單晶(單顆粒)正極技術趨勢及市場展望
市場調查報告書
商品編碼
1374456

單晶(單顆粒)正極技術趨勢及市場展望

<2023> Single Crystal (Single Particle) Cathode Technology Development Trend and Market Outlook

出版日期: | 出版商: SNE Research | 英文 338 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

單晶正極的量產迫在眉睫,這將顯著提高電動車電池的性能,中韓企業之間的競爭預計將加劇。

目前市售電動車電池中使用的正極材料具有由多種金屬化合物晶體組成的多晶結構。然而,在軋製過程中以及在充電和放電過程中,這些顆粒之間經常會出現裂縫以獲得均勻的厚度。這種裂縫的重複出現會導致材料劣化,增加電池內氣體的形成,並縮短充電/放電循環和電池壽命。

與多晶不同,單晶不會受到這個問題的影響,因為顆粒保持完整。此外,增加鎳含量以增加容量會降低結構穩定性並增加火災風險。因此,單晶陰極的發展應運而生,作為應對此一課題的解決方案。

單晶陰極透過消除殘留材料、降低缺陷機率並消除清潔步驟來降低成本並提高產量。這步驟對於陰極製造中去除雜質非常重要,但對於單晶技術來說並不是必需的。

單晶陰極的實際應用將擴大高鎳陰極的應用範圍。減少氣體產生可延長電池壽命,同時允許容納更多活性材料,從而提高能量密度。如果將這項技術引入電動車的電池組中,則可以用更少的電池數量一次充電行駛超過500公里,有望打造出可以行駛更遠距離的車型。這種改變遊戲規則的潛力有望同時降低成本並提高效能。

然而,單晶陰極也有缺點。與多晶材料不同,大型單晶材料具有較高的初始電阻,這使得施加所需電壓成為一個課題。結果,輸出仍然很低,從而阻礙了電池性能的提高。

然而,單晶陰極需要額外的步驟並在更高的電壓下工作,這會增加電池溫度。此外,單晶顆粒在壓延過程中容易受到損壞,而壓延是電極製造的重要組成部分。

因此,在大規模生產的早期階段,單晶很可能與多晶混合,而不是以純形式生產。

中國企業已經生產了NCM523、622的單晶陰極,LG Chem、Ecopro BEM、L&F、POSCO FutureM等國內企業也已完成開發並正在與客戶進行品質測試。目標是單晶 NCA 和 NCM,似乎已準備好進行大規模生產。

行業專家預測,單晶陰極的性能和品質取決於塗層技術和單晶製造工藝,以確保耐用性。基本上,重點是有效處理表面並同時增加顆粒尺寸。

目前,中國前五家企業佔了量產單晶陰極市場約75%的佔有率。

從韓國正極材料公司的公告來看,SNE Research預計將從今年(2023年)開始供應樣品,2025年產量將超過12萬噸。目前生產的三元單晶正極中,NCM523等5系單晶的比例最高,達60-70%。NCM622等6系單晶的比例為18-25%。對於Ni含量在80%以上的8系,生產比例從2021年開始將增加,目前約為15%。預計這一比例將持續上升。

據SNE Research稱,韓國沒有鎳含量的產量數據,因此目前很難預測市場。然而,就中國而言,預計到 2025 年 Hi-Ni 的銷售額將達到約 42 億美元,Mid-Ni 的銷售額將達到 92 億美元。到2030年,Hi-Ni市場預計將成長至約240億美元,Mid-Ni市場將成長至238億美元。

本報告對中國和韓國單晶(單顆粒)正極市場進行了調查分析,提供了研究趨勢、未來展望、主要合成方法比較、專利分析等。

通用單晶富鎳層狀正極材料的合成及附加改質製程示意圖


目錄

第一章正極材料概述

  • 正極材料發展史
  • 正極材料最新趨勢
  • 正極材料發展現況:依類型

第2章 單晶富鎳層狀正極的研究趨勢及未來展望

  • 單晶富鎳層狀材料研究的必要性
  • 單晶正極材料的定義
  • 單晶正極材料技術發展現狀
  • 透過材料的單顆粒形成進行改進
  • 目前超導正極材料技術發展的限制及其克服研究

第3章 單晶鎳基正極材料:基礎與進展

  • 概述
  • 鎳基正極材料
  • 鎳基層狀氧化物的問題
  • 單晶鎳基層狀氧化物的起源
  • 單晶鎳基層狀氧化物的合成
  • 單晶與多晶材料的比較研究
  • 單晶鎳基正極材料的最新進展
  • 結果和結論

第四章單晶富鎳NCM正極減容機制研究

  • 概述
  • 富鎳單晶與多晶正極基本特性評價

第五章富鎳單晶正極材料的顆粒控制(燒結製程的應用)

  • 概述
  • 實驗說明
  • 實驗結果
  • 燒結製程應用結果

第六章 單晶NMC正極材料的完全乾法合成

  • 概述
  • 乾法合成
  • 乾法合成結果及討論

第7章 單晶NCM523正極材料的一次合成

  • 概述
  • NCM523的合成
  • 材料性能評估
  • 電化學性質
  • 實驗結果與討論

第8章 單晶NCM正極材料的合成與改質:生長機制

  • 概述
  • NCM正極的生長機制
  • 固態反應
  • 固液流變反應
  • 熔鹽熔劑中的晶體生長
  • 形式修改

第9章 單晶陰極的發展:DOE計劃

第十章 單晶正極材料企業專利分析

  • Tesla
  • LG Chem
  • SM Lab
  • Nano One Materials
  • POSCO Future M
  • COSMO Advanced Materials & Technology
  • L&F
  • Easpring
  • BASF Shan Shan
  • GEM
  • XTC (Xiamen Tungsten)
  • Henan Kelong
  • Hyundai Motor Company/Kia Corporation
  • 6K Inc.
  • Dynanonic
  • Suzhou Long Power
  • Fengchao Energy
  • Ecopro BM
  • Umicore

第十一章 單晶正極材料產業發展趨勢

  • LG Chem
  • POSCO FutureM
  • EcoPro BM
  • Zhenhua E-Chem (ZEC)
  • Chanyuan Lico
  • Ronbay
  • XTC (Xiamen Tungsten)
  • Tianjin B&M
  • Easpring
  • Reshane
  • Yibin Libode
  • Wanxing 123
  • GEM

第十二章 單晶陰極市場展望

  • 中國單晶產量(2017-2022)
  • 中國單晶正極材料產量及佔有率(2019年-2022年4月)
  • 中國SC三元正極材料產量分佈(2019年-2022年1季)
  • 中國三元SC正極材料產量佔比(2019年-2022年1季)
  • 中國三元SC正極材料市場滲透率(2019年至2022年第一季)
  • 中國三元SC正極材料市場佔有率:依公司劃分(2021年)
  • 中國三元SC正極材料企業產量及市佔率(2021年)
  • 韓國和中國三元單晶產量預測
  • 韓國三元SC正極材料產量及市場展望
  • 中國三元正極材料中單晶正極佔比
  • 中國三元單晶正極材料產能佔比預測
  • 中國市場預測:以三元單晶正極材料為主

參考

簡介目錄
Product Code: 210

The mass production of single-crystal cathodes, poised to significantly enhance electric vehicle battery performance, is imminent, heralding an anticipated escalation in competition between Chinese and Korean companies.

In commercial electric vehicle batteries, the cathode materials currently employed consist of polycrystalline structures comprising multiple metal compound crystals. However, cracks often develop between these particles during the rolling process to achieve uniform thickness, as well as during charging and discharging. With repeated cycles, these cracks expand, resulting in material deterioration, increased gas generation within the battery, and a decline in charging/discharging cycles, ultimately diminishing battery longevity.

Single crystals, unlike their polycrystalline counterparts, are immune to this issue as their particles remain intact. Moreover, as nickel content rises to boost capacity, structural stability decreases, heightening the risk of fire. Hence, the development of single crystal cathodes emerges as a solution to this challenge.

Single crystal cathodes offer cost savings and enhanced yields by eliminating residual materials, thereby lowering defect probability and obviating the need for a washing process. This step, crucial in cathode manufacturing for impurity removal, becomes unnecessary with single crystal technology.

The commercialization of single-crystal cathodes is poised to broaden the utilization of high-nickel cathodes. With reduced gas generation, battery lifespan extends while accommodating more active material, boosting energy density. Implementing this in electric vehicle battery packs could enable over 500 km of driving range on a single charge with fewer cells, facilitating longer-range vehicle models. This potential game-changer promises both cost reduction and performance enhancement simultaneously.

Yet, single crystal cathodes also pose drawbacks. Unlike polycrystalline counterparts, large single crystal materials exhibit high initial resistance, challenging the application of desired voltage. Consequently, output remains low, impeding battery performance enhancement.

However, single crystal cathodes entail extra processing steps and operate at higher voltages, potentially raising battery temperatures. Moreover, single crystal particles are susceptible to damage during the calendering process, a crucial part of electrode manufacturing.

Consequently, in the initial stages of mass production, single crystals are likely to be blended with polycrystals rather than being produced in their pure form.

Chinese companies are already producing single crystal cathodes for NCM523 and 622, and domestic companies such as LG Chem, Ecopro BEM, L&F, and POSCO FutureM have also completed development and are conducting quality tests with clients. The targets are single crystal NCA and NCM, and it can be seen that they are ready for mass production.

Industry experts anticipate that the performance and quality of single crystal cathodes will hinge on coating technology to ensure durability and the manufacturing process of single crystals. Essentially, the focus lies in effectively conducting surface treatment while simultaneously augmenting particle size.

Currently, the market for mass-produced single crystal cathodes is dominated by the top 5 Chinese companies, which account for about 75% of the total market.

According to announcements by Korean cathode material companies, SNE Research predicts that they will start supplying samples this year (2023) and produce more than 120,000 tons in 2025. Currently, in the case of Chinese ternary single crystal cathodes, the proportion of 5 series single crystals, such as NCM 523, is the highest at 60% to 70%. The proportion of 6 series single crystals, such as NCM622, is 18 to 25%. In the case of 8 series with a Ni content of 80% or higher, the production ratio has increased since 2021 and currently accounts for about 15%. This proportion is expected to continue to increase.

According to SNE Research, it is difficult to predict the market for Korea at this time because there is no data on production volume by Ni content. However, in the case of China, Hi-Ni is expected to be about $4.2 billion and Mid-Ni is expected to be $9.2 billion in 2025. In 2030, Hi-Ni is expected to be about $24 billion and Mid-Ni is expected to be $23.8 billion, so the market for Hi-Ni is expected to be larger.

Strong Points of this report:

  • 1. Cover fundamental and advances in the development of single-crystal Ni-rich cathode materials
  • 2. Include a very detailed study of research trends and future prospects for single-crystal Ni-rich cathode materials.
  • 3. Include content on research regarding the capacity degradation mechanism of single-crystal Ni-rich cathodes.
  • 4. Compare major synthesis methods for single-crystal NCM cathode materials
  • 5. Detailed recent developments and patent analysis of single-crystal cathode material manufacturers
  • 6. Market outlook for single-crystal cathode materials

[Schematic diagram of general single-crystal Ni-rich layered cathode material synthesis and additional modification process]


Table of Contents

1. Overview of Cathode Materials

  • 1.1. History of Cathode Material Development
  • 1.2. Recent Trends in Cathode Materials
    • 1.2.1. Layered Oxide Cathode Materials
    • 1.2.2. Spinel Oxide Cathode Material
    • 1.2.3. Polyanionic Oxide (PAO) Cathode Materials
  • 1.3. Development Status of Cathode Materials by Type
    • 1.3.1. Microstructure Modification
    • 1.3.2. Removal of Cathode Cracks
    • 1.3.3. Application of the One-Pot process
    • 1.3.4. Microwave Processing

