封面
市場調查報告書
商品編碼
1643850

燃料電池電動卡車產業二氧化碳排放生命週期:歐洲,2024-2040 年

CO2 Emissions Life Cycle in the Fuel Cell Electric Truck Sector, Europe, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 65 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

清潔的氫氣生產源將大幅減少二氧化碳排放並推動轉型成長

這份 Frost & Sullivan 報告研究了燃料電池電動卡車 (FCET) 的二氧化碳 (CO2)排放,重點關注歐洲(特別是德國、法國和西班牙)卡車運輸行業的氫燃料選擇。本報告分析了氫氣與傳統燃料相比減少生命週期排放的潛力。我們探索不同的氫氣生產方法,從灰氫到可再生氫源,每種方法都有自己的碳足跡。它主要關注燃料電池汽車生產過程中產生的二氧化碳排放,特別是燃料電池堆和氫氣儲存槽等零件排放的二氧化碳排放。該研究還比較了 FCET 與電動卡車和柴油卡車運行過程中的二氧化碳總排放。它強調需要更清潔的氫氣生產方法和改進的汽車製造程序,以大幅減少卡車領域的二氧化碳排放。報告最後指出了市場參與者和相關人員應該利用的該領域出現的機會。

目錄

變形

  • 成長為何變得越來越艱難?
  • The Strategic Imperative 8(TM)
  • 三大策略對燃料電池電動卡車(FCET)產業生命週期二氧化碳排放的影響

成長環境:H2生態系統

  • H2 是未來的燃料
  • H2 作為 FCET 燃料的生命週期流程
  • 各種 H2 生產方法

生態系統

  • 研究範圍
  • 動力傳動系統技術細分

成長引擎

  • 成長動力
  • 成長抑制因素

成長發生器:氫氣生產過程中的二氧化碳排放軌跡

  • 主要氫氣生產方法分析
  • 影響氫氣生產途徑採用的關鍵因素 - 政策與目標
  • 影響採用氫氣生產途徑的關鍵因素-公佈清潔氫氣生產能力和消費量
  • 影響採用 H2 生產途徑的關鍵因素 - 歐洲氫能骨幹網 (EHB) 和關鍵走廊
  • 西班牙氫氣生產採用預測
  • H2 生產採用預測-法國
  • H2 產量引入預測-德國
  • 氫氣生產過程中的二氧化碳排放

成長發電機:FECT 生產過程中的二氧化碳排放軌跡

  • FCET的主要成分
  • 影響二氧化碳排放軌跡的FCET關鍵零件-FC電堆、氫氣儲存槽、電池
  • FCET 組件中的主要 CO2 貢獻
  • CO2排放軌跡 - FCET 製造

成長發電機:FCET 運作期間的二氧化碳排放軌跡 - LDT

  • LDT使用案例和預測假設的特點
  • LDT 循環 A 及 H-H2消費量及 CO2排放
  • LDT 循環 A - H-kg-CO2/km

成長發電機:FCET 運作期間的二氧化碳排放軌跡 - MDT

  • MDT使用案例特徵和預測假設
  • MDT 循環 A 和 H-H2消費量和 CO2排放
  • MDT 循環 A - H-kg-CO2/km

成長發電機:FCET 運作期間的二氧化碳排放軌跡 - HDT

  • HDT使用案例特徵和預測假設
  • HDT循環A-H2消費量及CO2排放
  • HDT循環H-H2消費量及CO2排放
  • HDT 循環 A - H-kg-CO2/km

成長引擎:比較內燃機汽車、純電動車和燃料電池電動車的二氧化碳排放軌跡

  • LDT-ICE、BEV、FCEV 比較(A 循環、H 循環)
  • MDT-ICE、BEV、FCEV 比較(A 循環、H 循環)
  • HDT-ICE、BEV、FCEV 比較(A 循環、H 循環)

成長機會宇宙

  • 成長機會 1:追蹤二氧化碳排放
  • 成長機會 2:按地區分類的電池和燃料電池製造垂直整合
  • 成長機會三:擴大氫能基礎設施

關鍵要點:

