3D 列印:材料和設備機會、趨勢和市場
市場調查報告書
商品編碼
1483213

3D 列印:材料和設備機會、趨勢和市場

3D Printing: Material and Equipment Opportunities, Trends, and Markets

出版日期: | 出版商: Information Network | 英文 | 商品交期: 2-3個工作天內

價格

介紹

3D 列印產業正在徹底改變許多領域的製造和設計流程,提供前所未有的靈活性、效率和客製化。

本報告對這項創新的 3D 列印技術進行了全面分析,探討了材料和設備的最新發展、最新的市場發展以及策略課題。它還研究了成長和投資的關鍵市場驅動因素和戰略機會。

3D列印技術的發展趨勢

3D列印產業在材料和設備方面都取得了顯著進步,正在擴大應用範圍並推動市場成長。最顯著的趨勢之一是新型和改進印刷材料的開發。3D列印所使用的材料最初主要是塑料,現已多樣化,包括金屬、陶瓷和複合材料。PEEK 和 PEKK 等高性能熱塑性塑膠因其強度和生物相容性而在航空航太和醫療應用中越來越受歡迎。此外,鈦和鋁等金屬粉末的使用正在擴大在汽車和航空航天等需要堅固、輕質零件的行業中。

另一個重要趨勢是3D列印設備的演進。增材製造技術的進步正在提高 3D 列印機的準確性、速度和可擴展性。選擇性雷射燒結 (SLS)、立體光刻 (SLA) 和直接金屬雷射燒結 (DMLS) 等尖端技術正在突破 3D 列印的界限。結合積層製造和減材製造流程的混合製造系統也正在興起,為製造複雜零件提供了更大的靈活性和效率。

3D列印與工業4.0技術的融合正在進一步改變製造業格局。將物聯網、人工智慧和機器學習應用於 3D 列印流程,可實現生產工作流程的即時監控、預測性維護和最佳化。這些智慧製造功能使 3D 列印更加高效和可靠,使其成為原型製作和大規模生產的可行選擇。

永續性也正成為 3D 列印產業的焦點。零件可以依需生產,減少浪費並最大限度地減少與傳統製造方法相關的環境足跡。此外,可回收和可生物降解印刷材料的進步使該行業與全球永續發展目標保持一致,並吸引了具有環保意識的企業和消費者。

目錄

第一章簡介

第二章 3D列印概述

  • 3D列印的優點
  • 3D列印的局限性
  • 3D市場分類
    • 設計
    • 替代現有的製造工藝
    • 個性化家居3D列印
    • 材料
  • 各地區的趨勢
    • 歐洲
    • 日本
    • 中國
    • 韓國
    • 全球研發 (R&D)

第三章市場分析

  • 介紹
  • 3D列印產業
  • 各地區3D列印產業
  • 3D印表機預測
  • 3D列印服務提供者預測
  • 3D列印產業:依應用分類
  • 材料

第四章 技術問題與趨勢

  • 選擇性雷射燒結(SLS)
  • 直接金屬雷射燒結(DMLS)
  • 選擇性雷射熔化(SLM)
  • 立體光刻 (SLA)
  • 熔融沈積建模 (FDM)
    • (FFF(熔融沈積建模))
  • 雷射粉末成型 (LPF)
  • 多射技術
  • MJF(多射流融合)
  • DLP(數位光處理)
  • 材料噴射方式(材料噴射)

第五章 設備供應商

  • 介紹
    • 原型設計
    • 大規模客製化
  • 主要印表機製造商簡介
    • 3D Systems
    • Stratasys
    • ExOne Company
    • ProtoPlant
    • Mark Forged
    • Voxeljet AG (德國)
    • EOS GmbH (德國)
    • Arcam AB (瑞典)
    • EnvisionTEC GmbH (德國)
    • Renishaw plc (英國)
    • SLM Solutions GmbH (德國)
    • Concept Laser GmbH (德國)
    • Hoganas AB (瑞典)
    • Materialise NV (比利時)
    • Mcor Technologies Ltd. (愛爾蘭)
    • Xact Metal
    • Cincinnati Inc.
    • Mitsubishi
    • Beijing TierTime (中國)
    • Shaanxi (中國)
    • Digital Wax Systems (DWS) (義大利)
    • Blue Printer
    • Organovo
    • Shapeways (荷蘭)
    • Hewlett-Packard
    • XYZprinting
    • Evolve Additive Solutions
    • Origin
    • Carbon3D
    • Desktop Metal
    • Metal X
  • 製造商清單:依印表機類型
    • 熔融沈積建模 (FDM)
    • 噴墨方式
    • 雷射粉末成形(LPF)及相關技術
    • 基於光聚合物的方法
    • 選擇性雷射燒結 (SLS)
    • 立體光刻 (SLA)
    • 金屬印表機
  • 設備供應商、類型和價格
  • 開源 (RepRaps)

第六章 材料及材料供應商

  • 塑膠/熱塑性塑料
    • PLA(聚乳酸)
    • ABS(丙烯□丁二烯苯乙烯)
    • 尼龍
    • ASA(丙烯□苯乙烯丙烯酸酯)
    • PVA(聚乙烯醇塑膠)
    • 高性能熱塑性塑膠(PEEK、PEKK、PEK)
    • 聚碳酸酯材質
    • 高抗衝聚苯乙烯 HIPS 材料
    • 熱塑性聚氨酯
    • 聚丙烯
    • PET和其他可生物降解材料
    • 透明塑膠材質
  • 粉末
    • 聚□胺
    • 鋁化物
    • 樹脂
    • 金屬
    • 陶瓷
  • 先進材料
    • 導電碳嗎林
    • 石墨烯
    • 奈米材料
  • 獨立的材料基礎設施
  • 基於設備供應商的物質基礎設施

第七章 使用面積

  • 介紹
  • 電子/高科技
    • 太陽能
    • 射頻識別
    • 電池
    • 引領
    • 數位紡織
    • OLED照明/顯示
    • 智慧窗
    • 列印感應器
  • 醫療保健
    • 介紹
    • 骨骼
    • 牙科
    • 義肢
    • 投擲
    • 助聽器
    • 組織
    • 個人化診斷/給藥
    • 醫療微工廠
  • 汽車
  • 航天
  • 消費產品
  • 軍事/國防
  • 工業產品
  • 教育

Introduction

The 3D printing industry is revolutionizing manufacturing and design processes across various sectors, offering unprecedented flexibility, efficiency, and customization. Our report, "3D Printing: Material and Equipment Opportunities, Trends, and Markets," provides a comprehensive analysis of this transformative technology, delving into the latest advancements in materials and equipment, emerging market trends, and strategic challenges. This detailed report is crafted for industry professionals seeking to understand the key drivers of the 3D printing market and to identify strategic opportunities for growth and investment.

Trends in 3D Printing Technology

The 3D printing industry is witnessing significant advancements in both materials and equipment, which are expanding its applications and driving market growth. One of the most notable trends is the development of new and improved printing materials. Initially dominated by plastics, the material landscape in 3D printing has diversified to include metals, ceramics, and composite materials. High-performance thermoplastics like PEEK and PEKK are gaining popularity in aerospace and medical applications due to their strength and biocompatibility. Additionally, the use of metal powders, such as titanium and aluminum, is expanding in industries that require robust and lightweight components, including automotive and aerospace.

Another key trend is the evolution of 3D printing equipment. Advances in additive manufacturing technologies are enhancing the precision, speed, and scalability of 3D printers. Selective laser sintering (SLS), stereolithography (SLA), and direct metal laser sintering (DMLS) are among the cutting-edge techniques that are pushing the boundaries of what can be achieved with 3D printing. Hybrid manufacturing systems, which combine additive and subtractive processes, are also emerging, offering greater flexibility and efficiency in producing complex parts.

The integration of 3D printing with Industry 4.0 technologies is further transforming the manufacturing landscape. The adoption of IoT, AI, and machine learning in 3D printing processes enables real-time monitoring, predictive maintenance, and optimized production workflows. These smart manufacturing capabilities are enhancing the efficiency and reliability of 3D printing, making it a viable option for large-scale production runs as well as prototyping.

Sustainability is also becoming a central focus in the 3D printing industry. The ability to produce parts on-demand reduces waste and minimizes the environmental footprint associated with traditional manufacturing methods. Additionally, advancements in recyclable and biodegradable printing materials are aligning the industry with global sustainability goals, appealing to environmentally-conscious businesses and consumers.

The Need to Purchase This Report

For businesses and professionals involved in or entering the 3D printing market, understanding the latest technological trends and market dynamics is crucial for making strategic decisions. This report provides an in-depth analysis of the opportunities and challenges in 3D printing materials and equipment, offering valuable insights into the factors driving market growth and innovation. By purchasing this report, stakeholders will gain a comprehensive understanding of the current state of the 3D printing industry, including detailed market forecasts and competitive landscape evaluations.

Our report offers strategic recommendations for leveraging 3D printing technologies to enhance product development, manufacturing efficiency, and market positioning. It includes an exhaustive examination of key industry players, technological advancements, and emerging market opportunities. Companies looking to invest in 3D printing or expand their capabilities will find this report indispensable for identifying growth areas, optimizing their strategies, and staying ahead of the competition.

In conclusion, "3D Printing: Material and Equipment Opportunities, Trends, and Markets" is an essential resource for industry professionals, engineers, researchers, and business leaders. It provides a thorough exploration of the technological advancements and market trends shaping the 3D printing industry, equipping readers with the knowledge needed to navigate this rapidly evolving field. This report is designed to inform strategic planning, investment decisions, and the development of innovative 3D printing solutions that will drive future success in the global market.

