鋰離子二次電池正極材料技術趨勢及市場展望(至2035年)
市場調查報告書
商品編碼
1565777

鋰離子二次電池正極材料技術趨勢及市場展望(至2035年)

<2024> Technology Trend and Market Outlook for Cathode Materials of Lithium-ion Secondary Batteries (~2035)

出版日期: | 出版商: SNE Research | 英文 618 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

鋰離子二次電池市場正在從小型 IT 應用轉向更加關注電動車 (EV) 和儲能系統 (ESS) 市場。電動車中安裝的鋰離子二次電池的需求正在迅速增加,推動了該應用中使用的正極材料市場的成長。

在鋰離子二次電池中發揮重要供鋰作用的正極材料包括LiCoO2 (LCO)、LiO2 (NCM)、Li(Ni1-x+yCoxAly)O2 (NCA)、尖晶石結構LiMn2O4 (LMO)和其他層狀結構材料。近年來,在中國電動車市場規模擴大的推動下,磷酸鐵鋰(LFP)正極材料因其成本效益而受到青睞,也引起了業界的廣泛關注。

LCO因其優異的物理和電化學性能以及高能量密度而常被用作移動IT設備中的正極材料,但鈷的高成本是其主要缺點。另一方面,LMOs具有成本效益且具有良好的熱穩定性,但它們具有可逆容量低和高溫下壽命短等限制。

NCM可達到高放電容量,鎳含量為80%以上,放電容量可達約200mAh/g。韓國正極材料製造商近十年來積極研究高容量鎳基正極材料,NCM、NCMA等先進衍生性商品已成為市場主流。

LFP 具有價格實惠的鐵基成分,使其具有成本效益和競爭力。近年來隨著鈷、鎳等三元材料原料價格的上漲,磷酸鐵鋰的成本優勢更為明顯。 LMFP(錳摻雜磷酸鐵鋰)新技術解決了磷酸鐵鋰的局限性,並已被CATL、比亞迪、國軒等中國主要製造商採用並商業化。自2020年9月以來,磷酸鐵鋰電池在中國電動車市場的佔有率已超過NCM(鎳鈷錳)和NCA(鎳鈷鋁)三元電池,從2020年的17%增長到2022年的36 %。特斯拉、大眾、福特和 Stellantis 等全球汽車製造商也正在探索磷酸鐵鋰電池的潛力。

高壓中鎳 (HV Mid-Ni) NCM 最初由 Umicore 商業化,但由於材料破裂和電池壽命縮短等問題,隨著高鎳替代品的興起而不再受歡迎。然而,隨著單晶負極材料的進步和電池技術的改進,高壓中鎳三元材料重新成為磷酸鐵鋰的有力競爭對手。使用高鎳材料的韓國企業正在考慮擴大在該領域的投資。

正極材料是鋰離子二次電池四大主要零件(正極、負極、電解液、隔膜)之一,約佔總成本的30%~40%。因此,為了實現大規模鋰離子二次電池的商業化,必須在提高正極性能的同時降低成本。全球範圍內,有超過200家正極材料製造商,約有100至150家公司正在積極生產正極材料。日本約20~30家企業,韓國約15~30家企業,中國等地區約100~150家企業。比利時跨國公司優美科 (Umicore) 在這一領域也很引人注目。此外,全球約有150家公司供應正極材料的原料和前驅物。

本報告針對全球鋰離子二次電池正極材料市場進行調查分析,提供各類正極材料的最新技術趨勢,並著重於富鎳三元材料。

目錄

第1章正極材料技術現況及發展趨勢

第 1 節簡介

  • 正極材料發展現狀
  • 設計標準
    • 離子鍵與共價鍵
    • Mott-Hubbard 型與電荷轉移型
    • 固相3D轉變中電荷轉移反應的概念
    • 固相擴散與兩相共存反應的概念
  • 正極材料所需的特性

第2節正極材料種類

  • 層狀複合材料
    • 鈷酸鋰
    • 鎳酸鋰
    • LiMO2(M = Fe、Mn)
    • 鎳錳系列
    • Ni-Co-Mn三組分體系
    • 富鋰層狀化合物
  • 尖晶石複合材料
    • 錳酸鋰
    • LiMxMn2-xO4
  • 橄欖石複合材料
    • 磷酸鋰
    • LiMPO4
    • CTP(電池到電池組)技術
  • 低成本電極材料
    • NMX:無鈷正極材料

第3節其他正極材料

  • 氟基複合材料

第2章富鎳NCM技術

第 1 節簡介

第2節富鎳NCM的課題

  • 陽離子混合物
  • H2-H3相
  • 殘留鋰化合物

第3節富鎳NCM問題的解

  • 過渡金屬摻雜
  • 表面改性
  • 濃度梯度結構
  • 單晶法:單粒子帶來長壽命特性

第3章HV(高壓)正極技術

第1節高壓正極現況

  • 中國現狀
  • 韓國現狀
  • 日本現狀

第2節高壓正極活性物質

  • LMFP(Li(M)FePO4)
  • LNMO:LNMO
  • LCO (LiCoO2)
  • 鋰富錳NMC
  • HLM:LMNCO

第 3 節高壓正極活性材料問題

  • 表面劣化
  • 氣體釋放
  • 相變
  • 微裂紋
  • LCO 體積和界面退化
  • CEI的形成與演化機制
  • LCO 中的寄生氧化反應
  • 過渡金屬在 LNMO 中的溶解
  • 表面裂紋和相變
  • 富鋰錳NMC正極的劣化

第 4 節高壓正極活性材料解

  • 元素摻雜
  • 表面塗層
  • 單晶 (SC) 生產
  • 結構設計(連接坡度)
  • 多功能電解質添加劑

第4章正極材料的製造流程

第1節正極材料(NCM)的製造製程

  • 混合物
  • 開火
  • 粉碎
  • 定序
  • 磁選

第2部分正極材料(LFP)的製造流程

  • 固相合成法
  • 液相合成法
  • 前驅方法

第 3 節前驅製造過程

  • 鎳基NCM製造流程
  • LFP(固態法)製造流程
  • LFP(液相法)製造流程
  • 反應器後/反應器工藝

第4節正極材料性能評估

  • 化學成分分析
  • 比表面積的測量
  • 粒度測量
  • 振實密度測量
  • 水分含量的測量
  • 殘留碳酸鋰的測量
  • 熱分析
  • 顆粒強度

第5節正極板製造製程

第5章全球鋰離子電池市場展望(截至2035年)

  • 1. 全球二次電池安裝前景
  • 2. 全球二次電池出貨量展望
  • 3. 全球二次電池產量展望
  • 4. 全球二次電池生產展望:依供應商劃分
  • 5. 全球二次電池生產M/S展望:依供應商劃分
  • 6. 世界二次電池產量:依陰極化學分類
  • 7. 世界二次電池產量M/S:按正極化學

第6章全球正極材料供應現況及市場展望

  • 1. 需求預測:依陰極應用(2021-2035)
  • 2. 需求預測:依陰極化學(2021-2035)
  • 3. 需求 M/S 展望:依陰極化學(2021-2035 年)
  • 4. 電動車需求預測:依陰極化學(2021-2035 年)
  • 5. ESS 需求預測:依陰極化學(2021-2035 年)
  • 6.二次電池正極出貨量詳情(2021-2024年)
  • 7. 二次電池正極出貨量詳情:依國家分類(2021-2024)
  • 8. 鎳基CAM出貨(供應)數量:依供應商劃分(2021-2024年)
  • 9. 鎳基 CAM 出貨量:依供應商劃分(2021-2024 年)
  • 10. LFP正極出貨(供應)數量:依供應商劃分(2021-2024年)
  • 11.磷酸鐵鋰正極出貨量:依供應商劃分(2021-2024)
  • 12. CAM供應商狀況綜合分析(截至2023年)
  • 13. LFP CAM供應商狀況綜合分析(截至2023年)
  • 14.多元正極材料供應商產能擴張計畫及供需展望(2021-2030年)
  • 15.磷酸鐵鋰正極材料供應商產能擴充計畫及供需展望(2021-2030年)
  • 16. 正極材料價格展望:依材料分類(2021-2030 年)
  • 17. CAM 市場規模展望(2021-2030 年)

第7章正極需求狀況:以鋰離子電池製造商劃分

  • 1. CAM 需求:按應用和化學分類(2021-2024 年)
  • 2. CAM 需求:依 LIB 製造商劃分(2021-2024 年)
  • 3. LIB 製造商的 CAM 需求:依化學分類(2021-2024 年)
  • 4. 主要LIB製造商的CAM需求和供應商現狀及前景
    • CATL/LGES/比亞迪/SDI/SK On/松下/中航鋰電/國軒/EVE/R□□EPT
  • 5. 主要企業供需概況

第8章正極材料廠商現況

第1節韓國正極材料製造商

  • Ecopro
  • L&F
  • Posco Future M
  • Umicore Korea
  • LG Chem
  • SDI (STM)
  • Cosmo AM&T
  • SM Lab
  • Top Materials

第2節 日本正極材料製造商

  • Nichia
  • Sumitomo Metal Mining
  • Toda Kogyo
  • Mitsui Kinzoku
  • Nippon Denko