  • 前 3 項

附錄與後續步驟

  • 成長機會的好處和影響
  • 後續步驟Next steps
  • 附件列表
  • 免責聲明
簡介目錄
Product Code: PFO7-42

Clean H2 Production Sources will Drive Transformational Growth by Significantly Reducing CO2 Emissions

This Frost & Sullivan report examines the carbon dioxide (CO2) emissions of fuel cell electric trucks (FCETs), focusing on hydrogen as a fuel option for the trucking industry in Europe, specifically Germany, France, and Spain. The report analyzes the potential of hydrogen to mitigate life cycle emissions compared to conventional fuels. It explores different methods for producing hydrogen, from grey hydrogen to renewable sources, each with its own carbon footprint. It highlights the CO2 emissions related to the production of fuel cell vehicles, especially from parts like fuel cell stacks and hydrogen storage tanks. The report also compares the total CO2 emissions of FCETs during operation with those of battery electric and diesel trucks. It stresses the need for cleaner hydrogen production methods and improved vehicle manufacturing processes to significantly reduce CO2 emissions in the trucking sector. The report concludes by identifying the opportunities emerging from this space for market players and stakeholders to leverage.

Table of Contents

Transformation

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the CO2 Emissions Life Cycle in the Fuel Cell Electric Truck (FCET) Industry

Growth Environment: H2 Ecosystem

  • H2 is the Fuel of the Future
  • Life Cycle Flow of H2 as a Fuel for FCETs
  • Different H2 Production Methods

Ecosystem

  • Research Scope
  • Powertrain Technology Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

Growth Generator: CO2 Emission Trail During H2 Production

  • Analysis of Major H2 Production Methods
  • Key Factors Impacting H2 Production Pathway Adoption-Policies and Targets
  • Key Factors Impacting H2 Production Pathway Adoption-Announced Clean H2 Capacities and Consumption
  • Key Factors Impacting H2 Production Pathway Adoption-European Hydrogen Backbone (EHB) and Key Corridors
  • Adoption Forecast of H2 Production-Spain
  • Adoption Forecast of H2 Production-France
  • Adoption Forecast of H2 Production-Germany
  • CO2 Emission Trail from H2 Production

Growth Generator: CO2 Emission Trail During FECT Manufacturing

  • Major Components of an FCET
  • Major FCET Components Impacting the CO2 Emissions Trail-FC Stack, H2 Storage Tank, and Battery
  • Major CO2 Contributions Within FCET Components
  • CO2 Emission Trail-FCET Manufacturing

Growth Generator: CO2 Emission Trail During FCET Operation-LDT

  • LDT Use Case Characteristics and Forecast Assumptions
  • LDT Cycles A and H-H2 Consumption and CO2 Emissions
  • LDT Cycles A to H-kg CO2/km

Growth Generator: CO2 Emission Trail during FCET Operation-MDT

  • MDT Use Case Characteristics and Forecast Assumptions
  • MDT Cycles A and H-H2 Consumption and CO2 Emissions
  • MDT Cycles A to H-kg CO2/km

Growth Generator: CO2 Emission Trail during FCET Operation-HDT

  • HDT Use Case Characteristics and Forecast Assumptions
  • HDT Cycle A-H2 Consumption and CO2 Emissions
  • HDT Cycle H-H2 Consumption and CO2 Emissions
  • HDT Cycle A to H-kg CO2/km

Growth Generator: CO2 Emission Trail Comparison between ICE Vehicles, BEVs, and FCEVs

  • LDT-ICE, BEV, and FCEV Comparison (Cycles A and H)
  • MDT-ICE, BEV, and FCEV Comparison (Cycles A and H)
  • HDT-ICE, BEV, and FCEV Comparison (Cycles A and H)

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Geographic-specific Vertical Integration for Battery and FC Manufacture
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Key Takeaways

  • Top 3 Takeaways

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer