封面
市場調查報告書
商品編碼
1640399

零售分析 -市場佔有率分析、產業趨勢與統計、成長預測(2025-2030 年)

Retail Analytics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3個工作天內

價格

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

簡介目錄

零售分析市場規模在 2025 年估計為 66 億美元,預計到 2030 年將達到 81.2 億美元,預測期內(2025-2030 年)的複合年成長率為 4.23%。

零售分析-市場-IMG1

零售業的資料分析可以透過分析歷史資料來實現更明智的決策、改善業務並增加銷售。最終用戶資料和供應鏈和庫存管理等後端流程都是資料分析的一級資訊來源。

關鍵亮點

  • 商業智慧和分析系統已與後端應用程式整合,以更好地了解消費者行為,從而推動一致的客戶對話。隨著全通路策略的採用,分析現在可以整合不同的資料來源來解決多個管道問題並透過客戶喜歡的管道與他們溝通。向強大個人化邁出的又一步提高了典型的客戶終身價值和接觸點。因此,當今的零售商擴大收集和分析位置資訊、社交情緒和點選流等資料。
  • 數位化透過捕捉消費行為資料來改善消費者體驗和零售業務,從而推動零售分析行業向前發展。採用零售分析的一個主要好處是它提供有關客戶行為的具體且有意義的資料。了解如何估算財務回報可以讓企業經理更輕鬆地管理公司的每個部門,而零售分析則可以提供企業用於做出選擇的資訊。從分析社群媒體評論到了解宣傳活動對店內轉換率的有效性,零售分析讓商家清楚了解他們的業務。
  • IBM的一項調查顯示,高層估計新冠疫情使數位化加速了67%,此外,疫情也促使他們將「提高業務效率」作為首要任務,這一比例高達92%。
  • 電子商務的出現使得擴張實體店的傳統成長途徑變得過時。線上平台、在地化分類和國際市場擴張徹底改變了商品行銷分析的方法。來自線上平台的激烈競爭迫使零售商進入該領域,並在分類、定價、促銷、採購、補貨以及店內規劃和執行方面獲得更深入的了解。
  • 新冠疫情引發了零售業的數位化。疫情迫使零售業從傳統零售業迅速轉向以人工智慧和分析等強大的數位工具為中心的現代電子商務策略。線上消費習慣的廣泛採用正在加劇對數位創新和顛覆的需求。擴大使用人工智慧來個性化購物體驗,提高客戶維繫並提高銷售效率,這可能會促進業務成長。

零售分析市場趨勢

店內營運佔主要佔有率

  • 基於店內營運的分析已成為實體零售商商業策略的重要組成部分。進一步了解忠實客戶可以製定策略,透過向合適的客戶提供合適的產品來提高客戶保留率。
  • 零售商可以利用多種技術為消費者提供客製化體驗,包括評估客戶偏好、識別他們在商店中的位置、有針對性的促銷和購買習慣,以改善店內體驗。店內監控技術分析這些趨勢並提供有價值的見解,幫助商家增加收益、銷售額和客流量。
  • 例如,2022 年 6 月,亞馬遜推出了新的 Store Analytics 服務。目前,電子商務巨頭正尋求透過向負責人提供有關客戶購買情況的資料來從實體店中獲利。
  • 據 NewGenApps 稱,選擇充分利用巨量資料分析潛力的商家的營業利潤可提高 60%。此外,全通路零售商可以監控商店購買行為,並向客戶提供及時的訊息,以獎勵商店購買和隨後的線上銷售,推動零售商內部的交易。
  • 資料分析顧問公司 Quantzig 利用微目標行銷幫助一家德國時尚零售商提高了 12% 的店內銷售額和利潤。該零售商面臨的挑戰主要集中在如何在正確的時間向正確的資源提供見解、分析策略缺乏清晰度以及資料品質差。