Table of Contents

Chapter 1. Introduction

Chapter 2. 3D Printing Overview

  • 2.1. Benefits Of 3D Printing
  • 2.2. Limitations Of 3D Printing
  • 2.3 3D Market Segmentation
    • 2.3.1. Design
    • 2.3.2. Replacement Of Current Manufacturing Processes
    • 2.3.3. Personalized And Home 3D Printing
    • 2.3.4. Materials
  • 2.4. Regional Activities
    • 2.4.1. Europe
    • 2.4.2. Japan
    • 2.4.3. China
    • 2.4.4. Korea
    • 2.4.5. Global Research And Development

Chapter 3. Market Analyses

  • 3.1. Introduction
  • 3.2. 3D Printing Industry
  • 3.3. 3D Printing Industry By Geographic Region
  • 3.4. 3D Printer Forecast
  • 3.5. 3D Printing Service Bureau Forecast
  • 3.6. 3D Printing Industry By Application
  • 3.7. Materials

Chapter 4. Technology Issues and Trends

  • 4.1. Selective laser sintering (SLS)
  • 4.2. Direct metal laser sintering (DMLS)
  • 4.4. Selective Laser Melting (SLM)
  • 4.4. Stereolithography (SLA)
  • 4.5. Fused Deposition Modeling (FDM)
    • [Fused Filament Fabrication (FFF)]
  • 4.6. Laser Powder Forming (LPF)
  • 4.7. PolyJet Technology
  • 4.8. Multi Jet Fusion
  • 4.9. Digital Light Processing (DLP)
  • 4.10. Material Jetting

Chapter 5. Equipment Suppliers

  • 5.1. Introduction
    • 5.1.1. Prototyping
    • 5.1.2. Mass Customization
  • 5.2. Profiles Of Major Printer Manufacturers
    • 5.2.1. 3D Systems
    • 5.2.2. Stratasys
    • 5.2.3. ExOne Company
    • 5.2.4. ProtoPlant
    • 5.2.5. Mark Forged
    • 5.2.6. Voxeljet AG (Germany)
    • 5.2.7. EOS GmbH (Germany)
    • 5.2.8. Arcam AB (Sweden)
    • 5.2.9. EnvisionTEC GmbH (Germany)
    • 5.2.10. Renishaw plc (UK)
    • 5.2.11. SLM Solutions GmbH (Germany)
    • 5.2.12. Concept Laser GmbH (Germany)
    • 5.2.13. Hoganas AB (Sweden)
    • 5.2.14. Materialise NV (Belgium)
    • 5.2.15. Mcor Technologies Ltd. (Ireland)
    • 5.2.16. Xact Metal
    • 5.2.17. Cincinnati Inc.
    • 5.2.18. Mitsubishi
    • 5.2.19. Beijing TierTime (China)
    • 5.2.20. Shaanxi (China)
    • 5.2.21. Digital Wax Systems (DWS) (Italy)
    • 5.2.22. Blue Printer
    • 5.2.23. Organovo
    • 5.2.24. Shapeways (The Netherlands)
    • 5.2.25. Hewlett-Packard
    • 5.2.26. XYZprinting
    • 5.2.27. Evolve Additive Solutions
    • 5.2.28. Origin
    • 5.2.29. Carbon3D
    • 5.2.30. Desktop Metal
    • 5.2.31. Metal X
  • 5.3. Manufacturers By Printer Type
    • 5.3.1. Fused Deposition Modeling
    • 5.3.2. Inkjet Methods
    • 5.3.3. Laser Powder Forming And Related Technologies
    • 5.3.4. Photopolymer-Based Methods
    • 5.3.5. Selective Laser Sintering
    • 5.3.6. Stereolithography
    • 5.3.7. Metal Printers
      • 5.3.7.1. Power Bed Fusion Metal 3D Printers
      • 5.3.7.2. Binder Jetting Metal 3D Printers
      • 5.3.7.3. Direct Energy Deposition Metal 3D Printers
      • 5.3.7.4. Material Jetting Metal 3D Printers
  • 5.4. Equipment Suppliers, Type, And Prices
  • 5.4. Open Source (RepRaps)

Chapter 6. Materials And Materials Suppliers

  • 6.1. Plastics/Thermoplastics
    • 6.1.1. PLA (Polylactic Acid)
    • 6.1.2. ABS (Acrylonitrile butadiene styrene)
    • 6.1.3. Nylon
    • 6.1.4. ASA (Aacrylonitrile styrene acrylate)
    • 6.1.5. PVA (Polyvinyl Alcohol Plastic)
    • 6.1.6. High Performance Thermoplastics (PEEK, PEKK, PEK)
    • 6.1.7. Polycarbonate Materials
    • 6.1.8. High Impact polystyrene HIPS Materials
    • 6.1.9. Thermoplastic Polyurethane
    • 6.1.10. Polypropylene
    • 6.1.11. PET and Other Biodegradables
    • 6.1.12. Transparent Plastic Materials
  • 6.2. Powders
    • 6.2.1. Polyamide
    • 6.2.2. Alumide
    • 6.2.3. Resins
      • 6.2.3.1. High Detail Resin
      • 6.2.3.2. Paintable Resin
      • 6.2.3.3. Transparent Resin
    • 6.2.4. Metals
      • 6.2.4.1. Titanium
      • 6.2.4.2. Stainless Steel
      • 6.2.4.3. Bronze
      • 6.2.4.4. Nitinol
      • 6.2.4.5. Aluminum
      • 6.2.4.6. Cobalt
      • 6.2.4.7. Nickel
      • 6.2.4.8. Copper
      • 6.2.4.9. Precious Metals
      • 6.2.4.10. Refractory Metals
    • 6.2.5. Ceramics
  • 6.3. Advanced Materials
    • 6.3.1. Conductive Carbomorph
    • 6.3.2. Graphene
    • 6.3.3. Nanomaterials
  • 6.4. Third Party Material Infrastructure
  • 6.5. Equipment Supplier Material Infrastructure

Chapter 7. Applications

  • 7.1. Introduction
  • 7.2. Electronics/High-Tech
    • 7.2.1. Photovoltaics
    • 7.2.2. Radio Frequency Identification (RFID)
    • 7.2.3. Batteries
    • 7.2.4. LEDs
    • 7.2.5. Digital Textiles
    • 7.2.6. OLED Lighting And Displays
    • 7.2.7. Smart Windows
    • 7.2.8. Printed Sensors
  • 7.3. Medical
    • 7.3.1. Introduction
    • 7.3.2. Bones
    • 7.3.3. Dental
    • 7.3.4. Prosthetics
    • 7.3.5. Casts
    • 7.3.6. Hearing Aids
    • 7.3.7. Tissue
    • 7.3.8. Personalized Diagnostics & Drug Delivery
    • 7.3.9. Medical Microfactories
  • 7.4. Automotive
  • 7.5. Aerospace
  • 7.6. Consumer Products
  • 7.7. Military/Defense
  • 7.7. Industrial Products
  • 7.9. Educational

List of Tables

  • 2.1. SWOT Analysis of 3D Printing
  • 2.2. Force Analysis of 3D Printing
  • 3.1. Advantages And Disadvantages Of Traditional And Subtractive Manufacturing
  • 3.2. Forecast Of 3D Printing Industry By Sector 2017-2022
  • 3.3. Global 3D Printing Market Forecast By Region 2017-2022
  • 3.4. Global Forecast For 3D Consumer/Industrial Printers 2017-2022
  • 3.5. Market Share By Printing Process
  • 3.6. Service Bureaus North America
  • 3.7. Service Bureaus Europe And Asia
  • 3.8. Market Forecast For The 3d Printing Industry By Application-2017-2022
  • 5.1. Classification Of Processes And Selective Developers
  • 5.2. Equipment Suppliers, Type, And Prices
  • 6.1. Material Cost per Pound by Technology
  • 7.1. Features Of Inks For The Manufacture Of Sensors
  • 7.2. Aerospace Application and Materials

List of Figures

  • 3.1. Global Forecast For 3D Printers-2013-2022
  • 3.2. Market Share Of 3D Printing Industry By Region-2018
  • 3.3. Market Share Of 3D Printing Industry By Region-2022
  • 3.4. Global Forecast For 3D Printers-2013-2022
  • 3.5. 3D Consumer Printer Market Shares
  • 3.6. 3D Industrial Printer Market Shares
  • 3.7. Global Forecast For 3DPrinting Service Bureaus-2013-2020
  • 3.8. Global Forecast For 3D Printing Materials-2013-2020
  • 3.9. 3D Printing Material Share by Type 2018
  • 4.1. Diagram of Selective Laser Sintering (SLS)
  • 4.2. Diagram of Direct Metal Laser Sintering (DMLS)
  • 4.3. Selective Laser Melting (SLM)
  • 4.4. Diagram of Stereolithography (SLA)
  • 4.5. Diagram of Fused Deposition Modeling (FDM)
  • 4.6. Diagram of Laser Powder Forming (LPF)
  • 4.7. Diagram of PolyJet Technology
  • 4.8. Diagram of Multi Jet Fusion Technology
  • 4.9. Diagram of Digital Light Processing Technology
  • 4.10. Diagram of Material Jetting Technology
  • 7.1. 3D Printed Quantum Dot LED
  • 7.2. Current And Future Applications For 3D Printing For Automobile Applications