2. Research Trends and Future Prospects of Single Crystal Ni-rich Layered Cathodes

  • 2.1. Need for Research on Single Crystal Ni-rich Layered Materials
    • 2.1.1. The Need for Ni-rich Layered Materials (Advantages)
    • 2.1.2. Degradation Mechanisms of Ni-rich Layered Cathode Materials
    • 2.1.3. Need for Single Crystallization (Monoparticulation) of Ni-rich Layered Cathode Materials
  • 2.2. Definition of Single-crystal Cathode Material
  • 2.3. Development Status of Single-crystal Cathode Material Technology
    • 2.3.1. Single-particle Ni-rich Layered Material Synthesis Research
    • 2.3.2. Research on Sintering Methods for Synthesis of Single-particle Ni-rich Layered Materials
    • 2.3.3. Study on Modifying Materials to Enhance Performance of Single-particle Ni-rich Layered Materials
      • 2.3.3.1. Surface Coating Research
      • 2.3.3.2. Elemental Substitution Study (Doping)
        • 2.3.3.2.1. Single Doping
        • 2.3.3.2.2. Dual Doping
      • 2.3.3.3. Electrolyte Optimization
    • 2.3.4. Utilization Strategies for Single-Crystal Ni-Based Layered Materials
      • 2.3.4.1. Advantages of Single-Crystallization in Ni-Based Layered Cathodes for Electrode Design
      • 2.3.4.2. Disadvantages of Single-Crystallization in Ni-Based Layered Cathodes for Electrode Design
      • 2.3.4.3. Research on Addressing Challenges in Single-Crystallization of Ni-Based Layered Materials
  • 2.4. Improvement Through Material Single-Particle Formation
    • 2.4.1. Mitigation of Particle Breakage Characteristics
      • 2.4.4.1. Pressing Stage in Electrode Manufacturing
    • 2.4.2. Particle Breakage During Charge-Discharge Processes
    • 2.4.3. Quantitative Reduction of Surface Degradation through Reduced Specific Surface Area
    • 2.4.4. Energy Density Increase
    • 2.4.5. Washing Process Omission
  • 2.5. Limitations of Current SC Cathode Material Technology Development and Research for Overcoming Them
    • 2.5.1. Degradation of Material Crystal Structure Due to Difficulties in Optimizing Synthesis Conditions
    • 2.5.2. Particle Size Limit

3. Single-Crystal Ni-Based Cathode Materials: Fundamentals and Advances

  • 3.1. Overview
  • 3.2. Ni-based Cathode Materials
    • 3.2.1. Chemical Structure
    • 3.2.2. Electronic Structure
  • 3.3. Challenges of Ni-based Layered Oxides
    • 3.3.1. Synthesis Difficulties
    • 3.3.2. Structural Instability
    • 3.3.3. Chemical Instability
    • 3.3.4. Mechanical Performance Degradation
    • 3.3.5. Safety Issues
  • 3.4. Origin of Single-Crystal Ni-Based Layered Oxides
  • 3.5. Synthesis of Single-Crystal Ni-based Layered Oxides
    • 3.5.1. Synthesis Methods
  • 3.6. Comparative Study of Single-Crystal and Polycrystalline Materials
  • 3.7. Recent Advances in Single-Crystal Ni-Based Cathode Materials
    • 3.7.1. Doping and Surface Coating
    • 3.7.2. Mechanical Research
  • 3.8. Results and Conclusion

4. Study of Capacity Fading Mechanism of Single-crystal Ni-rich NCM Cathode

  • 4.1. Overview
  • 4.2. Assessment of Fundamental Properties in Ni-rich Single-crystal and Polycrystalline Cathodes
    • 4.2.1. Single-crystal and Polycrystalline Cathode Synthesis
    • 4.2.2. Composition and Analysis of Single-crystal and Polycrystalline Cathodes
    • 4.2.3. Electrochemical Properties of Single-crystal and Polycrystalline Cathodes
    • 4.2.4. Structural Stress Analysis of Single-crystal and Polycrystalline Cathode Materials
    • 4.2.5. In-situ XRD Analysis of Single-crystal and Polycrystalline Cathodes
    • 4.2.6. TEM Analysis of Single-crystal and Polycrystalline Cathode Materials
    • 4.2.7. Results and Conclusions

5. Particle Control of Ni-rich Monocrystalline Cathode Materials (Application of Sintering Process)

  • 5.1. Overview
  • 5.2. Experiment Description
  • 5.3. Experimental Results
    • 5.3.1. Optimization of Sintering Additives for Promoting Crystal Growth
    • 5.3.2. Crystal Growth Mechanism
    • 5.3.3. Ni-rich Structure of a Single Crystal Cathode
    • 5.3.4. Performance of Ni-rich Single Crystal Cathodes
  • 5.4. Application Results of Sintering Treatment