歐洲佔很大佔有率

  • 歐洲市場因 IBM 公司和 SAP SE 等主要參與者的存在而蓬勃發展,它們是預測和高級零售分析軟體的領先供應商。此外,該地區擁有超過 600 萬家企業,並僱用了超過 3,300 萬人。歐洲是許多全球最大零售商的所在地,包括樂購、家樂福、利德爾、麥德龍和阿爾迪。
  • 最受歡迎的網路嗜好之一是網購。網上購物為顧客提供了各種各樣的產品,並為電子商務公司帶來了許多銷售挑戰。此外,零售業擴大採用雲端服務可能會在不久的將來為歐洲零售分析市場帶來潛力。
  • 例如,2022 年 10 月,艾利丹尼森宣布與 SAP 合作,連接各自的分析產品雲,幫助超級市場監控和最佳化產品保存期限,加速零售業解決廢棄物問題透過OEM協議,兩家公司同意將 SAP Analytics Cloud 嵌入艾利丹尼森的 atma.io 互聯產品雲中。據報道,資料將透過 atma.io 提供給 SAP Analytics 工具,以及使用艾利丹尼森數位辨識技術(如無線射頻辨識 (RFID))標記的產品。
  • 利用先進的分析技術使網路購物變得更加智慧,我們可以幫助商家透過結合店內和線上資料來客製化定位。

零售分析行業概覽

零售分析市場競爭適中。市場中一些主要的參與企業包括 IBM Corporation、Oracle Corporation、SAP SE、SAS Institute Inc.、Salesforce.com Inc. Tableau Software Inc.市場參與企業正在創新,提供策略解決方案,以擴大其市場影響力和基本客群。這將使您能夠贏得新契約並開拓新市場。主要市場發展包括:

  • 2023 年 9 月,Oracle 與 Uber 合作宣布推出“Collect and Receive”,這是 Oracle 零售平台上的一項新服務,旨在連接零售商和消費者,以增強和豐富最後一英里的配送。在 Oracle Retail Data Store 和雲端平台技術的支援下,零售商可以透過預先整合的 API 連結到該公司的配送解決方案 Uber Direct。此聯合解決方案將使零售商能夠平衡庫存,同時為客戶提供更多選擇,包括當日配送和預定送貨選項、訂單提貨和退貨至最近的零售店或郵局。
  • 2023 年 6 月,Salesforce 和 Google 宣佈建立合作夥伴關係,以協助公司利用資料和AI 提供更個人化的客戶體驗,更了解客戶行為,並在行銷、銷售、服務和商業領域推動業務成果。我們擴大了策略夥伴關係關係幫助您以更低的成本進行更有效的宣傳活動。兩項新的資料和人工智慧創新帶來了即時資料共用以及增強的預測和生成人工智慧能力。企業可以利用第一方資料和自訂AI 模型來更好地預測客戶需求,並降低跨平台同步資料的成本、風險和複雜性。

其他福利

  • Excel 格式的市場預測 (ME) 表
  • 3 個月的分析師支持

目錄

第 1 章 簡介

  • 研究假設和市場定義
  • 研究範圍

第2章調查方法

第3章執行摘要

第4章 市場洞察

  • 市場概況
  • 產業吸引力-波特五力分析
    • 供應商的議價能力
    • 購買者/消費者的議價能力
    • 新進入者的威脅
    • 競爭對手之間的競爭
    • 替代品的威脅
  • 產業價值鏈分析
  • COVID-19 對產業的影響

第5章 市場動態

  • 市場促進因素
    • 資料量不斷增加以及人工智慧、擴增實境和虛擬實境技術的進步
    • 電子零售成長
  • 市場問題
    • 嚴重依賴傳統流程,缺乏意識和專業知識

第6章 市場細分

  • 按解決方案
    • 軟體
    • 服務
  • 按部署
    • 本地
  • 按功能
    • 客戶管理
    • 店內營運(庫存管理、績效管理)
    • 供應鏈管理
    • 行銷和商品行銷(定價和產量比率管理)
    • 其他功能(運輸管理、訂單管理)
  • 按地區
    • 北美洲
      • 美國
      • 加拿大
    • 歐洲
      • 德國
      • 英國
      • 法國
      • 俄羅斯
      • 歐洲其他地區
    • 亞太地區
      • 中國
      • 日本
      • 印度
      • 其他亞太地區
    • 拉丁美洲
    • 中東和非洲

第7章 競爭格局

  • 公司簡介
    • SAP SE
    • IBM Corporation
    • Alteryx Inc.
    • Salesforce.com Inc.(Tableau Software Inc.)
    • Oracle Corporation
    • Retail Next Inc.
    • SAS Institute Inc.
    • QlikTech International AB(Qlik)
    • Altair Engineering Inc.
    • Hitachi Vantara LLC

第8章投資分析

第9章:市場的未來

簡介目錄
Product Code: 52446

The Retail Analytics Market size is estimated at USD 6.60 billion in 2025, and is expected to reach USD 8.12 billion by 2030, at a CAGR of 4.23% during the forecast period (2025-2030).

Retail Analytics - Market - IMG1

Retail data analytics follows analyzing historical data to enable smarter decisions, improve operations, and increase sales. Both end-user data and back-end processes, such as supply chain and inventory management, have been primary sources for data analytics.

Key Highlights

  • Business Intelligence and Analytics systems have been integrated with back-end applications to understand better shoppers' behavior to facilitate consistent customer conversation. The omnichannel strategies being adopted led analytics to cater to multiple channels by consolidating disparate data sources and communicating with customers on their preferred channel. A further step towards intense personalization has strengthened the typical customer Lifetime Value and touchpoints. Therefore, current retailers have been more inclined to collect and analyze data like Location, Social sentiment, Clickstream, etc.
  • Digitalization to improve consumer experience and retail operations by obtaining consumer behavior data is propelling the retail analytics industry forward. The major advantage of employing retail analytics is that it provides particular and meaningful data on customer behavior. When business managers understand how to estimate financial returns, it makes managing any area of a firm much easier, and retail analytics gives information that businesses use to make choices. Retail analytics give merchants with a clear picture of the business, from analyzing social media comments to understanding a campaign's effects on store conversion rates.
  • According to an IBM survey, executives estimated that COVID-19 had expedited their digitalization by 67%; moreover, the outbreak drove them to prioritize 'Improve operational efficiency' as its top priority by 92%.
  • The advent of e-commerce has rendered traditional growth avenues across brick-and-mortar store expansions as outdated. Online platforms, localized assortments, and international market expansions have transformed the way merchandising analytics is approached. Significant competition from the online platforms led retailers to enter that space and offered a clearer picture of assortment, pricing, promotions, sourcing, replenishment, and in-store planning and execution.
  • The COVID-19 outbreak has triggered the global digitalization of retail enterprises. The pandemic forced a radical shift away from conventional retail and toward modern e-commerce strategies centered on powerful digital tools like AI and analytics. The growing popularity of online consumption habits has intensified the demand for digital innovation and disruption. Growing the use of AI to customize shopping experiences, increase customer retention, and improve sales efficiency would benefit corporate growth.

Retail Analytics Market Trends

In-store Operation Hold Major Share

  • In-store-operation-based analytics has become an indispensable part of a brick-and-mortar retailer's operating strategy. With benefits ranging from offering the right product to the right customer, further insight on loyal customers leads to the development of strategies to increase customer stickiness.
  • When retailers deliver customized experiences to their consumers using several technology such as evaluating customer preferences, recognizing customer location in-store, targeted promotions, and purchase habits, they accomplish digital transformation in shops. The shop monitoring technology analyzes these trends to offer valuable insights that assist merchants in increasing revenue, sales, and footfalls.
  • For instance, in June 2022, Amazon launched its new Store Analytics service. The e-commerce behemoth is now attempting to profit on its physical storefronts by providing marketers with data on what customers buy.
  • According to NewGenApps, merchants who choose to fully utilize the potential of big data analytics may improve their operating profits by 60%. Furthermore, the omnichannel retailer may monitor in-store buyer behaviour and deliver timely deals to customers to incentivize in-store purchases or later online sales, therefore keeping the transaction within the retailer's fold.
  • Quantzig, a data analytics and advisory firm, increased its in-store sales through micro-targeting and the profits by 12% for a fashion retailer based out of Germany. The retailer faced challenges focused on delivering insights to the right resource at the right time, lack of clearly articulated analytics strategy, and poor data quality.

Europe to Hold Significant Share

  • The European segment is strong, owing to the presence of large players like IBM Corporation and SAP SE, which are the leading providers of predictive analytics and advanced retail analytics software. Moreover, more than six million companies are active in this region and employ more than 33 million people. Europe is home to many of the large-scale retailers in the world, such as Tesco, Carrefour, Lidl, Metro AG, and Aldi.
  • One of the most popular online hobbies is internet shopping. It offers a large range of items to customers and a plethora of sales difficulties to e-commerce firms. Furthermore, the growing use of cloud services in the retail business will provide possibilities in the European retail analytics market in the near future.
  • For example, in October 2022, Avery Dennison announced a collaboration with SAP to address waste concerns in the retail industry by connecting their individual analytic product cloud, enabling supermarkets to monitor and optimize the expiry dates of their items. The firms have agreed to incorporate SAP Analytics Cloud into Avery Dennison's atma.io connected product cloud through an OEM arrangement. According to reports, the data is provided to the SAP Analytics tool via atma.io, as well as items labeled using Avery Dennison's digital identifying technology, such as radio frequency identification (RFID).
  • The use of sophisticated analytics to make internet shopping smarter and the combining of physical and online data can assist merchants in customizing their targeting, leading to incremental improvements in e-commerce sales and contributing to the expansion of the market's European sector.

Retail Analytics Industry Overview

The Retail Analytics Market is moderately competitive. Some of the major players operating in the market include IBM Corporation, Oracle Corporation, SAP SE, SAS Institute Inc., and Salesforce.com Inc. (Tableau Software Inc.), among others. The players in the market are innovating in providing strategic solutions to increase their market presence and customer base. This enables them to secure new contracts and tap new markets. Some of the key developments in the market are:

  • In September 2023, Oracle, in partnership with Uber, announced Collect and Receive, a new offering on the Oracle Retail platform connecting retailers and consumers to enhance and enrich last-mile delivery. Supported by the Oracle Retail Data Store and cloud platform technologies, retailers can link to Uber Direct, the company's delivery solution, through pre-integrated APIs. This joint solution allows retailers to rebalance inventory while giving customers more choices, including same-day and scheduled delivery options, order pickup, and returns to the closest retail or postal location.
  • In June 2023, in partnership with Google, Salesforce expanded strategic partnerships to help businesses utilize data and AI to deliver more personalized customer experiences, better understand customer behavior, and run more effective campaigns at a lower cost across marketing, sales, service, and commerce. Two new data and AI innovations will bring real-time data sharing with enhanced predictive and generative AI capabilities. Businesses can use their data and custom AI models to better predict customer needs and reduce the cost, risk, and complexity of synchronizing data across platforms.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Buyers/Consumers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Intensity of Competitive Rivalry
    • 4.2.5 Threat of Substitute Products
  • 4.3 Industry Value Chain Analysis
  • 4.4 Impact Of COVID-19 on the Industry

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increasing Volumes of Data and Technological Advancements in AI and AR/VR
    • 5.1.2 Increasing E-retail Sales
  • 5.2 Market Challenges
    • 5.2.1 Significant Reliance on Traditional Processes and Lack of Awareness and Expertise

6 MARKET SEGMENTATION

  • 6.1 By Solution
    • 6.1.1 Software
    • 6.1.2 Service
  • 6.2 By Deployment
    • 6.2.1 Cloud
    • 6.2.2 On-premise
  • 6.3 By Function
    • 6.3.1 Customer Management
    • 6.3.2 In-store Operation (Inventory Management and Performance Management)
    • 6.3.3 Supply Chain Management
    • 6.3.4 Marketing and Merchandizing (Pricing and Yield Management)
    • 6.3.5 Other Functions (Transportation Management, Order Management)
  • 6.4 By Geography
    • 6.4.1 North America
      • 6.4.1.1 United States
      • 6.4.1.2 Canada
    • 6.4.2 Europe
      • 6.4.2.1 Germany
      • 6.4.2.2 United Kingdom
      • 6.4.2.3 France
      • 6.4.2.4 Russia
      • 6.4.2.5 Rest of Europe
    • 6.4.3 Asia-Pacific
      • 6.4.3.1 China
      • 6.4.3.2 Japan
      • 6.4.3.3 India
      • 6.4.3.4 Rest of Asia-Pacific
    • 6.4.4 Latin America
    • 6.4.5 Middle East and Africa

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 SAP SE
    • 7.1.2 IBM Corporation
    • 7.1.3 Alteryx Inc.
    • 7.1.4 Salesforce.com Inc. (Tableau Software Inc.)
    • 7.1.5 Oracle Corporation
    • 7.1.6 Retail Next Inc.
    • 7.1.7 SAS Institute Inc.
    • 7.1.8 QlikTech International AB (Qlik)
    • 7.1.9 Altair Engineering Inc.
    • 7.1.10 Hitachi Vantara LLC

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET