boston Dynamics
  • 8.4 Brokk Global
  • 8.5 Clearpath Robotics
  • 8.6 Diakont
  • 8.7 Hitachi, Ltd.
  • 8.8 James Fisher Technologies
  • 8.9 KUKA AG
  • 8.10 Mitsubishi Heavy Industries
  • 8.11 QinetiQ
  • 8.12 Reach robotics
  • 8.13 Robotnik
  • 8.14 SuperDroid Robots
  • 8.15 Walischmiller Engineering GmbH
  • 8.16 Westinghouse Electric Company