6. All-Dry Synthesis of Single-Crystal NMC Cathode Materials

  • 6.1. Overview
  • 6.2. Dry Synthesis
  • 6.3. Dry Synthesis Results and Discussion
    • 6.3.1. Precursor Structure and Morphology
    • 6.3.2. Effect of Sintering Conditions on NMC Formation
    • 6.3.3. Single-crystal NCM from Ball-milled Precursors
    • 6.3.4. Conclusion

7. One-Spot Synthesis of Single Crystal NCM523 Cathode Material

  • 7.1. Overview
  • 7.2. Synthesis of NCM523
  • 7.3. Characterization of Materials
  • 7.4. Electrochemical Properties
  • 7.5. Experiment Results and Discussion
    • 7.5.1. Cathode Material Synthesis Product Analysis
    • 7.5.2. Electrochemical Properties of Cathode Materials
    • 7.5.3. Conclusion

8. Synthesis and Modification of Single-Crystal NCM Cathode Materials:Growth Mechanism

  • 8.1. Overview
  • 8.2. Growth Mechanism for NCM Cathodes
  • 8.3. Solid State Reaction
  • 8.4. Solid-Liquid Rheological Reaction
  • 8.5. Crystal Growth in Molten Salt Flux
  • 8.6. Modification of morphology
    • 8.6.1. Control of Shape
    • 8.6.2. Facet Control
    • 8.6.3. Conclusion

9. Development of Single-Crystal Cathodes: DOE Program

  • 9.1. Ultrafast Hydrothermal Synthesis of Ni-rich Single-Crystal Cathodes
  • 9.2. Scaling up of High Performance Single Crystalline Ni-rich Cathode Materials with Advanced Lithium
  • 9.3. Single-Crystal Cathodes for High-Performance All-Solid-State LIBs

10. Patent Analysis of Single Crystal Cathode Material Companies

  • 10.1. Tesla
  • 10.2. LG Chem
  • 10.3. SM Lab
  • 10.4. Nano One Materials
  • 10.5. POSCO Future M
  • 10.6. COSMO Advanced Materials & Technology
  • 10.7. L&F
  • 10.8. Easpring
  • 10.9. BASF Shan Shan
  • 10.10. GEM
  • 10.11. XTC (Xiamen Tungsten)
  • 10.12. Henan Kelong
  • 10.13. Hyundai Motor Company / Kia Corporation
  • 10.14. 6K Inc.
  • 10.15. Dynanonic
  • 10.16. Suzhou Long Power
  • 10.17. Fengchao Energy
  • 10.18. Ecopro BM
  • 10.19. Umicore

11. Single-Crystal Cathode Material Industry Trends

  • 11.1. LG Chem
  • 11.2. POSCO FutureM
  • 11.3. EcoPro BM
  • 11.4. Zhenhua E-Chem(ZEC)
  • 11.5. Chanyuan Lico
  • 11.6. Ronbay
  • 11.7. XTC (Xiamen Tungsten)
  • 11.8. Tianjin B&M
  • 11.9. Easpring
  • 11.10. Reshane
  • 11.11. Yibin Libode
  • 11.12. Wanxing 123
  • 11.13. GEM

12. Single Crystal Cathode Market Outlook

  • 12-1. 2017~2022H1 China Single Crystal Production Volume
  • 12-2. 2019~2022.04 Production Volume and Share of Single Crystal Cathode Materials in China
  • 12-3. 2019~2022Q1 Distribution of production volume by SC ternary cathode materials in China
  • 12-4. 2019~2022Q1 Share of production by ternary SC cathode material in China
  • 12-5. 2019~2022Q1 Market Penetration by Ternary SC Cathode Materials in China
  • 12-6. Market Share of Ternary SC Cathode Materials by Chinese Companies in 2021
  • 12-7. Production Volume and Market Share of Ternary SC cathode Material Companies in China in 2021
  • 12-8. Korea-China Ternary Single Crystal Production Forecast
  • 12-9. Korean Ternary SC Cathode Material Mroduction Volume and Market Outlook
  • 12-10. Percentage of Single-crystal Cathodes among Ternary Cathode Materials in China
  • 12-11. Forecast of Production Volume Ratio by Chinese Ternary Single Crystal Cathode Material
  • 12-12. China Market Forecast by Ternary Single Crystal Cathode Material

References