第3節 中國正極材料製造商

  • Ronbay
  • B&M
  • XTC
  • Reshine
  • Easpring
  • CY Lico
  • ShanShan
  • ZEC
  • BTR
  • Brunp
  • LIBODE
  • Hunan Yuneng
  • Dynanonic
  • Hubei Wanrun
  • Lopal Technology
  • Rongtong Hi-TechV
  • Guoxuan (Gotion)
  • Youshan
  • Hunan Shenghua
  • Anda
  • Jintang Shidai
  • Shengfan
  • Pulead
  • Terui

第4節 其他地域正極材料製造商

第9章 索引

簡介目錄
Product Code: 239

The lithium-ion secondary battery market is shifting from small IT applications toward a more substantial focus on electric vehicle (EV) and energy storage system (ESS) markets. Demand for lithium-ion batteries in EVs is rapidly increasing, driving growth in the market for cathode materials used in these applications.

Cathode materials, which play a crucial role in supplying lithium in lithium-ion secondary batteries, include layered structure materials such as LiCoO2 (LCO), Li(Ni1-x+yCoxMny)O2 (NCM), Li(Ni1-x+yCoxAly)O2 (NCA), and spinel-structured LiMn2O4 (LMO). Recently, LiFePO4 (LFP) cathode materials, favored for their cost efficiency and driven by China's EV market expansion, have also gained substantial industry attention.

Due to its superior physical and electrochemical properties and high energy density, LCO is often used as a cathode material for mobile IT devices, though the high cost of cobalt is a significant drawback. LMO, on the other hand, is cost-effective and has excellent thermal stability, though it has limitations such as lower reversible capacity and reduced lifespan at high temperatures.

NCM, which enables high discharge capacity, can reach approximately 200 mAh/g with nickel content over 80%. South Korean cathode material companies have been actively researching high-capacity Ni-based cathode materials over the past decade, making NCM and advanced derivatives like NCMA mainstream in the market.

LFP, with its affordable iron-based composition, has gained a competitive edge in cost-efficiency. With the recent surge in prices of raw materials like cobalt and nickel for ternary materials, LFP's cost advantage has become more pronounced. A novel technology, LMFP (LFP with added manganese), addresses the limitations of LFP and has been adopted by major Chinese manufacturers like CATL, BYD, and Gotion for commercialization. LFP batteries surpassed the share of NCM (nickel, cobalt, manganese) and NCA (nickel, cobalt, aluminum) ternary batteries in China's EV market after September 2020, growing from 17% in 2020 to 36% in 2022. Global automakers such as Tesla, Volkswagen, Ford, and Stellantis are also exploring the potential of LFP batteries.

High Voltage Mid-Nickel (HV Mid-Ni) NCM, initially commercialized by Umicore, fell out of favor with the rise of high-nickel alternatives due to issues such as material cracking and reduced battery life. However, with advancements in single-crystal anode materials and improved battery technologies, HV Mid-Ni NCM is re-emerging as a viable competitor to LFP. South Korean companies that use high-nickel materials are considering expanding their investment in this area.

Cathode materials, one of the four primary components (cathode, anode, electrolyte, separator) of lithium-ion secondary batteries, account for approximately 30-40% of the overall cost. Thus, to commercialize large-scale lithium-ion batteries, improving cathode performance while reducing costs is essential. Globally, there are over 200 cathode material manufacturers, with around 100 to 150 actively engaged in production. Japan has around 20-30 companies, Korea around 15-30, and China and other regions around 100-150. Umicore, a multinational company in Belgium, is also notable in the sector. Additionally, there are approximately 150 companies worldwide that supply raw materials and precursors for cathode materials.

The global cathode materials market is dominated by companies in China, Japan, and Korea. Chinese companies have emerged as leaders, leveraging domestic demand and the growth of major Chinese battery makers, while Japanese firms rely on advanced precursor technologies to compete. Korean companies face intense price competition from Chinese suppliers and technological competition with Japanese firms.

This report provides insights into the latest technical trends across various cathode material types, with a focus on Ni-rich NCM. It also explores cobalt-free cathode technologies and single-particle cathode developments. Additionally, chapters are dedicated to emerging technologies for LFP and LMFP cathodes, high-voltage cathode technologies, and their manufacturing processes.

In-Depth Report Highlights:

  • Gain insights into the latest technologies for high-interest LFP and high-voltage (HV) cathode materials.
  • Understand the advancements in Ni-rich NCM cathode materials.
  • Explore new developments in cobalt-free and single-particle cathode materials.
  • Obtain data on production, demand, and capacity expansion plans for cathode materials by major producers and cell manufacturers.
  • Access comprehensive information on major cathode producers in China, Korea, and Japan.
  • Discover detailed information on the manufacturing processes of ternary and LFP cathodes.
  • Analyze supply and demand forecasts for cathode active materials (CAM) by major battery manufacturers, and gain market outlook insights.
  • Track the evolution of cathode material trends over the past 3-5 years.

Table of Contents

Chapter 1. Status of Cathode Material Technology & Development Trend

1. Introduction

  • 1.1. Status of Cathode Material Development
  • 1.2. Design Criteria
    • 1.2.1. Ionic Bonding and Covalent Bonding
    • 1.2.2. Mott-Hubbard Type and Charge Transfer Type
    • 1.2.3. Concept of Charge transfer Reaction in 3d Transition in Solid Phase
    • 1.2.4. Concept of Diffusion in Solid Phase and Two-Phase Coexistence Reaction
  • 1.3. Characteristics required in Cathode Materials

2. Types of Cathode Material

  • 2.1. Layered Composites
    • 2.1.1. LiCoO2
    • 2.1.2. LiNiO2
    • 2.1.3. LiMO2 (M = Fe, Mn)
    • 2.1.4. Ni-Mn Based
    • 2.1.5. Ni-Co-Mn 3-Component System
    • 2.1.6. Li-rich layered compounds
  • 2.2. Spinel based Composites
    • 2.2.1. LiMn2O4
    • 2.2.2. LiMxMn2-xO4
  • 2.3. Olivine based Composites
    • 2.3.1. LiFePO4
    • 2.3.2. LiMPO4 (M = Mn, Co, Ni)
    • 2.3.3. CTP (Cell-to-Pack) Technology
  • 2.4. Low-cost electrode materials
    • 2.4.1. NMX: Co-free Cathode materials

3. Other cathode material

  • 3.1. Fluoride based composites

Chapter 2. Ni-Rich NCM Technology

1. Introduction

2. Issues of Ni-Rich NCM

  • 2.1. Cation mixing
  • 2.2. H2-H3 Phase
  • 2.3. Residual lithium compounds

3. Solution to Ni-Rich NCM Issues

  • 3.1. Transition metal doping
  • 3.2. Surface modification
  • 3.3. Concentration gradient structure
  • 3.4. Single crystal approach: Long-Life Characteristics through Single Particles

Chapter 3. HV (High Voltage) Cathode Technology

1. HV Cathode Current state

  • 1.1. Current status in China
  • 1.2. Current status in Korea
  • 1.3. Current status in Japan

2. HV Cathode Active Material

  • 2.1. LMFP (Li(M)FePO4)
  • 2.2. LNMO : LNMO(LINI0.5MN1.5O4)
  • 2.3. LCO (LiCoO2)
  • 2.4. Li rich Manganese NMC(L1.2Mn0.54N0.13C0.13O2)
  • 2.5. HLM : LMNCO (L1.2Mn0.54N0.13C0.13O2)

3. Issues of HV Cathode Active Material

  • 3.1. Surface degradation
  • 3.2. Gas release
  • 3.3. Phase transformation
  • 3.4. Microcracks
  • 3.5. Degradation of LCO bulk & interface
  • 3.6. Formation & Evolution Mechanism of CEI
  • 3.7. Parasitic Oxidation Reaction at LCO
  • 3.8. Transition Metal Dissolution at LNMO
  • 3.9. Surface Cracks and Phase Changes
  • 3.10. Degradation of Li-rich Manganese NMC cathode

4. Solutions to HV Cathode Active Material

  • 4.1. Element Doping
  • 4.2. Surface Coating
  • 4.3. Single Crystal (SC) Favbrication
  • 4.4. Structural Design (Connection Gradient)
  • 4.5. Multifunctional Electrolyte Additives

Chapter 4. Manufacturing Process of Cathode Materials

1. Manufacturing Process of Cathode Materials (NCM)

  • 1.1. Mixing
  • 1.2. Calcination
  • 1.3. Crushing
  • 1.4. Sieving
  • 1.5. Magnetic Separation

2. Manufacturing Process of Cathode Materials ((LFP)

  • 2.1. Solid-state Synthesis Method
  • 2.2. Liquid-phase Synthesis Method
  • 2.3. Precursor Method

3. Manufacturing Process of Precursor

  • 3.1. Production Flow of Ni-based NCM
  • 3.2. Production Flow of LFP (Solid-state Method)
  • 3.3. Production Flow of LFP (Liquid-phase Method)
  • 3.4. Post Reactor/Reactor Process

4. Evaluation of Cathode Material Characteristics

  • 4.1. Chemical Composition Analysis
  • 4.2. Measurement of Specific Surface Area
  • 4.3. Particle Size Measurement
  • 4.4. Tap Density Measurement
  • 4.5. Measurement of Moisture Content
  • 4.6. Measurement of Residual lithium Carbonate
  • 4.7. Thermal Analysis
  • 4.8. Particle Strength

5. Manufacturing Process of Cathode Plate

Chapter 5. Outlook for Global LIB Market (~2035)

  • 1. Global Secondary Battery Installation Outlook
  • 2. Global Secondary Battery Shipment Outlook
  • 3. Global Secondary Battery Production Outlook
  • 4. Global Secondary Battery Production Outlook by Suppliers
  • 5. Global Secondary Battery Production M/S Outlook by Suppliers
  • 6. Global Secondary Battery Production by Cathode Chemistry
  • 7. Global Secondary Battery Production M/S by Cathode Chemistry

Chapter 6. Global Cathode Supply Status and Market Outlook

  • 1. Demand Outlook by Cathode Application ('21~'35)
  • 2. Demand Outlook by Cathode Chemistry ('21~'35)
  • 3. Demand M/S Outlook by Cathode Chemistry ('21~'35)
  • 4. Demand Outlook by Cathode Chemistry for EVs ('21~'35)
  • 5. Demand Outlook by Cathode Chemistry for ESS ('21~35)
  • 6. Secondary Battery Cathode Shipment Details ('21~24)
  • 7. Secondary Battery Cathode Shipment Details by Country (2021~2024)
  • 8. Shipment (Supply) Volume by Ni-based CAM Supplier ('21~'24)
  • 9. Shipment M/S by Ni-based CAM Supplier ('21~'24)
  • 10. Shipment (Supply) Volume by LFP Cathode Supplier ('21~'24)
  • 11. Shipment M/S by LFP Cathode Supplier ('21~'24)
  • 12. Comprehensive Analysis of CAM Supplier Status (as of 2023)
  • 13. Comprehensive Analysis of LFP CAM Supplier Status (as of 2023)
  • 14. Capa. Expansion Plan & Supply Demand Outlook of Multi-Component Cathode Material Supplier ('21~'30)
  • 15. Capa. Expansion Plan & Supply Demand Outlook of LFP Cathode Material Supplier ('21~'30)
  • 16. Price Outlook by Cathode Material ('21~'30)
  • 17. CAM Market Size Outlook ('21~'30)

Chapter 7. Cathode Demand Status by LIB Maker

  • 1. CAM Demand by Application and Chemistry ('21~'24)
  • 2. CAM Demand by LIB Maker ('21~'24)
  • 3. Demand for CAM by Chemistry from LIB Maker ('21~'24)
  • 4. CAM Demand and Supplier Status and Outlook for Major LIB Makers
    • CATL / LGES / BYD / SDI / SK On / Panasonic / CALB / Guoxuan / EVE / REPT
  • 5. Supply-Demand Overview Among Key Players

Chapter 8. Status of Cathode Material Manufacturers

1. Korean Cathode Material Manufacturers

  • 1.1. Ecopro
  • 1.2. L&F
  • 1.3. Posco Future M
  • 1.4. Umicore Korea
  • 1.5. LG Chem
  • 1.6. SDI(STM)
  • 1.7. Cosmo AM&T
  • 1.8. SM Lab
  • 1.9. Top Materials

2. Japanese Cathode Material Manufacturers

  • 2.1. Nichia
  • 2.2. Sumitomo Metal Mining
  • 2.3. Toda Kogyo
  • 2.4. Mitsui Kinzoku
  • 2.5. Nippon Denko

3. Chinese Cathode Material Manufacturers

  • 3.1. Ronbay
  • 3.2. B&M
  • 3.3. XTC
  • 3.4. Reshine
  • 3.5. Easpring
  • 3.6. CY Lico
  • 3.7. ShanShan
  • 3.8. ZEC
  • 3.9. BTR
  • 3.10. Brunp
  • 3.11. LIBODE
  • 3.12. Hunan Yuneng
  • 3.13. Dynanonic
  • 3.14. Hubei Wanrun
  • 3.15. Lopal Technology
  • 3.16. Rongtong Hi-TechV
  • 3.17. Guoxuan(Gotion)
  • 3.18. Youshan
  • 3.19. Hunan Shenghua
  • 3.20. Anda
  • 3.21. Jintang Shidai
  • 3.22. Shengfan
  • 3.23. Pulead
  • 3.24. Terui

4. Cathode Material Manufacturers in Other Regions

Chapter 9. Index